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Abstract. We consider an extension of Lafont’s Interaction Nets, called
Multiport Interaction Nets, and show that they are a model of concurrent
computation by encoding the full π-calculus in them. We thus obtain a
faithful graphical representation of the π-calculus in which every reduc-
tion step is decomposed in fully local graph-rewriting rules.

1 Introduction

Lafont’s Interaction Nets [1] are a model of sequential computation inspired
by proof-nets for Multiplicative Linear Logic that can be seen as distributed
Turing machines: as in these latter, transitions are local, but may be performed
in parallel. They have been explicitly designed to be strongly deterministic, so
no truly concurrent behavior can be expressed within them.

In this paper, we consider a non-deterministic extension1 of Interaction Nets,
called Multiport Interaction Nets, and show that they are an expressive model
of concurrent computation by encoding the full π-calculus in them.

A considerable number of graphical representations of the π-calculus (or other
process calculi) can be found in the existing literature. Let us mention for ex-
ample Milner’s π-nets [2], Parrow’s Interaction Diagrams [3], and Fu’s Reaction
Graphs [4]. All these approaches succeed in describing concurrent dynamics as
graph rewriting, but the treatment of prefixing is not very natural (in π-nets and
Reaction Graphs, some form of “guarded box” is used, while Interaction Dia-
grams use polyadicity to encode causal dependency), and they all need boxes to
represent replication, so that duplication is seen as a synchronous, global opera-
tion. It must also be observed that none of the existing graphical representations
is ever shown to cover the π-calculus in all of its features, including sums and
match prefix.

More recently, Laneve et al. proposed Solo Diagrams [5] as a graphical pre-
sentation of the solos calculus [6]. They too use replication boxes, but show
that these can be limited to certain configurations which ensure constant-time
reductions, and thus locality.

1 It would actually be fairer to put it the other way around: Lafont intentionally
restricted to one principal port because this yields systems with very nice properties.



Much closer to the spirit of Interaction Nets, a nice graphical representation
of (an extension of) the fusion calculus has been given by Beffara and Maurel [7],
in which nevertheless replication must be accommodated using boxes. In view
of our results, it does not seem unlikely that Multiport Interaction Nets can
provide both an alternative, “box-less” graphical encoding for the solos calculus
and a purely local version of Beffara and Maurel’s Concurrent Nets.

It is worth mentioning the comparison between Interaction Nets and concur-
rent systems done by Yoshida [8], who found that, when seen from the point of
view of Interaction Nets, the graphical representation for her concurrent com-
binators amounts more or less to allow hyperwires connecting cells, i.e., wires
that link together more than two ports. This is also explicitly seen in Beffara and
Maurel’s Concurrent Nets. As a matter of fact, our approach “internalizes” these
hyperconnections, extending Lafont’s systems not with respect to the topology
of the connections between cells but to the nature of the cells themselves.

Multiport Interaction Nets have already been considered by Vladimir Alexiev
in his Ph.D. thesis [9] as one of several possible non-deterministic extensions of
Interaction Nets; they are obtained from these latter by allowing cells to have
more than one principal port.2 Alexiev proved that this extension is as expressive
as the “hyperwire” extension mentioned above, and defined in it a graphical
encoding of the finite π-calculus, leaving open the problem of extending it to
replication. These systems have also been the object of Lionel Khalil’s Ph.D.
thesis [10], in which he proved that it is actually sufficient to add to Lafont’s
Interaction Nets a single cell with two principal ports and two auxiliary ports,
called amb, to obtain the full power of Multiport Interaction Nets. In spite of
Khalil’s result, it is still useful from the point of view of conciseness to consider
cells with an arbitrary number of principal ports, as we shall do in this paper.

Our encoding (quite different from Alexiev’s one, even in the finite case)
covers every single feature of the π-calculus, in particular replication, which is
crucial in terms of expressiveness. Compared to the aforementioned graphical
formalisms, ours has an exceptional advantage: no “box” or other global notion
is needed, i.e., the dynamics is fully local. In other words, our encoding may be
seen as the equivalent of sharing graphs for the λ-calculus. In perspective, this
opens the possibility for a new semantical study of concurrency, as the algebraic
semantics enjoyed by Lafont’s original systems (the Geometry of Interaction [11])
might be extended to Multiport Interaction Nets (this is not developed in the
paper though).

