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We analyze the reduction of differential interaction nets from the point of view of

so-called “true concurrency”, that is, employing a non-interleaving model of parallelism.

More precisely, we associate with each differential interaction net an event structure

describing its reduction. We show how differential interaction nets are only able to

generate confusion-free event structures, and we argue that this is a serious limitation in

terms of the concurrent behaviors they may express. In fact, confusion is an extremely

elementary phenomenon in concurrency (for example, it already appears in CCS with

just prefixing and parallel composition) and we show how its presence is preserved by

any encoding respecting the degree of distribution and the reduction semantics. We thus

infer that no reasonably expressive process calculus may be satisfactorily encoded in

differential interaction nets. We conclude with an analysis of one such encoding proposed

by Ehrhard and Laurent, and argue that it does not contradict our claims, but rather

supports them.

Introduction

Proof nets and process algebras: an unsuccessful story

Ever since Girard (1987) introduced proof nets, there has been a widespread belief that

process algebras and linear logic are somehow related. Essentially, the reason for such a

belief has to do with how proof nets represent the associativity of logical deduction. Sup-

pose we are able to prove the three formulas A ⇒ B, B ⇒ C and C ⇒ D; no reasonable

mathematician would ever claim the existence of two distinct proofs of A ⇒ D simply

because there are two different orders in which the three lemmas may be composed. In

proof theoretic terms, composition corresponds to the cut rule, so a formalism capable

of accounting for the associativity of deduction must be able to abstract from the order

in which cut rules are applied. This is precisely what proof nets, as opposed to sequent

calculus, are able to do, and it is why Girard calls them “the parallel syntax for proof

theory” (Girard, 1996).

The reader acquainted with standard process calculi (CSP, CCS, the π-calculus. . . )

will have probably recognized a familiar situation in the above description: the three
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lemmas may be thought of as three processes P,Q,R, each capable of independently

receiving on channel a, b, c, respectively, and sending on b, c, d, respectively. Then, the

logical composition of the three lemmas corresponds to the process ν(b, c)(P | Q | R).

This analogy, first pointed out by Abramsky (1994), was formally developed at least by

Abramsky (1993) himself and Bellin and Scott (1994), confirming that process calculi are

indeed a suitable framework for expressing the “parallelism” of linear logic proofs nets.

However, although linear logic has kept providing, even in recent times, useful tools

for ensuring properties of process algebras, especially via type systems (Kobayashi et al.,

1999; Yoshida et al., 2004; Caires and Pfenning, 2010; Honda and Laurent, 2010), all

further investigations have failed to bring any deep logical insight into concurrency the-

ory, in the sense that no concurrent primitive has found a convincing counterpart in

linear logic, or anything even remotely resembling the perfect correspondence between

functional languages and intuitionistic logic. In our opinion, we must simply accept that

linear logic is not the right framework for carrying out Abramsky’s “proofs as processes”

program (which, in fact, more than 20 years after its inception has yet to see a satisfactory

completion).

The reason for such a failure must ultimately be sought in the strong determinism

of the cut-elimination procedure of linear logic, which, so to speak, makes composition

excessively associative: the cut rule is associative not only statically (i.e., a chain of

lemmas forms, as a static object, only one proof) but also dynamically, i.e., the normal

form of the chain does not depend on the order in which the cuts are eliminated (this

is nothing but the Church-Rosser property). Using the process-algebraic example above,

if ν(b)(P | Q) reduces to S and ν(c)(Q | R) reduces to T , dynamic associativity would

mean that ν(b, c)(P | Q | R) has the same behavior as ν(c)(S | R) and also as ν(b)(P | T ),

which cannot hold in general in a genuinely concurrent system.

In synthesis, we may put it this way: linear logic proofs are processes, but processes

are far from being linear logic proofs and, what is more important, it is unclear at this

time whether what is missing has any natural proof-theoretic counterpart.

Differential interaction nets: a new hope

An entirely new perspective on the relationship between concurrent computation and

proof theory was brought forth by the introduction of differential linear logic. This lat-

ter arose from the study of finiteness spaces, a denotational model defined by Ehrhard

(2005) which achieves the long-sought goal (already foreshadowed in Girard (1987)) of

interpreting the connectives of linear logic as operations on topological vector spaces.

In a nutshell, finiteness spaces endow the exponential modalities of linear logic with ad-

ditional structure, introducing symmetries which are absent in linear logic: the structural

rules, weakening and contraction, have symmetric counterparts, called coweakening and

cocontraction (categorically, the objects of the form !A, which are coalgebras in linear

logic, become bialgebras in differential linear logic); furthermore, the other fundamental

operation on exponential modalities, called dereliction, finds a symmetric counterpart in

the derivative operator, which may be defined thanks to the linear-topological structure

of finiteness spaces (and is the reason behind the “differential” adjective).
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At the level of proof nets, this translates into the differential interaction nets of Ehrhard

and Regnier (2006), which rapidly attracted the attention of those seeking to relate linear

logic and concurrency, because their cut-elimination procedure is non-deterministic, a

true novelty in the world of proof nets. Even better, the non-determinism at work in

differential interaction nets is in some sense structured, controlled, as opposed to the

“wild” nature of the non-determinism present in the cut-elimination of Gentzen’s classical

sequent calculus. This gives some serious hope that differential interaction nets may help

us overcome the stalemate of linear logic with respect to concurrent computation.

As a matter of fact, after some time, Ehrhard and Laurent (2010b) managed to find

what seems to be a satisfactory encoding of the π-calculus, with all of its main concurrent

and mobile features, into differential interaction nets, in which the reduction semantics of

processes is mimicked by the cut-elimination of differential interaction nets. This would

pave the way for the development of a “concurrent” Curry-Howard isomorphism, an

achievement of arguably great interest.

Our contribution: differential interaction nets are still not enough

And yet, a close inspection of the encoding of Ehrhard and Laurent (2010b) reveals that

it is not as convincing as one would hope. We give a detailed analysis of it in Sect. 4; for

the time being, let us ignore the existence of such an encoding, and let us try to address,

in an abstract way, the question of whether differential interaction nets are sufficiently

expressive to be considered as a model of concurrent computation.

We start by observing that, at the intuitive level, the non-determinism of differential

interaction nets seems to be too weak for general concurrency. In fact, if one allows formal

sums of nets (as is the case in Ehrhard and Regnier (2006)), cut-elimination in this system

still enjoys the Church-Rosser property, which means that differential interaction nets

morally verify the dynamic associativity to which we alluded above.

In order to pinpoint the problem in a formal way, our idea is to turn to the most

fine-grained models of parallelism, the so called “truly concurrent”, or non-interleaving

semantics of computation. The main feature of these models is that they do not reduce

parallelism to a sum of sequentializations, i.e., the presence of several concurrent actions

is not equated with the non-deterministic superposition of their possible linear orderings:

in CCS terms, x | y is not considered to be the same as x.y + y.x.

Among all non-interleaving models, event structures (Winskel, 1982) are quite ap-

pealing, because of their simple and yet very expressive mathematical structure. The

basic assumption underlying event structures is that a computational process may be

described as a collection of events, which are related by causality and conflict. Causality

is an abstraction of time in computation, and allows one to speak of sequentiality and

parallelism. Conflict describes non-determinism: if two events are in conflict, we are in

front of a choice between the two, as the occurrence of either one of them excludes the

occurrence of the other.

In Sect. 2.3 we show how the reduction of differential interaction nets may easily

be described in terms of event structures: each reduction step is an event, with causal

order given by necessity (a reduction step whose execution is possible only after another
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reduction step is executed), and conflict given by non-deterministic choice (two reduction

steps coming from two ways of reducing the same redex). Once we know how to interpret

differential interaction nets in event structures, we proceed as follows.

Differential interaction nets are confusion-free. We start by observing something

remarkable, namely that the event structures generated by differential interaction nets

have a very special form: they are all confusion-free (Theorem 2.8). The notion of

confusion-freeness arose in the study of Petri nets (Rozenberg and Engelfriet, 1996) and,

intuitively, reflects the fact that the non-determinism of a concurrent system is always

“localized”: in a confusion-free system, non-deterministic choices are made by the com-

ponents of the system regardless of what happens elsewhere. A typical example is the

non-determinism generated by a coin toss. On the contrary, the non-determinism induced

by the different possible interactions between the components of a distributed system

generally results in confusion. The reformulation of confusion-freeness in the context of

event structures which we use in this paper is due to Varacca et al. (2006).

The confusion-freeness of differential interaction nets is a form of dynamic associativity

and, in our opinion, must be seen as the deep reason why it is possible to formulate cut-

elimination with formal sums and obtain a Church-Rosser system. Anyhow, our initial

question may now be reformulated as: How important is confusion in concurrency? In

other words:

(a) is confusion present in the process calculi usually employed in concurrency theory?

(b) If so, is it essential?

For what concerns question (a), we may find a simple example of confusion in the CCS

process

x | x.y | y | y

(see the opening of Sect. 3 for an explanation). Note that the above process uses only

two primitives: parallel composition and prefixing. These primitives are so basic that one

can hardly imagine how an acceptable model of concurrent computation may disregard

them.† Therefore, we conclude that question (a) must be answered positively.

Acceptable encodings preserve confusion. Sect. 3 is devoted to giving a technical

argument which should convince the reader that question (b) must also be answered

positively. What we should like to do is proving a statement of the form “the CCS process

above cannot be encoded in differential interaction nets”. However, we stumble here on

the extremely thorny problem of defining a good notion of “encoding” in a concurrent

setting (see Parrow (2008); Gorla (2010) for a survey of the existing literature on the

subject, which is quite vast).

This is where our choice of using a non-interleaving semantics turns out to be essential.

† The solos calculus (Laneve and Victor, 2003) has no explicit prefixing in its syntax and uses name
restriction to express causality. Nevertheless, it does not contradict our claim: what really matters is
a way of expressing causality, and confusion is present in the solos calculus as well, cf. the example
after Theorem 4.2.
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In fact, we are able to avoid the elusive question of what is a concurrent encoding by

reasoning directly at the level of event structures. We define one notion, called bisim-

ilar embedding, which captures, in terms of events, two minimal requirements that an

acceptable encoding must arguably satisfy:

— preservation of the degree of distribution, i.e., the fact that coordinating agents (such

as a scheduler) are not introduced when encoding parallel, independent events of the

source language;

— operational correspondence, i.e., the fact that the reduction steps of the source lan-

guage must be faithfully simulated in the target language.

These two properties may be considered “minimal” because they appear more or less

ubiquitously in the literature on encodings (Gorla, 2010).

Our last step is to prove that bisimilar embeddings preserve confusion (Theorem 3.6).

This makes us conclude that confusion-free calculi (such as differential interaction nets)

are fundamentally less expressive than what is desirable for a model of concurrency.

Other systems of interaction nets. After discussing the encoding of Ehrhard and

Laurent (2010b) and arguing that, instead of contradicting, it actually supports our

negative results, we conclude the paper by applying the event structure analysis to other

systems of interaction nets. The interest of these systems is in that confusion may be

expressed in them. Nevertheless, they do not bring us any further in the “proofs as

processes” quest because their relationship with logic is obscure (and may be inexistent).

We study in particular so-called multiport interaction nets (Alexiev, 1999; Mazza, 2005),

and give a partially negative result on the existence of universal multiport systems, in

contrast with the (positive) result of Lafont (1997) on universal systems for deterministic

interaction nets.
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1. Preliminaries: Event Structures and Confusion

In what follows, if (A,≤) is a poset and u ⊆ A, we denote by ↓u the downward closure

of u, i.e., ↓u = {a′ ∈ A | ∃a ∈ u.a′ ≤ a}, and we write ↓a for the principal ideal ↓{a}.

Definition 1.1 (Event structure (Winskel and Nielsen, 1995)). An event struc-

ture is a triple E = (|E|,≤E ,ˇE) where:

— |E| is a set, the elements of which are called events and are ranged over by a, b, c;

— ≤E is a partial order on |E|, called causal order, such that, for all a ∈ |E|, ↓a is finite;
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— ˇE is an anti-reflexive symmetric relation on |E|, called conflict relation, such that,

for all a, b, c ∈ |E|, a ˇE b ≤E c implies a ˇE c;

The complement of ˇE , called coherence relation, is denoted by ¨E . When no confusion

may arise, we omit the subscript in the notations for causal order and conflict.

Let E be an event structure, and let u ⊆ |E|. We say that u is a configuration of E

iff ↓u = u and a, b ∈ u implies a ¨ b. The set of finite configurations of E is denoted by

C(E), and ranged over by u, v, w. If u is a configuration and a an event such that a 6∈ u

and u′ = u ∪ {a} is a configuration, we say that u enables a. The smallest configuration

enabling a generic a ∈ |E| is clearly ↓a \ {a}, which we denote by ⌈a⌉.

We now recall the definition of confusion-free event structure, taken from Varacca et al.

(2006).

Definition 1.2 (Immediate conflict). Let E be an event structure. We say that

a, a′ ∈ |E| are in immediate conflict, and we write a# a′, iff a ˇ a′ and there exists a

configuration enabling both a and a′.

Immediate conflict actually generates all other conflicts by “propagating upwards”:

Lemma 1.3 (Varacca et al. (2006)). Let E be an event structure, and let a, b ∈ |E|.

Then, a ˇ b iff there exist a0, b0 ∈ |E| such that a0 # b0 and a0 ≤ a, b0 ≤ b.

Definition 1.4 (Confusion). Let E be an event structure. A confusion of type I in E

is a triple (a, b, c) ∈ |E|3 such that a 6= c, a# b, b# c and a and c are not in immediate

conflict. A confusion of type II in E is a pair (a, b) ∈ |E|2 such that a# b and ⌈a⌉ 6= ⌈b⌉.

An event structure E is confusion-free if it contains no confusion or, equivalently,

— the reflexive closure of # is transitive, i.e., it is an equivalence relation;

— for every a, b ∈ |E|, a# b implies ⌈a⌉ = ⌈b⌉.

2. Differential Interaction Nets

2.1. Algebraic presentation

The following definition of differential interaction nets is due to a joint work with Andrei

Dorman (to be included in Dorman (2013)). It differs from the graphical presentation

usually adopted in the literature (recalled in Sect. 2.2) in that it is more in the style of

process algebras. This has the advantage of providing more concise (although less visual

and hence, perhaps, less intuitive) notations which are useful for our present purposes

(for example, in Definition 2.4).

We must also mention that, since they are “the proof nets of differential linear logic”,

differential interaction nets usually come with types, which are formulas of linear logic or

variants thereof (for instance, Ehrhard and Laurent (2010b) use Danos-Regnier recursive

types, i.e., based on a type o satisfying o = !o ⊸ o). However, the dynamics of nets in

terms of event structures is not affected by the presence of types: Definition 2.7 makes

sense and Theorem 2.8 holds in any kind of typed nets. Therefore, we completely ignore

types in our presentation.
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Definition 2.1 (Net). A cell is an expression of one of the following 10 forms:

multiplicative cells: ⊥(x), `(x; y, z), 1(x), ⊗(x; y, z),

exponential cells: ?d(x; y), ?w(x), ?c(x; y, z), !d(x; y), !w(x), !c(x; y, z),

where x, y, z range over a denumerably infinite set of ports. Multiplicative cells are called

bottom, par, one and tensor, respectively. Exponential cells are called dereliction, weak-

ening, contraction, codereliction, coweakening and cocontraction.‡

A wire is a multiset containing exactly 2 (not necessarily distinct) ports x, y, which

we denote by x ↔ y (or y ↔ x).

A net is a finite multiset of cells and wires in which every port appears at most twice.

The set of free ports of a net µ, denoted by fp(µ), is the set of ports appearing exactly

once in µ. The ports appearing twice in a net are called bound. We identify any two nets

which may be obtained one from the other by an injective renaming of their bound ports

(this is α-equivalence).

Given two nets µ, ν, we denote by µ | ν the net obtained by renaming (using α-

equivalence) the bound ports of µ and ν so that the two nets have no bound name in

common, and by taking then the standard multiset union. The operation | is obviously

commutative and has the empty net, denoted by ∗, as neutral element. It is not associative

in general; however, for µ | (ν | ρ) and (µ | ν) | ρ to be equal, it is enough to suppose that

fp(µ) ∩ fp(ν) ∩ fp(ρ) = ∅. More generally, if µ1, . . . , µn are such that, for any pairwise

distinct i, j, k, fp(µi) ∩ fp(µj) ∩ fp(µk) = ∅, then the expression µ1 | · · · | µn is not

ambiguous. In the sequel, we shall always assume this to be the case.

We now introduce a notion corresponding to what is usually called structural con-

gruence in process calculi. We adopt the standard notation ≡ but call it ω-equivalence

to avoid conflict with the terminology structural reduction (cf. Definition 2.3) employed

in the literature on differential interaction nets, which is owed to the well established

proof-theoretic tradition of calling weakening and contraction structural rules.

Definition 2.2 (ω-equivalence). We write µ →ω µ′ if µ = ν | x ↔ y, x ∈ fp(ν) and

µ′ = ν{y/x}, where the latter denotes the net ν in which the only free occurrence of x

is replaced by y. The relation →ω is obviously confluent and strongly normalizing. We

denote by ≡ the induced equivalence, i.e., µ ≡ µ′ if µ and µ′ have the same normal form

with respect to →ω.