We also stress the fact that, unlike virtually any other graphical system
proposed for concurrency, Multiport Interaction Nets are not built around the
π-calculus, or any other process calculus. On the contrary, they must be seen
as an independent, alternative model of concurrency, which is shown here to be
equivalent to the π-calculus; our result ought to be read more in this sense than
as “yet-another-graphical-representation-of-π”.

2 Alexiev calls them INMPP, Interaction Nets with Multiple Principal Ports.
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Another advantage of Multiport Interaction Nets lies in their logical roots: as
extensions of multiplicative proof-nets, they can be endowed with a very natural
type discipline, which makes programming much easier and more robust.

2 Multiport Interaction Net Systems

Cells. The basic elements of (multiport) interaction nets are cells. A cell has
a distinct symbol identifying it (usually ranged over by α, β, . . .), and a finite
number of ports, partitioned into auxiliary ports, the number of which is called
the arity of the cell, and principal ports, the number of which is called the co-arity
of the cell. Cells whose co-arity is 1 will be called monocells ; cells with greater
co-arities will instead be called multicells. Here is how we usually represent cells:

α
. . .

. . .

1 n

α1 αm

auxiliary ports

principal ports

β

multicell with
2 principal ports

and 1 auxiliary port

γ

monocell with
2 auxiliary ports

monocell with
no auxiliary port

ε

Nets. Given several occurrences3 of cells, we use wires to connect their ports,
and build a net. For example, here is a net that uses the three cells drawn above:

γ
β γ

γ
ε

γ γ

ε

ε

Nets are usually ranged over by µ, ν, . . . Notice that wires may be left “dangling”,
with one or both of their extremities not connected to any cell. In particular, a
single wire is itself a net. These dangling wires are called free ports of the net.
A free port can be principal or auxiliary, or neither, as in the case of an isolated
wire. For example, the net above has 5 free ports, 2 of which are principal and
1 auxiliary. The free ports of a net form what is said to be its interface, since
each of them is a “branching point” that can be used to connect the net to other
nets, in a compositional/modular way.

Interaction. Nets become computational objects through graph rewriting. The
fundamental interaction principle is that rewriting can occur only when two prin-
cipal ports of two distinct occurrences of cells are connected; such a connection
is called a cut. As a consequence, all rewriting rules will be of the form

3 This is one of the very few times we will be pedantic about the distinction be-
tween cells and their occurrences; unless when strictly needed, we will usually make
systematic confusion between the two concepts.
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α

ωi

β

ωj

. . .

. . . . . .

. . .

. . . . . . . . . . . .
−→

. . .

. . . . . .

. . .

αi ⊲⊳ βj

where, for graphical convenience, we have used two permutations ωi and ωj that
“isolate” resp. the i-th principal port of α and the j-th principal port of β, i.e.

= =

i j

ωi ωj

. . . . . .

. . .. . .. . .

. . . . . .

. . . . . . . . .

. . .. . .. . .. . .

. . . . . .

i j

The left member is an active pair, and the right member its reduct. The reduct
must be a net respecting the interface of the active pair, i.e., there must be a
bijection between the free ports of the right and left members of each rule; this
bijection will always be clear from the graphical representation.

The interface being respected, the active pair can be “disconnected” from
the net and be replaced by its reduct. This is the basic rewriting step, and it
is written µ → µ′ (net µ reduces to µ′). We denote by →∗ the reflexive and
transitive closure of →, and if µ →∗ µ′, we say that µ′ is a reduct of µ. Notice
that a multicell can in general be involved in several active pairs; the choice of
which one is reduced is non-deterministic.

There are some additional constraints on interaction rules: first of all,
there may be at most one rule for each pair of principal ports; allowing non-
deterministic rules only complicates the definition without adding expressive
power. We also observe that active pairs intrinsically lack an orientation, so the
reduct βj ⊲⊳ αi must be essentially the same as αi ⊲⊳ βj , just “flipped over”; we
write this as βj ⊲⊳ αi = αi ⊲⊳ βj . Moreover, reducts cannot contain active pairs
(this does not prevent the possibility of infinite reductions).4

The formal definition. We are now ready to introduce the formal definition of a
multiport Interaction Net System (mINS):

Definition 1 (Multiport Interaction Net System (mINS)). A multiport
Interaction Net System S is a couple (Σ, ⊲⊳), where:

– Σ is a (possibly denumerably infinite) set of cells, called the alphabet of S;
– ⊲⊳ is a (partial) function taking an active pair and yielding a cut-free net with

the same interface, such that, if αi ⊲⊳ βj is defined, then βj ⊲⊳ αi = αi ⊲⊳ βj;

A mINS is said to be finite or infinite according to the cardinality of its alphabet.

Since interaction is local, any rule of a finite mINS can be performed in constant
time. However, in the rest of the paper we shall use only infinite systems, which
make the presentation more readable. Nevertheless, everything we do can be
done in finite mINS’s; this will be detailed in the full version of the paper.

4 Actually, reducts should be reduced nets, i.e., cut-free and vicious-circle-free. The
definition of vicious circle is irrelevant for our present purposes, so we shall content
ourselves with cut-free reducts.
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Types. mINS’s can be provided with a type discipline: given a system S, we
consider a set of constant types, ranged over by T , and to each port of the cells
of S we assign an input type (T−) or an output type (T +). We say that a net
is well typed if inputs are connected to outputs of the same type; a rule is well
typed if both its left and right members are well typed, and the typing of the
interface is preserved. If all rules of S are well typed, and if every well typed cut
has a corresponding rule, we say that S is a typed mINS.

In a typed mINS, it is sometimes useful to have overloaded cells, i.e., cells
which admit more than one typing for their ports; the typical example is a du-
plicator cell, which can duplicate no matter what and must therefore be capable
of interacting with any cell of any type (see Fig. 3 and 4 below).

The type discipline can be useful to guarantee certain correctness properties
of the system, mainly that “unreasonable” cuts never arise through reduction,
like, say, that a cell representing integer addition never interacts with a string
constructor.

3 mINS’s and the π-calculus

3.1 The finite π-calculus

Our first step will be to find a mINS which implements the finite π-calculus, or
Fπ. By finite π-calculus we mean the simplest subcalculus of π, modeling only
name-passing and name-restriction, without any other construct (in particular
without either replication or recursion). The prefixes and processes of Fπ are
resp. generated by the following grammars:

π ::= xy
∣∣ x(z)

P, Q ::= 0
∣∣ π.P

∣∣ P | Q
∣∣

ν(z)P .

The basic Fπ reduction rule is

xy.P | x(z).Q −→ P | Q{y/z} .

The set of free names of a process P is denoted fn(P ). Structural congruence is de-
fined, as usual, by the axioms making the set of processes a commutative monoid
with respect to parallel composition (the neutral element being 0), plus the
three standard axioms concerning name restriction: ν(z)ν(w)P ≡ ν(w)ν(z)P ,
ν(z)0 ≡ 0, and, if z /∈ fn(P1), z(P1 | P2) ≡ P1 | ν(z)P2. The observability pred-
icate is written ↓µ, where µ is either a name x (input action), or a co-name x

(output action); the invisible transition relation is written
τ
→, and its reflexive

and transitive closure ⇒.
Now consider the infinite typed mINS F∞ whose alphabet and rules are given

resp. in Fig. 1 and Fig. 2. Types have been omitted in the rules, but the reader
can check that they are all well typed. The first rule of Fig. 2 is an example
of “template rule”: for a fixed m ≥ 0, it actually condenses 2(m + 1) rules.
Template rules, the fact that ǫ ranges over {+,−}, and the permutations σǫ will
be notational conventions constantly adopted throughout the rest of the paper.
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π+

C−

N+

N+ N− N−

. . .