Definition 2.3 (Reduction). We define the following rewriting rules:

Multiplicative reduction:

1(x) | ⊥(x) → ∗

⊗(x; y1, y2) | `(x; z1, z2) → y1 ↔ z1 | y2 ↔ z2

Communication reduction:

!d(x; y) | ?d(x; z) → y ↔ z

‡ Observe the symmetries between ⊥/1, `/⊗, ?/!; these are dual connectives in linear logic.
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Non-deterministic reduction:

!d(x; y) | ?c(x; z1, z2) →

{

!d(z1; y) | !w(z2)

!w(z1) | !d(z2; y)

?d(x; y) | !c(x; z1, z2) →

{

?d(z1; y) | ?w(z2)

?w(z1) | ?d(z2; y)

Structural reduction:

!w(x) | ?w(x) → ∗

!c(x; y1, y2) | ?c(x; z1, z2) → ?c(y1; r, p) | ?c(y2; s, q) | !c(z1; r, s) | !c(z2; p, q)

!w(x) | ?c(x; y1, y2) → !w(y1) | !w(y2)

?w(x) | !c(x; y1, y2) → ?w(y1) | ?w(y2)

The nets on the left side of the above rewriting rules are called active pairs.

The reduction relation of differential interaction nets, denoted by →, is defined by

closing the above rules under parallel composition and ω-equivalence:

µ → µ′

µ | ν → µ′ | ν
µ ≡ µ′ µ′ → ν′ ν′ ≡ ν

µ → ν

2.2. Graphical presentation

As mentioned above, nets admit a nice and intuitive graphical representation, in the

style of string diagrams for monoidal categories. Although not as concise, the graphical

representation has the advantage not only of automatically handling α-equivalence, but

also of internalizing ω-equivalence: two nets are ω-equivalent iff they have the same

graphical representation. For instance, if we set

ν1 = ⊗(t;x,w) | `(t;u, y) | ?w(w) | !c(v; z, u) | !w(v),

ν2 = !w(p) | !c(q; p, q),

µ = ν1 | ν2 | r ↔ s | t ↔ t,

µ′ = ν1 | ν2 | r ↔ s′ | s′ ↔ s | t ↔ t′ | t′ ↔ t,

then it is readily seen that µ ≡ µ′ and that both µ and µ′ are represented graphically as

in Fig. 1.

The graphical form of the rewriting rules of Definition 2.3 is given in Figures 2

through 5. Note how the symmetries of differential interaction nets appear in an even

more conspicuous way.

2.3. Differential interaction nets and event structures

We are now going to associate with every net µ an event structure Ev(µ) which describes

the dynamics of its reduction. Intuitively, each reduction step which may be applied to

µ or to any of its reducts constitutes an event. A reduction step a causally precedes a

reduction step b if a must be performed in order for the active pair inducing b to appear.
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⊗

!

?!

? !

x y z r s

`

Fig. 1. Graphical representation of a net.

Two reduction steps are in conflict when they mutually exclude each other; it is the case

of every pair of reduction steps reducing the same non-deterministic active pair (Fig. 4).

In fact, such a choice is actually the only source of conflict in differential interaction nets,

and we shall see that this causes the event structure generated by a net to be always

confusion-free.

In order to proceed, it is technically convenient to associate a unique label with every

cell of a net, and then to adapt the definition of reduction in such a way that uniqueness

is preserved. For this, we define a label to be a finite binary word, i.e., an element of

{0, 1}∗, which we consider as a poset under the prefix order.

Definition 2.4 (Labeled net). A labeled cell is a cell endowed with a label, i.e., an

expression of one the following 10 forms:

multiplicative cells: ⊥[l](x), `[l](x; y, z), 1[l](x), ⊗[l](x; y, z),

exponential cells: ?d[l](x; y), ?w[l](x), ?c[l](x; y, z), !d[l](x; y), !w[l](x), !c[l](x; y, z),

where l ranges over labels and, as usual, x, y, z range over ports.

A labeled net is a multiset of labeled cells and wires in which, as usual, every port

appears at most twice and, moreover:

— every labeled cell appears at most once;

— any two distinct labels are incomparable.

The definitions of free, bound port and of α-equivalence apply unchanged to labelled

nets. For parallel composition, in forming µ | ν we stipulate that the labels of µ are all

prefixed with 0 and those of ν with 1 (so the operation is no longer commutative, but

this has no consequence for our purposes). The notion of ω-equivalence applies as it is

to labeled nets. Given a labeled net µ, we may define its erasure by forgetting all of its

labels; this yields a net which is denoted by µ−.

Definition 2.5 (Reduction of labeled nets). We modify the rules of Definition 2.3
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⊥

⊗

`

→→

1

Fig. 2. Multiplicative reduction.

!

?

→

Fig. 3. Communication reduction.

→

†
† †

††

†⊥

or

Fig. 4. Non-deterministic reduction. In the figure, † stands for ! or ?, and !⊥ = ?, ?⊥ = !.

†

→

!

?

!

?

→

! !

? ?

→

†⊥

† †

Fig. 5. Structural reduction. In the figure, † stands for ! or ?, and !⊥ = ?, ?⊥ = !.
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as follows:

!d[l](x; y) | ?c[m](x; z1, z2) →

{

!d[l0](z1; y) | !w[l1](z2)

!w[l0](z1) | !d[l1](z2; y)

?d[l](x; y) | !c[m](x; z1, z2) →

{

?d[l0](z1; y) | ?w[l1](z2)

?w[l0](z1) | ?d[l1](z2; y)

!c[l](x; y1, y2) | ?c[m](x; z1, z2) → ?c[m0](y1; r, p) | ?c[m1](y2; s, q) |

!c[l0](z1; r, s) | !c[l1](z2; p, q)

!w[l](x) | ?c[m](x; y1, y2) → !w[l0](y1) | !w[l1](y2)

?w[l](x) | !c[m](x; y1, y2) → ?w[l0](y1) | ?w[l1](y2)

where l,m range over labels and l0, l1 denote the result of appending 0, 1, respectively,

to the label l, and similarly for m. The other rules, in which some cells (and their labels)

disappear, are transported to the labeled setting in the obvious way. It is clear that if µ

is a labeled net which is rewritten into µ′ by means of the application of one of the above

rules (in any context and modulo ω-equivalence), then µ′ is also a labeled net, i.e., the

constraints of Definition 2.4 on labels are preserved.

We may now attach a label to each single reduction step, as follows. Let µ be a labeled

net containing an active pair composed by two cells labeled by l and m, and let µ′ be

the net obtained from µ by reducing such an active pair. In case the active pair is of the

multiplicative, communication or structural kind, we write µ →(l,m) µ
′. Otherwise, if it

is of the non-deterministic kind, we write µ →(l,m,i) µ
′, where i is either 0 or 1, according

to the choice made to obtain µ′ (it is irrelevant which choice is attached to 0 and which

to 1). The constraints on cell labels guarantee that each reduction step of µ or of any of

its reducts has its own unique label. In the sequel, we shall use a, b, c to range over the

labels of reductions.

The following result is immediate; it relates reduction of labeled nets with reduction

of (unlabeled) nets:

Lemma 2.6. Let µ be a labeled net. Then, µ →a ν implies µ− → ν−; conversely,

µ− → µ′ implies that there are a label a and a labeled net ν such that µ →a ν and

ν− = µ′.

Definition 2.7 (Event structure of a labeled net). Let µ be a labeled net. We

define

Aµ = {a | µ →∗ µ′ →a µ′′},

that is, Aµ is the set of the labels of all reductions applicable to µ and its reducts. Given

a, b ∈ Aµ, we set a ≤µ b just if, for all reductions of the form µ →∗ µ′ →b µ′′, one of

the reduction steps in µ →∗ µ′ is labeled by a. Moreover, we define a#µ b exactly when

a = (l,m, 0) and b = (l,m, 1), for some labels l,m. Finally, we set Ev(µ) = (Aµ,≤µ,ˇµ),

where a ˇµ b just if there exist a0 ≤µ a, b0 ≤µ b such that a0 #µ b0 (i.e., ˇµ is the

conflict relation inherited from #µ through ≤µ, as in the statement of Lemma 1.3).
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Theorem 2.8. For every labeled net µ, Ev(µ) is a confusion-free event structure. More-

over, if µ, ν are such that µ− = ν−, then Ev(µ) and Ev(ν) are isomorphic.

Proof. The fact that ≤µ is a partial order follows straightforwardly from its definition.

The finiteness of its principal ideals is a consequence of the fact that the reductions we

consider are all of finite length. That ˇµ is symmetric is obvious. For what concerns its

antireflexivity, c ˇµ c would imply the existence of a#µ b such that a, b ≤µ c; but this

latter condition means that all reductions starting from µ which yield the active pair

inducing c must at some point reduce both a and b, which is impossible by definition of

#µ. Finally, the property that a ˇµ b ≤µ c implies a ˇµ c is automatically ensured by

the definition of ˇµ in terms of #µ. Therefore, Ev(µ) is indeed an event structure.

Now, the relation #µ is easily seen to be the immediate conflict relation of Ev(µ):

by definition, a#µ b means that a and b represent the two distinct choices of reducing

the same (non-deterministic) active pair; let µ′ be any reduct of µ containing such an

active pair; we have, by definition of reduct, µ →c1 . . . →cn µ′ for some reduction steps

c1, . . . , cn; it is then straightforward to check that {c1, . . . , cn} is a configuration of Ev(µ),

which enables both a and b. Moreover, since a and b are induced by the same active pair,

if a reduction step c is necessary for such an active pair to appear, then we will have both

c ≤µ a and c ≤µ b, which proves the absence of confusions of type II. For what concerns

the absence of confusions of type I, simply observe that, since the non-deterministic

choices only come in pairs, a#µ b#µ c implies a = c.