Bn

N+

Q+

Xm

N− N−

Q−

. . .

N+ N− N+ N−

C+

Λ+
n

C− N+ Q−

Q+

ρ+ ρ−

Q−

Q+ N− C+

π−

N−

N+

C+

N+ N− N+ N−

C−

Λ−

n

. . . . . .

Fig. 1. The alphabet of F∞

– Types N, C, and Q represent resp. names, continuations, and queues.
– π+ and π− cells will implement resp. output and input prefixes; each of them

is ready to make a request on a name, and bears a continuation and another
name (either the name being sent or the place-holder for substitution).

– Bn is a monocell with n auxiliary ports, with n ≥ 0; this family of cells will
be needed to bind the occurrences of the name used by an input prefix.

– Xm is a cell with m principal ports (m ≥ 1) and 2 auxiliary ports. We
stipulate that X0 is just a wire of type Q. The cells belonging to this family
will implement names: they are capable of concurrently handling several
requests coming from π+ and π− cells, and they have two FIFO queues (one
for inputs, the other for outputs) that will be used to store prefixes waiting
for interaction. They also handle requests from Bn cells; the interaction with
these cells models name-passing and the associated substitution.

– Λ+
n and Λ−

n are monocells of arity 2n, n ≥ 0. These two families will im-
plement the blocking function of prefixes: they “suspend” a connection until
they interact.

– ρ+ and ρ− cells will be needed to represent resp. output and input queues
on channels; they bear the same information as πǫ cells, plus a pointer to
the rest of the queue. Their interaction synchronizes two prefixes: the name
being sent is connected to the place-holder for substitution, and their two
continuations are connected, so that they can be unblocked.

We shall now define a translation 〈·〉 of Fπ processes into F∞ nets. This en-
coding enjoys a clear correspondence with the interactive structure of processes,
but accounts only for certain kinds of transitions. The free ports of 〈P 〉 will be
labelled with names: there will be one free port labelled x for each free occur-
rence of x in P . In particular, the presence of a free principal port labelled by x
will mean that x is the subject of a prefix, i.e., P ↓x or P ↓x. In our graphical
representations, we will always collect principal and auxiliary free ports resp. to
the bottom and to the top of the net, so if P is a process with k observables,
〈P 〉 will be pictured as a net with k free ports on the bottom.
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. . .

Xm

σǫ

−→. . . . . .

. . .

πǫ

ωi

Xm+1 ρǫ

σǫ

σǫ

σǫ

=

=σ+

σ−

ǫ ∈ {+,−}

Bn

−→

. . . . . .

. . . . . .

. . .
ωi

Xm+1 Xm+n

. . . . . .

2n−1 2n

Λ+

k Λ−

n

−→

. . . . . . . . . . . .
21 1 22k−1 2k 2n−1 2n212k2k−121

−→
ρ−ρ+

Fig. 2. The rules of F∞

〈P 〉 might as well contain cuts; if we need to translate π.P , we must “inhibit”
such cuts to correctly represent prefixing. So we introduce the nets .P ǫ as follows:

. . .

µ

. . .. . .
x1 xk

c cuts contained
in 〈P 〉

〈P 〉 =

. . .x1 xk

µ

. . .

. . .

. . .

Λǫ
k+c

.P ǫ ==⇒

An important case is .0ǫ, which is just a single 0-ary Λǫ
0 cell.

Definition 2 (Translation 〈·〉 for Fπ). We define 〈P 〉 by induction on P :

– 〈0〉 is the empty net.
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– 〈π.P 〉 is the following net, depending on the nature of π:

x

π+

.P+

〈xy.P 〉 =

. . . y
. . .. . .

Bn .P−

π−

x

〈x(z).P 〉 =

. . .

In the encoding of the input prefix, the n free ports of .P− labelled by z are
connected to the Bn cell.

– 〈P | Q〉 is the net obtained by juxtaposing 〈P 〉 and 〈Q〉.
– If 〈P 〉 has m free ports labelled by z, then 〈ν(z)P 〉 is the net obtained from

〈P 〉 by connecting all such free ports to the free ports of the following net:

. . .