The final point, i.e., that Ev(µ) and Ev(ν) are isomorphic, is a straightforward conse-

quence of Lemma 2.6.

The second part of Theorem 2.8 guarantees that, no matter how we label the cells of

a net, we end up with the same event structure. Therefore, we may forget about labeled

nets and speak directly of the event structure of a(n unlabeled) net µ, which we still

denote by Ev(µ).

2.4. An example and some side notes

Let us give an example. Consider the net

µ = 1(p) | 1(q) | ⊗(r; p, q) |

!d(s; r) | ?d(s; t) | !d(w; t) | ?d(w;x) |

` (x; y, z) | ⊥(y) | ⊥(z).

There are two active pairs in µ, both consisting of a dereliction and a codereliction. Let

us call them a and b. Obviously, they are independent; after reducing them, we obtain

the net

1(p) | 1(q) | ⊗(x; p, q) | `(x; y, z) | ⊥(y) | ⊥(z),

which contains a ⊗/` active pair we denote by c. Reducing c gives us the net

1(y) | 1(z) | ⊥(y) | ⊥(z),
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containing two further active pairs d and e which, after reducing both, yield the empty

net. It is clear that a and b are both necessary for c to appear, and that this is in turn

necessary for the appearance of d and e. Since there are no non-deterministic active pairs,

we conclude that there are no conflicts, and Ev(µ) is

d e

c

^^❃❃❃❃
@@✁✁✁✁

a

@@����
b

^^❂❂❂

where arrows denote causal precedence. In fact, we may prove that differential interaction

nets are able to generate a fairly vast range of conflict-free event structures.

Let (A,≤) be a finite partial order. Observe that this is automatically a conflict-free

event structure (indeed, finite conflict-free event structures and finite posets are exactly

the same thing). We write a <1 b if a < b and there is no c such that a < c < b, and we

define succ(a) = {b ∈ A | a <1 b}. The out-degree of A is the least n ≤ ω such that, for

all a ∈ A, the cardinality of succ(a) is at most n.

Proposition 2.9. Let (A,≤) be a finite partial order of out-degree at most 2. Then,

there exists a differential interaction net µ such that Ev(µ) = (A,≤).

Proof. Throughout the proof, we use α, β to range over the cell symbols 1,⊗, !d, !w,

and we denote by α the dual cell, i.e., if α is equal to 1,⊗, !d, !w, then α stands for

⊥,`, ?d, ?w, respectively.

We shall prove by induction on the cardinality of A that there exists µ such that:

(i) for each a ∈ A, µ contains exactly one pair of dual cells associated with a, of the form

α(p; z1, . . . , zm) | α(q;w1, . . . , wm),

where m is the cardinality of succ(a);

(ii) if a is minimal, then p = q, so the pair corresponding to a is actually an active pair,

the reduction of which gives µ → µ′ such that Ev(µ′) = (A \ {a},≤).

We invite the reader to check that such a net µ satisfies Ev(µ) = (A,≤) (it is a straight-

forward consequence of the definition of event structure of a net). Intuitively, µ is built

from the maximal elements, proceeding “downwards”. Each time we add a new minimal

element a, we insert an active pair whose cells are connected to the cells corresponding

to the elements b which are immediately above a. In doing this, if necessary we “break

up” the active pair corresponding to b, so that it needs the execution of the active pair

corresponding to a to “become” an active pair again.

Let us start the proof. If A = ∅, then µ = ∗ will do. Assume that A 6= ∅, and let a be

a minimal element (which must exist by the finiteness of A). Let µ0 be a net such that

Ev(µ0) = (A\{a},≤), which exists by induction hypothesis. We have now three different

cases, depending on the cardinality of succ(a).

If a has no immediate successor, then it is easy to check that µ = µ0 | !w(x) | ?w(x)

satisfies the required properties.

Suppose now that succ(a) = {b}. By induction hypothesis, we know that there exists
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a net ν such that

µ0 = ν | β(p;~z) | β(q; ~w),

where the pair β/β is the one associated with b. Then, we set

µ = ν | β(p;~z) | β(r; ~w) | !d(x; q) | ?d(x; r).

Let us check that µ meets the requirements. It clearly satisfies (i), with the !d/?d active

pair being the one associated with a. For what concerns (ii), let a′ be a minimal element

of A. If a′ = a, then we have µ → µ0, so we conclude by induction hypothesis. If a′ 6= a,

observe that in any case a′ 6= b (because b is certainly not minimal in A), so the active

pair associated with a′ is in ν, and was therefore already in µ0, so we conclude once again

by invoking the induction hypothesis.

The last case is that in which succ(a) has cardinality 2. This is treated analogously to

the previous case, except that we introduce a ⊗/` active pair.

By inspecting the proof of Proposition 2.9, it is clear how differential interaction nets

may be modified so as to generate all finite conflict-free event structures. It suffices to

replace the cells 1, !d,⊗ with a family of cells of the form Mn(x; y1, . . . , yn), with n ∈ N,

and similarly for their dual cells, which are replaced by the family M∗
n(x; y1, . . . , yn). The

interaction between these cells is defined by

Mn(x; y1, . . . , yn) | M
∗
n(x; z1, . . . , zn) → y1 ↔ z1 | · · · | yn ↔ zn.

Quite obviously, the interaction rules for 1/⊥, !d/?d, ⊗/` are the special cases where n =

0, 1, 2, respectively. From the (linear) logical point of view, allowing these generalized cells

corresponds to considering proof nets in which the connectives ⊗ and ` have arbitrary

arity.

This generalization of Proposition 2.9 shows that the reduction dynamics of Lafont

interaction nets (see Sect. 5.1) is able to generate all finite conflict-free event structures.

Since conflict-free event structures may be thought of as an abstract model of determin-

istic asynchronous computation, this result supports the following statement from Lafont

(1997):

“[...] we can say that [Lafont] interaction nets are a deterministic and asynchronous model of

computation. In fact, we think that any computation of that kind can be modeled by means of

[Lafont] interaction nets, but of course, an assertion of this kind cannot be proved”.

Moreover, if we write x~y for Mn(x; ~y) and x~y for M∗
n(x; ~y), then it is clear how these

generalized cells are nothing but solos as defined in Laneve and Victor (2003). Indeed,

the interaction rule above is consistent with that of the solos calculus, except that it

introduces explicit fusions (Wischik and Gardner, 2005). The fact that multiplicative

proof nets (with generalized arities) may be seen as a (deterministic) fragment of the

solos calculus was already remarked in Laneve et al. (2001).
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3. On the Existence of Encodings of Process Calculi into Differential

Interaction Nets

We now come to the central question of the paper: are differential interaction nets suf-

ficiently expressive to be considered as a model of concurrent computation? We first

explain why, as mentioned in the introduction, all process calculi usually employed in

concurrency theory admit the presence of confusion.

Consider the following CCS process, which is also trivially a π-calculus process or a

fusion calculus process (Parrow and Victor, 1998):

P = ν(x, y)(x | x.y | y | y).

The standard event structure semantics of P (originally defined in Winskel (1982) and

reviewed, for example, in Winskel and Nielsen (1995)) consists of 3 events: an event a

representing the synchronization on channel x, an event b representing the synchroniza-

tion on channel y immediately available in P , and an event c representing the “other”

synchronization on y which may occur after the event a. Graphically, the relationship

between these three events may be represented by

c /o/o/o b

a

OO

where the “wiggly” line represents immediate conflict, so the event structure has a con-

fusion of type II (it is indeed the smallest of this kind).

Note that name restriction is present in P only to make its event structure be as small

as possible; it is not needed for generating confusion. Indeed, if we consider the reductions

of P , the presence or absence of restriction is irrelevant. Therefore, confusion really arises

only through parallel composition and prefixing. Although the event structure semantics

of more sophisticated process calculi, especially those involving mobility, is far from trivial

(for instance, it is only recently that Crafa et al. (2012) have succeeded in defining an

extension of Winskel’s CCS semantics for the π-calculus), for fragments so simple as to

include only parallel composition and prefixing there is no difficulty, even in presence

of mobility features, in defining a semantics of reduction which extends Winskel’s CCS

interpretation in a natural way, so that the presence of confusion in virtually all process

calculi may be asserted not just at an intuitive but also at a technical level.

3.1. Bisimilar embeddings of event structures

Let E,E′ be two event structures, and let R ⊆ |E| × |E′|. We denote by π1(R), π2(R)

the first-component and second-component projections of R, respectively. If u ∈ C(E),

a ∈ |E| is enabled by u, and v = u ∪ {a}, we write u
a

−→R v if a ∈ π1(R) (we call

this a computational transition labeled by a), and u
τ

−→R v otherwise (we call this an

administrative transition). We denote by =⇒R the reflexive-transitive closure of
τ

−→R,

and we write u
a

=⇒R v iff there exist u1, v1 ∈ C(E) such that u =⇒R u1
a

−→R v1 =⇒R v.

We apply the same notations to E′, with π2 replacing π1, i.e., we write u′ a′

−→R v′ if
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a′ ∈ π2(R), and u′ τ
−→R v′ otherwise, with u′, v′ ∈ C(E′) and a′ ∈ |E′|. Moreover, given

u ∈ C(E) and u′ ∈ C(E′), we set suppR(u) = u ∩ π1(R) and suppR(u
′) = u′ ∩ π2(R).

In what follows, we denote by Pfin(A) the set of finite subsets of a set A.

Definition 3.1 (R-bisimulation). Let E = (|E|,≤,ˇ), E′ = (|E′|,≤′,ˇ′) be event

structures, and let R ⊆ |E| × |E′|. An R-bisimulation between E and E′ is a relation

B ⊆ C(E)×Pfin(R)×C(E′), such that (∅, ∅, ∅) ∈ B and, whenever (u, φ, u′) ∈ B, we have:

i. φ is (the graph of) a poset isomorphism between (suppR(u),≤) and (suppR(u
′),≤′);

ii. u
a

−→R v implies u′ a′

=⇒R v′ with (v, φ ∪ {(a, a′)}, v′) ∈ B;

iii. u
τ

−→R v implies u′ =⇒R v′ with (v, φ, v′) ∈ B;

iv. u′ a′

−→R v′ implies u
a

=⇒R v with (v, φ ∪ {(a, a′)}, v′) ∈ B;

v. u′ τ
−→R v′ implies u =⇒R v with (v, φ, v′) ∈ B.

We say that E and E′ are R-bisimilar, and we write E ≈R E′, if there exists an R-

bisimulation between them.

R-bisimulations are a variant of history-preserving bisimulations. These were originally

defined on labeled event structures. Our definition is a generalization of this: if ℓE, ℓE′

are labeling functions for E,E′, such that some events are assigned the special label τ ,

we may set Rℓ = {(a, a′) ∈ |E| × |E′| | ℓE(a) = ℓE′(a′) 6= τ}, and we have E ≈Rℓ
E′

exactly when E and E′ are weakly bisimilar in the original definition of Rabinovitch and

Traktenbrot (1988) and van Glabeek and Goltz (1989).

Of course, the meaningfulness of an R-bisimulation depends on R: for example, we

invite the reader to check that, for all even structures E,E′, {(u, ∅, u′) | u ∈ |E|, u′ ∈ |E′|}

is a ∅-bisimulation. The idea is to avoid this kind of degeneracy by considering a special

case of R-bisimulations, in which R is “as big as possible”.

Definition 3.2 (Bisimilar embedding). Let E,E′ be two event structures. A bisimilar

embedding of E into E′ is a relation ι ⊆ |E| × |E′| such that:

totality: π1(ι) = |E|;

injectivity: for all a, b ∈ |E|, ι(a) ∩ ι(b) 6= ∅ implies a = b;

bisimilarity: E ≈ι E
′; a ι-bisimulation proving this is said to be associated with ι.

We write E
ι
→֒ E′ to denote the fact that ι is an embedding of E into E′, or simply

E →֒ E′ to state the existence of an embedding.

Proposition 3.3 (Embeddings compose). If, E
ι′

→֒ E′ andE′ ι′′

→֒ E′′, then E
ι′′◦ι′

→֒ E′′,

where ◦ denotes standard composition of relations.

Proof. One checks that, if B′,B′′ are bisimulations associated with ι′, ι′′, respectively,

then {(u, φ, u′′) | (u, φ1, u
′) ∈ B′, (u′, φ2, u

′′) ∈ B′′, φ = φ2 ◦ φ1} is a bisimulation associ-

ated with ι′′ ◦ ι′.

Note that E can be embedded into E′ precisely when, once we consider the events of

E to be labeled by themselves, there is a way of labeling the events of E′ over |E| ∪ {τ}

so that E and E′ are weakly history-preserving bisimilar in the sense of Rabinovitch and

Traktenbrot (1988); van Glabeek and Goltz (1989).
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Although there is no general agreement on what an embedding of concurrent calculi

should be, there is a certain number of desirable properties which are recurrently adopted

in the literature. For instance, Gorla (2010) isolates 5 criteria yielding a sensible notion

of encoding on “abstract” concurrent systems (sets of processes with a reduction relation

and a behavioral equivalence), which is general enough to encompass a great deal of

known encodability results, both positive and negative. Among these criteria, there are

two which are of special interest to us:

preservation of distribution: the encoding should preserve the degree of distribution

of the source process; technically, on process calculi one usually imposes that the

encoding be a homomorphism of parallel composition;

operational correspondence: the target process should simulate the source process in

a faithful way, i.e., it should be

complete: if P reduces to P ′, then the encoding of P should reduce to something

equivalent to the encoding of P ′;

sound: if the encoding of P reduces to Q, then such a Q is not just anything: there

must exist P ′ such that P reduces to P ′ and Q is able to reduce to something

equivalent to the encoding of P ′.

Bisimilar embeddings are conceived with the above two properties in mind. Indeed, the

requirement that the embedding induces a bisimulation is exactly the principle of opera-

tional correspondence formulated on events, which are morally reductions. Preservation

of distribution is ensured by the non-interleaving character of event structures, which

translates technically as the fact that if two configurations are part of a bisimulation,

then they are order isomorphic. Typically, this will detect the presence of coordinating

agents inserted by a non-homomorphic encoding.

Of the other 3 criteria of Gorla (2010), two (name invariance and success sensitiveness)

are specific to name-passing (or name-based) calculi and/or are hard to formulate in the

abstract context of event structures. The third one, divergence reflection, i.e., the fact

that the encoding does not introduce divergence, is perhaps less agreed upon in the

literature. We shall consider it in Sect. 5.3. In any case, since Theorem 3.6 rests only on

preservation of distribution and operational correspondence, it would obviously hold if

more stringent notions of embedding (incorporating these additional criteria) were to be

introduced.

We hope to have thus convinced the reader that bisimilar embeddings provide an

abstract way, formulated directly at the level of event structures, to speak of the minimal

properties which a reasonable encoding of process calculi should satisfy.

3.2. Bisimilar embeddings preserve confusion

In this section, we fix two generic event structures E = (|E|,≤,ˇ) and E′ = (|E′|,≤′,ˇ′).

Lemma 3.4. Let E
ι
→֒ E′, and let d, e ∈ |E|. Then, d ˇ e implies that, for all d′ ∈ ι(d)

and e′ ∈ ι(e), d′ ˇ′ e′.

Proof. An immediate consequence of the properties of ι-bisimulations.
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Let us introduce a useful terminology. Suppose that E
ι
→֒ E′, and let e′ ∈ |E′| and

u′ ∈ C(E′). We say that u′ eventually enables e′ if u′ =⇒ι v
′ such that v′ enables e′.

Lemma 3.5. Let E
ι
→֒ E′, let d′ ˇ′ e′, and let u′ ∈ C(E′) enabling d′ and eventually

enabling e′. Then, there exists e′0 ≤′ e′ such that d′ #′ e′0.

Proof. Lemma 1.3 gives us two events d′0, e
′
0 of E′ such that d′ ≥′ d′0 #

′ e′0 ≤′ e′. We

contend that d′0 = d′. Indeed, suppose, for the sake of contradiction, that d′0 <′ d′. We

then have d′0 ∈ u′, because u′ enables d, but d′0 ˇ′ e′ by propagation of conflict, in

contradiction with our hypothesis that u′ eventually enables e′.

Theorem 3.6. Let E,E′ be event structures with E containing a confusion. Then,

E →֒ E′ implies that also E′ contains a confusion.

Proof. Let ι be an embedding of E into E′, and let B be an associated ι-bisimulation.

Suppose there is a pair (a, b) which is a confusion of type II in E, and assume w.l.o.g.

that there exists c ∈ ⌈a⌉ \ ⌈b⌉. Note that u = ⌈a⌉∪⌈b⌉ is necessarily a configuration of E;

hence, there must exist u′
0 ∈ C(E′) such that (u, φ, u′

0) ∈ B, with φ a poset isomorphism.

Now, since u enables a, we must have u′
0 =⇒ι u

′ such that u′ enables a′ ∈ ι(a). Moreover,

since all events in that transition are administrative, we have (u, φ, u′) ∈ B. But u also

enables b, so u′ must eventually enable an event b′ ∈ ι(b). Observe that, by Lemma 3.4,

we have a′ ˇ′ b′, so we are in position of applying Lemma 3.5, which gives us an event

b′0 ≤′ b′ such that a′ #′ b′0. Let u
′ a′

=⇒ v′a and u′ b′

=⇒ v′b be two transitions simulating the

transitions u
a

−→ u ∪ {a} and u
b

−→ u ∪ {b}, respectively, i.e., such that (u ∪ {a}, φ ∪

{(a, a′)}, v′a), (u ∪ {b}, φ∪ {(b, b′)}, v′b) ∈ B. Since φ ∪ {(a, a′)} and φ ∪ {(b, b′)} are poset

isomorphisms, we have that c ≤ a and c 6≤ b imply φ(c) ≤′ a′ and φ(c) 6≤′ b′, which

implies φ(c) 6≤′ b′0, so (a′, b′0) is a confusion of type II in E′.