Xm

Notice that this is the only case in which cuts may be introduced.

If 〈P 〉 has a free port labelled by x which is the principal port of a π+ (resp. π−)
cell, we write 〈P 〉 ↓x (resp. 〈P 〉 ↓x).

We have not mentioned types, but the reader can check that all the nets of
Definition 2 are well typed. Also, the encoding is defined modulo the ordering
of the connections to the ports of Bn, Λǫ

n, and Xm cells, which is irrelevant.
The translation 〈·〉 has already some interesting properties:

Proposition 1. If P ≡ Q, then 〈P 〉 = 〈Q〉.

Definition 3 (Fully invisible actions). We say that a process P is capable of

evolving to Q through a fully invisible action, P
τ̃
→ Q, if P

τ
→ Q and the subject

name used in the transition is under the scope of a restriction.

Theorem 1 (Weak completeness of the encoding). Let P be a process.

1. If P ↓µ, then 〈P 〉 ↓µ.

2. If P
τ̃
→ Q, then 〈P 〉 →∗ 〈Q〉.

Notice that the converse of Proposition 1 is false; in fact, whenever z does not
appear in the prefix π, 〈ν(z)π.P 〉 = 〈π.ν(z)P 〉, but the two processes are not
structurally congruent (they are strong full bisimilar though).

To prove part 2 of Theorem 1 (part 1 is trivial), one just observes that P
τ̃
→ Q

means that P ≡ ν(z, w̃)(zx.R1 | z(y).R2 | S) and Q ≡ ν(z, w̃)(R1 | R2{x/y} | S)
(this is the Harmony Lemma [12]), so, using Proposition 1, 〈P 〉 contains a π+

and a π− cell cut to the same Xm cell; knowing this, one easily finds a chain of
5 reductions leading to 〈Q〉.
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Another translation, noted [·], is needed if we want to account for τ tran-
sitions which are not fully invisible, i.e., which are due to synchronization on
free channels. Basically, [P ] is a sort of “closure” of 〈P 〉, i.e., [P ] is practically
identical to 〈ν(x̃)P 〉, where x̃ are the free names of P , the only difference being
that we want to remember the names we artificially bound:

Definition 4 (Translation [·] for Fπ). Let x range over fn(P ); if in 〈P 〉 there
are m free ports labelled by x, we define [P ] as the net obtained from 〈P 〉 by
connecting all such ports to a Xm+1 cell, which will be left with one free port
labelled by x:

Xm+1

. . .
x

Hence, in general, [P ] has as many free ports as the number of free names in P .
Notice that Proposition 1 transfers to [·] without any problem.

Now, free ports are stable under reduction, while free names are not (some
might disappear); therefore, a statement like

if P
τ
→ Q, then [P ] →∗ [Q]

might fail for trivial reasons. In order to cope with this, and because it will be
useful in other circumstances, we introduce the notion of readback.

Definition 5 (Bureaucratic cuts). Cuts between Bn and Xm cells and be-
tween Λǫ

n cells are called bureaucratic, and so are their respective reductions
(which are resp. the second and third from the top in Fig. 2). We call bureau-
free a net which contains no bureaucratic cut.

The following is immediate:

Lemma 1. Bureaucratic reduction is (strongly) confluent; hence, any net µ has
a unique associated bureau-free form µb.

Definition 6 (Readback). Let µ be any reduct of a net of the form [P ] for
some process P . The readback of µ, noted µ̂, is the net obtained by taking µb

and applying, until no longer possible, the following replacements:

. . .

Q−

n

. . .

Xm

Q+
p

. . .
 

Xm+n+p

π+π− π− π+

. . . . . .. . .

Xm+1

. . .
x

 

m m

x x
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where Qǫ
k, for k ≥ 1, is a tree of k ρǫ cells (built in the only possible way induced

by the typing). Notice that, in the second substitution, we start with 1 free port
labelled by x and we end up with m free ports all labelled by x as well; as in
Definition 4, x ranges over fn(P ).