Suppose now there is no confusion of type II in E, and let (a, b, c) be a confusion of

type I. By absence of type II confusion, we have ⌈a⌉ = ⌈b⌉ = ⌈c⌉ = u, and there must

exist (u, φ, u′
0) ∈ B such that u′

0 =⇒ι u′ with u′ enabling an event b′ ∈ ι(b), because

u enables b. Again, since all events in that transition are administrative, we actually

have (u, φ, u′) ∈ B. But u also enables the simultaneous occurrence of a and c, so u′ must

eventually enable some a′ ∈ ι(a) and c′ ∈ ι(c) satisfying a′ ¨′ c′. Additionally, Lemma 3.4

gives us a′ ˇ′ b′ ˇ′ c′. Observe that we are now in position of applying Lemma 3.5 twice:

with d′ = b′ and e′ = a′, and with d′ = b′ and e′ = c′. This gives us a′0 ≤′ a′ and c′0 ≤′ c′

such that (a′0, b
′, c′0) is a confusion of type I in E′.

4. About Ehrhard and Laurent’s Encoding

Ehrhard and Laurent (2010a) exhibited an encoding of a fragment of the solos calculus,

called acyclic solos, into differential interaction nets. Acyclic solos are expressive enough

to encode the π-calculus (the image of the encoding of Laneve and Victor (2003) is

contained in the acyclic fragment), so by composing the two encodings, and simplifying,

Ehrhard and Laurent (2010b) were also able to show directly how the π-calculus may
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be encoded in differential interaction nets. These results are apparently in contradiction

with our claims of Sect. 3, a situation which requires an explanation.

First of all, let us recall the results of Ehrhard and Laurent (2010a), from which those

of Ehrhard and Laurent (2010b) follow. As in the present paper, Ehrhard and Laurent

concentrate on the reduction of solos processes, and their goal is to show that it may be

faithfully simulated in differential interaction nets. To express “faithfulness” at a technical

level, Ehrhard and Laurent opt for bisimulations, a standard choice in concurrency theory.

However, since reduction is not labeled, they make a technical adjustment: they consider

processes in which each solo has a unique label, much like we did in Definition 2.4, so

that a reduction P → Q resulting from the synchronization of an input solo labeled

by l with an output solo labeled by m may be written P
lm
−→ Q. In this way, one may

define a labeled transition system S whose states are acyclic solo processes and whose

transitions are the ones just described (the definition of acyclic process is irrelevant

here; it is enough to know that, as mentioned above, the acyclicity condition does not

compromise the expressiveness of the solos calculus).

The next step is to endow also differential interaction nets with labels. However, unlike

our Definition 2.4, Ehrhard and Laurent only label certain dereliction and codereliction

cells; all other cells (including some derelictions and coderelictions) are left unlabeled.

This greatly simplifies reduction of labeled nets, because it is no longer necessary, as

in Definition 2.5, to append 0’s and 1’s to labels in order to preserve their uniqueness:

labels are just left unchanged in non-deterministic reductions and, as in Definition 2.5,

disappear in communication reductions. At this point, Ehrhard and Laurent give the

following definitions:

Definition 4.1 (Ehrhard and Laurent (2010a)). We write µ  l,m ν if µ → ν by

means of one of the following:

— a multiplicative reduction;

— a communication reduction involving two unlabeled cells;

— a non-deterministic reduction involving a cell labeled by l or m;

— a structural reduction.

We define the labeled transition system DEL whose states are nets and in which there is

a transition µ
lm
−→ ν exactly when µ ∗

l,m µ′ → ν, where the last step is a communication

reduction involving a codereliction labeled by l and a dereliction labeled by m.

The main result of Ehrhard and Laurent (2010a) is the definition of a relation P ! µ,

to be read “the net µ is an encoding of the process P”, having the following property:

Theorem 4.2 (Ehrhard and Laurent (2010a)). The relation! is a bisimulation

between S and DEL, up to bisimilarity in DEL. (More precisely, if we denote by ∼d the

equivalence relation on labeled nets induced by the union of multiplicative reduction,

structural reduction and unlabeled communication reduction, then ∼d may be proved to

be a bisimulation in DEL, such that!∼d is a bisimulation between S and DEL).

The key point is understanding the definition of DEL, which is somewhat fishy. In fact,

an arguably more natural labeled transition system for nets would be the following:
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Definition 4.3. We define the labeled transition system D whose states are nets and in

which there is a transition µ
α

−→ ν exactly when µ → ν, the label α being determined

as follows: if the reduction step is a communication involving a codereliction labeled by

l and a dereliction labeled by m, then α = lm; otherwise, α = τ .

However, Theorem 4.2 fails if we replace DEL with D. A counterexample may be found,

as expected, by considering a solos process exhibiting confusion, for instance a process P

whose behavior is identical to the CCS process ν(x, y)(x | x.y | y | y) already discussed

in the opening of Sect. 3.§ If l0 is the label of the output on x, l the label of the output

on y, m0 the label of the input on x, m1,m2 the labels of the two inputs on y, and if

we set a = l0m0, b = lm1, c = lm2, the labeled transition system of P within S is the

following, which we denote by TP :

b
oo

c
//

a

OO

•
b

oo

a

OO

On the other hand, it is possible to show that, whenever P ! µ, the labeled transition

system of µ within D is the following, which we denote by Tµ:

◦
b

oo ◦
τ

oo
τ

//
c

// ◦

◦

a

OO

a

OO

b
oo •

a

OO

τ
oo

τ
//

a

OO

Both in TP and Tµ we denoted by • the initial state. Although Tµ does simulate TP , the

two are obviously not bisimilar, not even up to bisimilarity in Tµ. The problem is that

the non-deterministic choice between b and c appearing when we reduce P through a is

already present in µ (represented by the pair of τ transitions) and it is “blind”, i.e., is

independent of a. This misbehavior is a consequence of the absence of confusion in µ and

is predicted by Theorem 2.8. The definition of DEL solves the problem by “compressing”

Tµ in such a way that only the states marked by ◦ are attainable, yielding a labeled

transition system which is bisimilar (indeed, isomorphic) to TP .

The aforementioned notion of “compression” may be generalized as follows:

Definition 4.4 (Compression). Let T be a labeled transition system, let S be a state

of T, and let α be a label other than τ . The α-range of S in T, denoted by Tα(S), is

the set of all states T of T such that S =⇒
α

−→ T , where, as usual, =⇒ denotes the

reflexive-transitive closure of
τ

−→.

Let T′ be a labeled transition system with the same states as T and containing no τ

transition. We say that T′ is a compression of T if, for every state S and every label

α 6= τ , we have:

§ In the solos calculus, we may take P = ν(x, y, z)(xy | xz | z | y | y), but the CCS description is more
readable.
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— T′
α(S) ⊆ Tα(S);

— T
′
α(S) = ∅ implies Tα(S) = ∅.

The second condition excludes the trivial compression, i.e., a system with no transitions

at all, as soon as T has at least one visible transition. Therefore, there is in general no

smallest compression, but there is always the largest, namely the system T′ in which

T′
α(S) = Tα(S) for all S and all α.

It is obvious that DEL is a compression of D. It is not the largest; indeed, the example

discussed above shows that Theorem 4.2 would fail if we took the largest compression of

D in place of DEL (we invite the reader to check that the largest compression of Tµ is

not bisimilar to TP ). Instead, DEL looks rather like a “minimal” compression: we only

consider transitions µ
α

−→ ν such that µ =⇒ µ′ α
−→ ν in D and the reduction µ =⇒ µ′ is

“minimal” in the sense that it does not contain τ transitions which are unnecessary to

attain the action α (cf. Definition 4.1). As a matter of fact, one may abstractly define a

notion of “optimal compression” based on minimizing the length of the sequences of τ

transitions leading to visible actions, and it is true that DEL is an optimal compression

of D. However, neither is this optimal compression unique in general, nor does it seem to

capture what actually goes on in Definition 4.1, which looks quite ad hoc.

In light of the above discussion, even though we are lacking a general construction

relating DEL and D, the value of Theorem 4.2 appears to be doubtful. On one side, we

have a labeled transition system S which accurately reflects the reduction semantics of

the solos calculus, in the sense that each reduction step gives rise to a transition, and

vice versa. The same cannot be said about DEL on the other side; if we really want to

describe the reduction of nets with the same accuracy as for solos processes, the system

D arguably does a much better job. Therefore, the least we may say is that Theorem 4.2

is “biased” in favor of differential interaction nets. On the other hand, the fact that the

theorem fails when this “bias” is eliminated cannot but confirm the value of the negative

results of Sect. 3, especially because a counterexample is found as soon as we consider a

non-confusion-free process.

The reader will have noticed how the event structures semantics introduced above does

not play any role in the objections to Ehrhard and Laurent’s encoding. In fact, these

appear already on the basis of a labelled transition system semantics. In this respect,

we believe that event structures are a step forward in pointing out the problem and

its essential nature, independently of specific encodings (as far as they are reasonable).

Indeed, the confusion-freeness of differential interaction nets is arguably a precise (if

abstract) description of the nature of their non-determinism, and we are currently unable

to provide such a description using other semantics (such as labelled transition systems).

5. Other Systems of Interaction Nets

5.1. Interaction net systems

Differential interaction nets are only a particular case of a more general notion of inter-

action net system.
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Definition 5.1 (Interaction net system). An alphabet is a pair Σ = (|Σ|, deg), where

|Σ| is a set and deg : |Σ| → N is the degree function.

A cell on the alphabet Σ is an expression of the form α(x1, . . . , xn), where α ∈ |Σ|,

x1, . . . , xn are ports and n = deg(α). The notions of wire and net over the alphabet Σ

are defined just as in Definition 2.1, mutatis mutandis. All the other definitions (free and

bound ports, α-equivalence, parallel composition, ω-equivalence) apply verbatim.

If α, β ∈ |Σ|, m = deg(α), n = deg(β), 1 ≤ i ≤ m, 1 ≤ j ≤ n, we define an (αi, βj)-

active pair to be a net of the form

αi ⊲⊳ βj = α(x1, . . . , z, . . . , xm) | β(y1, . . . , z, . . . , yn),

where the bound port z is the ith port in the α cell and the jth port in the β cell, and

all other ports are free. An interaction rule on the alphabet Σ is a rewriting rule of the

form

αi ⊲⊳ βj → ν

where ν is a net such that fp(ν) = fp(αi ⊲⊳ βj). In case α = β and i = j, we say that

the above rule is a self-rule, and we say that it is symmetric if ν is invariant under the

renaming that exchanges the ports x1 and y1, x2 and y2, and so on.

An interaction net system is a pair (Σ,R) where Σ is an alphabet and R is a set of

interaction rules on Σ. Given α ∈ |Σ|, we say that the ith port of α is principal if R

contains a rule whose left member is αi ⊲⊳ βj , for some β ∈ |Σ|. An interaction net system

is multiport if it has a symbol with more than one principal port; otherwise, it is uniport.

An interaction net system is unambiguous if R contains at most one rule for each active

pair and every self-rule is symmetric; it is ambiguous otherwise. A Lafont system is an

unambiguous, uniport interaction net system.

Differential interaction nets are thus an example of ambiguous uniport interaction net

system (also known in the literature as amultirule system (Alexiev, 1999)). Multiplicative

nets, i.e., differential interaction nets restricted to the symbols ⊥, `, 1 and ⊗, are the

prototypical example of Lafont system (it is indeed this system that suggested to Lafont

(1990) his definition of interaction nets). Another example is the system with the symbols

Mn,M
∗
n discussed after Proposition 2.9, which generalizes multiplicative proof nets.

To improve readability, especially in the case of uniport systems, it is convenient to

assume principal ports to be always the “leftmost” in the list of ports of a cell, and to

use the notation α(x1, . . . , xm; y1, . . . , yn) for a cell whose symbol α is of degree m + n

and has m principal ports, which are x1, . . . , xm. We already adopted this notation in

Definition 2.1.

5.2. Interaction nets and event structures

Given a net µ of a generic interaction net system, it is possible to associate with it an

event structure Ev(µ) which describes the dynamics of its reduction, much as what we

did for differential interaction nets in Sect. 2.3. Intuitively, an event is an active pair

appearing during the reduction of µ, together with a choice of how to reduce it (in case

the system is ambiguous); an event a causally precedes b if the active pair yielding b only
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appears after the occurrence of a; and a and b are in conflict when they overlap, i.e., the

active pairs inducing them have at least one cell in common.

Although the above idea is simple and easy to grasp, formalizing it for interaction

nets in their full generality requires non-trivial techniques from rewriting theory, which

have been developed in the literature in several different settings, including Mazurkiewicz

traces (Mazurkiewicz, 1986), domains (Nielsen et al., 1981), concurrent transition sys-

tems (Stark, 1989), concurrent automata (Boldi et al., 1993), term rewriting (Clark and

Kennaway, 1996), abstract rewriting systems (Khasidashvili and Glauert, 2005), graph

rewriting (Baldan et al., 2007) and asynchronous graphs (Melliès, 2004; Mimram, 2008).

It is out of the scope of this paper to give an account of such techniques; for our purposes,

the above informal description will be just enough.

Let us give an example. Consider the alphabet consisting of 4 symbols 0,1, ι, χ of

respective degree 1, 1, 2, 4, and consider the interaction rules

ι(x; y) | ι(x, z) → y ↔ z

χ(x, y; s, t) | α(x) → α(s) | y ↔ t

χ(x, y; s, t) | α(y) → α(s) | x ↔ t

with α ∈ {0,1}. Observe that the system thus defined, although multiport, is unambigu-

ous. A cell of type χ may be seen as a server handling two concurrent requests (on ports

x, y) from cells of type 0 and 1, and granting access to port s to the cell that interacts

first. The interaction between two cells of type ι may be seen as the abstraction of some

internal action (like a τ transition).

Consider now the net

µ = χ(x, y; s, t) | ι(w;x) | ι(w; z) | 0(z) | 1(y).

The net µ has two active pairs: the two ι cells may interact on port w, and the 1 cell may

interact with the χ cell on its second principal port. This gives us two causally unrelated

events, which we call a and b, respectively. The occurrence of a gives us the net

χ(x, y; s, t) | x ↔ z | 0(z) | 1(y) ≡ χ(x, y; s, t) | 0(x) | 1(y),

in which the event b is still available, showing that a and b are not in conflict. We also

witness the appearance of a third event c, corresponding to the interaction between the

0 cell and the first principal port of the χ cell. Now, this event c is in conflict with b,

because they both concern the χ cell, so that one excludes the other: if we choose b, we

obtain the net 1(s) | 0(t), if we choose c, we obtain 0(s) | 1(t). The event structure Ev(µ)

is then exactly the same as that of the process P discussed in the opening of Sect. 3.

Therefore, unambiguous multiport interaction nets are able to express confusion.

In fact, unambiguous multiport interaction nets systems may be shown to be able to

encode several standard process calculi, such as the π-calculus and the solos calculus, in

a sense compatible with our bisimilar embeddings. This is part of an ongoing work with

Andrei Dorman, which will be the subject of future publication (Dorman, 2013). Here,

we concentrate on the internal theory of interaction nets and prove an interesting result

about the existence of universal systems of multiport interaction nets.
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5.3. On the existence of universal systems of multiport interaction nets

Lafont (1997) introduced a notion of translation between his interaction net systems

(that is, unambiguous and uniport). We recall it briefly. A principal net is a net π(x; ~y)

whose free ports are x, y1, . . . , yn (we use ~y as a shorthand for the list y1, . . . , yn) such

that exactly x appears as the principal port of a cell. A pre-translation from a Lafont

system S to a Lafont system T is a map Φ assigning to every cell α(x; ~y) of S a principal

net Φ(α)(x; ~y). A pre-translation may obviously be lifted to a map from nets of S to nets

of T by applying it homomorphically with respect to parallel composition and making it

behave as the identity on wires:

Φ(α1(x1; ~y1) | · · · | αc(xc; ~yc) | ~z ↔ ~w) = Φ(α1)(x1; ~y1) | · · · | Φ(αc)(xc; ~yc) | ~z ↔ ~w,

where we used the shorthand ~z ↔ ~w = z1 ↔ w1 | · · · | zk ↔ wk. A translation is a pre-

translation such that, whenever α ⊲⊳ β → ν is a rule of S (we omit the subscripts in the

active pair, because all cells have exactly one principal port), we have Φ(α ⊲⊳ β) →∗ Φ(ν)

in T .

Observe that, by definition, a Lafont translation preserves the degree of distribution.

Moreover, thanks to the fact that Lafont systems are strongly confluent, it also ensures

operational correspondence, so it fits the criteria required by bisimilar embeddings.

Lafont (1997) went on to prove the existence of a universal system with respect to this

notion of translation: there is a Lafont system in which every other Lafont system may

be translated. Such a universal system, which Lafont calls the interaction combinators,

is quite elegant: its alphabet consists of only three symbols, two of degree 3 and one of

degree 1, and the six interaction rules between them are amazingly simple.

It is natural to ask whether unambiguous multiport interaction nets also admit a

universal system. Of course, one must first fix a notion of translation according to which

universality is sought. Although there may not exist a notion as natural as that given

by Lafont for the uniport case, we may still argue that the criteria underlying bisimilar

embeddings should be considered as minimal requirements. In that case, we are able to

prove a partially negative result.