Basically, the readback procedure “undoes” the choices made in queuing up pre-
fixes and removes the artificial closure of free names. It is evident from Defini-
tion 6 that [̂P ] = 〈P 〉. Now we can state the following, which follows immediately
from Theorem 1 and the definition of readback:

Theorem 2 (Completeness of the encoding). If P
τ
→ Q, then [P ] →∗ ν

such that ν̂ = 〈Q〉.

The converse also holds:

Theorem 3 (Soundness of the encoding). Let P be a process.

1. If 〈P 〉 ↓µ, then P ↓µ.
2. If [P ] →∗ ν, then P ⇒ Q such that 〈Q〉 = ν̂.

While part 1 is trivial, part 2 requires some work. We can reason by induction on
the number s of reduction steps applied to get from [P ] to ν. If s = 0, then the

statement follows from the above remark that [̂P ] = 〈P 〉. If s > 0, we call µ the
reduct of [P ] after s − 1 steps, and we analyze the reduction µ → ν. If this last
transition results from applying a bureaucratic rule, then µ is not bureau-free,
and (by Lemma 1) νb = µb, hence ν̂ = µ̂ and we conclude using the induction
hypothesis. If the last step is a πǫ/Xm rule (top of Fig. 2), the readback “undoes”
the reduction and we have again ν̂ = µ̂. The only case where something really
happens, i.e., ν̂ 6= µ̂, is when the last step is a ρǫ rule (bottom of Fig. 2). We
need here the following lemmas, the (not difficult) proofs of which are omitted:

Lemma 2. Let P be a process, and µ a reduct of [P ]. If µ contains a cut between
a ρ+ and a ρ− cell, then the corresponding π+ and π− cells in µ̂ are either cut
to the same Xm multicell, or have their principal ports free and labelled with the
same name.

Lemma 3. The reduction relation consisting of bureaucratic reductions and the
ρǫ reduction is (strongly) confluent.

By the induction hypothesis, we know that µ̂ = 〈Q〉 for some Q such that
P ⇒ Q; by Lemma 2, we also know that this Q contains an output and an
input prefix acting on the same channel, i.e., Q ≡ ν(w̃)(xy.R1 | x(z).R2 | S).
The ρǫ reduction leading to ν introduces (at most) two bureaucratic cuts; by
Lemma 3, we can assume these to be the only bureaucratic cuts in ν, for if µ
was not bureau-free, reducing its cuts before or after the application of the ρǫ

rule has no effect on νb (and thus on ν̂). It is then just a matter of applying
a few rewriting rules to check that ν̂ = 〈ν(w̃)(R1 | R2{y/z} | S)〉, as needed to
prove our statement. The typing discipline followed by F∞ assures us that no
cut other than those considered can arise through reduction, so we are done.

Of course the Soundness Theorem has a weaker version, stating that if
〈P 〉 →∗ ν, then there are a process Q such that 〈Q〉 = ν̂ and a number of
fully invisible transitions (including zero) leading from P to Q.
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3.2 Adding replication

The fact that mINS’s are able to faithfully encode Fπ is already meaningful from
the point of view of concurrent computation, but is extremely poor in terms of
expressive power. In this section we shall give a stronger result by showing that
the mINS F∞ can be extended into a mINS C∞ that encodes a fragment of the
π-calculus, called here the “core” π-calculus, or Cπ, which adds the replication
operator to Fπ. One could see Cπ basically as a synchronous and extended
version of the Pict language [13].

A well known fact is that the replication operator is not needed everywhere
in the definition of processes: replicated prefixes suffice to give universal compu-
tational power to the π-calculus. This is why we introduce extended prefixes

κ ::= x(z)
∣∣ π (where π is a prefix of Fπ) ,

which add the bound-output prefix to the “standard” prefixes of Fπ, and we
define the processes of Cπ to be those generated by the following grammar:

P, Q ::= 0
∣∣ π.P

∣∣ P | Q
∣∣
ν(z)P

∣∣ κ⊲ P .

In the traditional syntax, if π is an Fπ prefix, we would write π ⊲ P as !π.P ,
while x(z)⊲ P would be written as !ν(z)xz.P . Here, we choose this alternative
syntax since we do not consider the standard axiom for structural congruence
!P ≡ P | !P ; structural congruence on Cπ processes is thus the same relation we
defined on Fπ (see page 5). To recover the adequate notion of transition relation,
we add the following rules:

xy ⊲ P
xy
→ xy ⊲ P | P x(z)⊲ P

xy
→ x(z)⊲ P | P{y/z} x(z)⊲ P

x(z)
→ x(z)⊲ P | P

The reduction relation is defined in the same way; so, for example, we have

xy.P | x(z)⊲Q −→ P | Q{y/z} | x(z)⊲Q .

The alphabet of the (infinite) typed mINS C∞ is defined by adding to the
alphabet of F∞ the cells of Fig. 3, whose interactions are given by the rules of
Fig. 4:

– There is an additional type, R, which represents name restrictions.
– !πǫ and !ρǫ cells play the same role resp. as πǫ and ρǫ cells: the first represent

replicated prefixes, the second enqueued replicated prefixes. They carry two
additional pieces of information: another name, and a restriction. The first
is a potential occurrence of the subject of the prefix, which is needed since a
replicated prefix whose subject is x potentially generates a new occurrence
of x after replication. The second is a sort of pointer to the restricted names
which are under the scope of the replication; these names are not usable
until replication takes place.

– A cell belonging to the !Xm family (m auxiliary ports, m ≥ 1) represents a
restricted name with m occurrences blocked under a replicated prefix.
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T+ T+

T−

δ−

T− T−

T+

δ+!ρ+

Q+

R+N+ C− N+ Q− N− C+Q+ R+ N+

Q−

!ρ−

N+ N+C−R+

N+

!π+

R+

ϕ

N−

!π−

N+

C+ R+ N+

. . .
R+

Nn

R−

R+N−N−

. . .

R−

!Xm

Fig. 3. Additional cells for C∞.

– Cells belonging to the Nn family (n auxiliary ports, n ≥ 0) “collect” !Xm

cells and pass them to !πǫ cells.
– The ϕ cell “unblocks” restricted names whenever a copy of a replicated

process is activated.
– δǫ cells are duplicators : they implement (local) replication of processes. They

are overloaded cells, i.e., their ports can be typed with any type T , provided
the typing respects the input/output specifications of Fig. 3.

Definition 7 (Translations 〈·〉 and [·] for Cπ). We extend the translation
〈·〉 of Definition 2 to Cπ processes in the following way. Suppose that .P ǫ (as
always, ǫ ∈ {+,−}) is a net containing n X-cells and (among others) k free ports
labelled with the name z:

. . .
z z

. . .

Xm1

. . .

Xmn

.P ǫ = µ

. . . . . .

Then, we define ⊲P ǫ and ⊲P z as follows:

. . .
z z

µ

. . . . . .. . .. . .
!Xm1

!Xk+1

µ

. . .

σǫ

. . .

Nn

. . .. . .
!Xmn

!Xm1

Nn+1

. . .. . .

!Xmn . . .

⊲P ǫ
⊲P z

where, as usual, σ− is the identity permutation and σ+ is the “twist” permuta-
tion. We can now define 〈κ⊲ P 〉:
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σǫ

σǫ

σǫ

σǫ

. . .

Xm

σǫ

−→. . . . . .

. . .
ωi

Xm+1

=

=σ+

σ−

ǫ ∈ {+,−}

σǫ

!ρǫ

!πǫ

!ρ+ !ρ−

−→
ϕ

δ+ δ+ δ− δ+

ϕ

δ+δ+δ+δ−

!π+ !π−

!ρǫ ρ−ǫ

s.t. ∀i ∈ {1, . . . , n}
∀n, ι+n , ι−n are permutations

ι−n (i) = i
ι+n (i) = n − i + 1

ιǫ2

ιǫ5

ιǫ4

ϕ

δǫ δ−ǫ δ+ δ+

!πǫ

−→

ιǫ3ιǫ2 ιǫ2 ιǫ2

−→

ϕ

Nn

. . . . . .