Definition 5.2 (Degree of non-determinism). An anticlique of an event structure

E is a finite set A ⊆ |E| such that a ˇ b for any two distinct a, b ∈ A, and there exists

u ∈ C(E) enabling all events of A.

The degree of non-determinism of an event structure E is the smallest m ≤ ω such

that the cardinality of all anticliques of E is bounded by m.

A bisimilar embedding E
ι
→֒ E′ is said to introduce divergence if, whenever B is a

bisimulation associated with ι, there exists (u, φ, u′) ∈ B such that there is an infinite

sequence of administrative transitions u′ τ
−→ι u′

1
τ

−→ι u′
2

τ
−→ι · · · in E′. Embeddings

not introducing divergence preserve the degree of non-determinism:

Proposition 5.3. Let E
ι
→֒ E′ without introducing divergence. Then, E′ has at least

the same degree of non-determinism as E.

Proof. Let B be a bisimulation associated with ι, and let u ∈ C(E) be a configuration
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enabling an anticlique A = {a1, . . . , an} of E. There must be a configuration u′ of E′ such

that (u, φ, u′) ∈ B for some isomorphism φ and, since ι does not introduce divergence,

there exists a maximal sequence of administrative transitions u′ =⇒ι u
′′, i.e., such that

there is no administrative transition starting from u′′. Then, since B is a bisimulation,

and since for all 1 ≤ i ≤ n, we have u
ai−→ι u∪{ai}, we must have, for all 1 ≤ i ≤ n, some

a′i ∈ ι(ai) such that u′′ a′

i−→ι u
′′ ∪ {a′i}; moreover, when i 6= j, ai ˇ aj implies a′i ˇ

′ a′j
(this is Lemma 3.4), so {a′1 . . . , a

′
n} is an anticlique of E′.

We now show that the degree of non-determinism of an unambiguous interaction net

system on a finite alphabet is strictly smaller than ω. In the following, we refer to the

number of principal ports of a symbol as its coarity.

Lemma 5.4. Let µ be a net of an unambiguous interaction net system on a finite

alphabet Σ, and let m be the maximum coarity of the symbols in Σ. Then, Ev(µ) has

degree of non-determinism bounded by ⌊ 3m
2 ⌋ (where ⌊x⌋ is the greatest integer not greater

than x).

Proof. An anticlique of cardinality n > 1 in Ev(µ) is given by a reduct µ′ of µ contain-

ing n active pairs a1, . . . , an such that, for all i, j, ai and aj share at least one cell. Since

the cells involved in an active pair are always distinct, we can represent the situation by

saying that each ai is a set containing exactly 2 cells, and that we have ai ∩ aj 6= ∅ for

all i, j. Then, the minimum coarity required by a cell c ∈ C =
⋃n

i=1 ai is equal to the

number of sets ai such that c ∈ ai; we denote this number by ♭c. We shall give a lower

bound to h = maxc∈C ♭c in terms of n, which will give us the desired bound. Choose

some 1 ≤ i ≤ n, and let ai = {c′, c′′}; for 1 ≤ j ≤ n, let x = ai ∩ aj . We have three

mutually exclusive possibilities: x = ai, x = {c′}, or x = {c′′}. Let q, p′, p′′ be the number

of aj which fall in the first, second, and third case, respectively. Note that q > 0 (at least

ai ∩ ai = ai), and that obviously q + p′ + p′′ = n. Suppose p′′ = 0; then all sets intersect

in c′, so we have h = ♭c′ = n. The case p′ = 0 is symmetric. On the other hand, if none

of p′, p′′ is null, we have that necessarily all aj with j 6= i intersect in a third cell d, and

we have ♭d = p′ + p′′, ♭c′ = q + p′, ♭c′′ = q + p′′. The minimum value for h is obtained

when n is equally split into three parts: 2n
3 ≤ h. This lower bound is smaller than the

previous h = n, so we may conclude that in all cases n ≤ 3h
2 , as desired.

The upper bound of Lemma 5.4 can be reached. The net

α(w, x, y, z; ) | α(y, z, s, t; ) | α(s, t, w, x; )

gives an example with m = 4. Additionally observe that the result holds also for ambigu-

ous systems, as long as there is a finite number of rules for each active pair.

If we combine Proposition 5.3 with Lemma 5.4, we obtain that, under any reasonable

notion of translation, a universal system of multiport interaction nets either has an

infinite alphabet, or divergence may be introduced when translating other systems into

it.

Observe that this does not exclude the possibility of simple universal systems on a finite

number of symbols plus a “parametric” symbol αn which gives technically infinitely many
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symbols (one for each n ∈ N) but which is defined and interacts in a uniform, finitary way.

It is for example the case of the system proposed in Mazza (2006), whose universality,

however, has only been proved in a limited form. “Parametric” symbols have already

been evoked in this paper at the end of Sect. 2.4. The situation, if we may make analogy,

is hardly unheard of: first-order Peano arithmetic has infinitely many axioms, but finitely

many axiom schemata.

6. Concluding Remarks

6.1. On the necessity of a non-interleaving semantics

We should like to observe that it is essential to resort to the full power of non-interleaving

semantics in order to obtain the negative results of Sect. 3. To see this, let us define a

notion of interleaving bisimilar embedding of event structures, which is just like Defini-

tion 3.2 but in which the bisimilarity condition only requires a “plain” bisimulation, i.e.,

not a history-preserving bisimulation.

We recall that a labeled event structure E naturally induces a labeled transition system

lts(E) whose states are the finite configurations of E, the initial state being the empty

configuration, and whose transitions are given by u
α

−→ v iff v = u ∪ {a} for some event

a 6∈ u whose label is α. Then, in short, there is an interleaving bisimilar embedding of an

(unlabeled) event structure E into E′ if, when we consider the events of E to be labeled

by themselves, there exists a labeling of the events of E′ over |E| ∪ {τ} such that lts(E)

and lts(E′) are weakly bisimilar in the usual sense.

It is not hard to see that interleaving bisimilar embeddings do not preserve confusion.

Indeed, the minimal type II confusion, already encountered in the opening of Sect. 3 and

recalled below on the left, is interleaving-bisimilarly-embeddable into the event structure

below on the right, which is confusion-free:

c /o/o/o b

a

OO
a′ c′ /o/o/o/o/o/o/o/o b′′

b′

OO

/o/o/o/o/o/o/o/o a′′

``❅❅❅❅❅❅❅

>>⑥⑥⑥⑥⑥⑥⑥⑥

We invite the reader to check that an interleaving bisimilar embedding is given by

{(a, a′), (a, a′′), (b, b′), (b, b′′), (c, c′)}.

Using plain bisimulations instead of history-preserving bisimulations amounts to dis-

regarding the non-interleaving features of event structures and corresponds to discarding

the requirement that encodings preserve distribution, i.e., we content ourselves with en-

codings which respect the reduction semantics. As a matter of fact, it is obvious that

the event structure above on the right simulates the one on the left by “sequentializing”

the parallelism between the events a and b. This implies the presence of a coordinating

agent which alters the degree of distribution of the original process.

Therefore, we may not exclude the existence of encodings of process calculi in differen-

tial interaction nets enjoying operational correspondence thanks to the adoption of some

form of “scheduler”, whose acceptability in a concurrent setting is however debatable.
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6.2. On changes in the granularity of non-determinism

One last remark concerning bisimilar embeddings. It may be objected that the breadth

of our negative results is undermined by the fact that bisimulations (history-preserving

or not) are perhaps too strong. In particular, they do not allow for a change in the “gran-

ularity” of the non-determinism present in computational models. Therefore, bisimilar

embeddings do not accept, for example, that a single die cast (a 6-ary internal choice)

is simulated by five coin tosses (concatenated binary internal choices—of course, we

are ignoring probabilities and considering only non-determinism). In this respect, the

acquainted reader will immediately think of coupled simulations (Parrow and Sjodin,

1992), which allow precisely for this kinds of granularity adjustments.

It is plausible that Definition 3.1 may be meaningfully adapted so as to define a notion

of “coupled R-simulation”. However, that would not change much: when embedding

an event structure E into E′, every event of E is considered to be relevant, i.e., E is

considered to have no τ transitions. In that case, coupled bisimulations are useless: a

coupled bisimulation between T and T′ in which T has no silent transition is exactly a

bisimulation.

Considering all events of E to be “computational”, as we deemed them in opposition to

“administrative” events, is the only sensible thing to do when the information about silent

transitions is missing, which is the case of unlabeled event structures. Unlabeled event

structures arise naturally when one wants to describe, in terms of events, the reduction

of a (concurrent) process, which is virtually always unlabeled, as in the π-calculus, the

fusion calculus, the solos calculus, etc., not to mention all rewriting systems in general.

And being able to faithfully simulate the reduction of a process is widely accepted to be

an essential requirement for an encoding to be acceptable (Parrow, 2008; Gorla, 2010).

We do not say that changing the granularity of non-determinism is not acceptable; on

the contrary, we think it would be extremely interesting if we were able to capture this

phenomenon with our notion of embedding. However, for the time being, we prefer to

keep this issue aside and to leave improvements to future work.
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