ϕ ϕ

ωi

Xm+1

. . . . . . −→

Xm+2

. . .
. . .

δ+

. . .

Xm

. . .

ϕ

−→
!Xm

−→ δǫnδǫ1 α αα δǫ

. . . . . .

. . . . . .
δ+ δ−

−→

α is any cell except
Xm and δ−ǫ

Fig. 4. Rules for the additional cells of C∞.
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!π+

x

x y

⊲P+

. . .

Bn

. . .. . . . . .

⊲P−

x

!π−

x

. . .
x

⊲P z

x

!π+

〈x(z)⊲ P 〉 〈x(z)⊲ P 〉〈xy ⊲ P 〉

If 〈P 〉 has a free port labelled by x which is the principal port of a π+ or !π+

(resp. π− or !π−) cell, we write 〈P 〉 ↓x (resp. 〈P 〉 ↓x).
The translation [P ] is obtained from 〈P 〉 exactly as in Definition 4.

Notice that it is no longer the case that each free occurrence of x in P corresponds
to a free port labelled by x in 〈P 〉; here, a free occurrence of x as subject of a
replicated prefix generates two free ports. It is still the case though that the
free principal ports of 〈P 〉 are in bijection with the observables of P . We also
remark that Proposition 1 holds trivially for both of the extended translations;
this would of course be impossible if we admitted that !P ≡ P | !P .

Definition 5 can be extended to C∞ by considering as bureaucratic the last 5
cuts of Fig. 4, i.e., all cuts involving ϕ and δǫ cells; it is immediate to verify that
Lemma 1 still holds. We can then define the readback µ̂ of a C∞ net µ which
is the reduct of a net [P ]: simply take its bureau-free form µb, and apply the
substitutions of Definition 6, where this time the queues might contain !ρǫ cells,
which need to be replaced by the corresponding !πǫ cells.

With all the definitions extended to C∞, it is not hard to prove the following:

Theorem 4 (Faithfullness of the encoding of Cπ). Let P be a Cπ process.

1. P ↓µ iff 〈P 〉 ↓µ.

2. If P
τ
→ Q, then [P ] →∗ ν and ν̂ = 〈Q〉.

3. If [P ] →∗ ν, then P ⇒ Q and 〈Q〉 = ν̂.

The proof follows a similar argument to that given for Theorem 2 and Theorem 3.
The fundamental issue concerning replication is that neither cuts, nor Xm or δǫ

cells can be duplicated by δǫ cells. This is why ⊲P ǫ and ⊲P z are introduced:
such nets are cut-free, and do not contain either Xm or δǫ cells, so they can be
safely duplicated. Then, ϕ cells extract P from ⊲P ǫ or ⊲P z. We also observe
that, thanks to the encoding, nested replication poses no problem. The other
two important points are that duplication is completely bureaucratic (therefore
strongly confluent), and that it stops on free channels; this assures us that the
replication process does not interfere with prefix synchronization.

4 Conclusions

We have seen how one can find an infinite typed mINS C∞ which is able to
faithfully encode a quite expressive fragment of the π-calculus, equivalent to a
synchronous and extended version of the Pict language. As a matter of fact,
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much more can be done: one can enrich C∞ in order to represent any other
feature of the π-calculus, in particular guarded choice and match prefix. This
will be shown in the full version of the paper.

We also remark that the systems introduced in Sect. 3 can easily be adapted
to encode any kind of typed π-calculus. To see this, just notice, for example,
that Xm cells can be overloaded by uniformly instantiating the type N into any
type V belonging to the grammar V ::= B | ♯V , where B ranges over some set
of basic types. We can then proceed to overload πǫ cells so that if their two
auxiliary ports have types V ǫ and C−ǫ, then the principal port has type ♯V +.
If we apply similar changes to !πǫ, ρǫ and !ρǫ cells, we obtain a mINS for the
simply typed π-calculus [12]. Of course, the original system C∞ is retrievable by
typing everything with a fixpoint type N such that N = ♯N.
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