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Light and Elementary Linear Logic, the cornerstones at the interface between logic and

implicit computational complexity, were originally introduced by Girard as

“stand-alone” logical systems with a (somewhat awkward) sequent calculus of their own.

The latter has later been reformulated by Danos and Joinet as a proper subsystem of

linear logic, whose proofs satisfy a certain structural condition. We extend this approach

to polytime computation, finding two solutions: the first one, obtained by a simple

extension of Danos&Joinet’s condition, closely resembles Asperti’s Light Affine Logic

and enjoys polystep strong normalization (the polynomial bound does not depend on the

reduction strategy); the second one, which needs more complex conditions, exactly

corresponds to Girard’s Light Linear Logic.

1. Introduction

Elementary Linear Logic (ELL) and Light Linear Logic (LLL), both introduced by
Girard (Girard, 1998), are two logical systems characterizing respectively the class of
Kalmar elementary functions and the class of deterministic polytime functions. Their
syntactical formulation is quite different from that of “traditional” linear logic; in par-
ticular, in order to correctly handle additive rules (connectives & and ⊕), in the sequent
calculus of these systems there appear blocks of occurrences of formulas instead of simple
occurrences of formulas, thus introducing an “additive layer” below the usual “multi-
plicative layer”.

Unlike virtually any other logical system introduced by Girard, the syntax of “light”
logics does not rest upon any semantical background (even though both a truth (Kanovich
et al., 2003) and a denotational (Baillot, 2004a) semantics have later been proposed for
LLL); it is therefore very hard to claim this syntactical formulation to be “definitive”
in any sense, and Girard himself still considers the field of complexity-bounded systems
“very experimental”. Improving the syntax of ELL and LLL (in particular simplifying
it) may thus contribute to a better understanding of how the logical characterization of
complexity classes actually works, and at the same time certainly encourages their use
and the possible development of their applications.

The first contribution in this direction came from the work of Asperti and Roversi (As-
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perti and Roversi, 2002), who proposed a quite sharp simplification of Girard’s systems
by reformulating them in an affine setting, i.e., liberalizing weakening and thus com-
pletely eliminating additive connectives. Light Affine Logic (LAL), and its elementary
cousin EAL, have ever since been taken as the “standard” interface between implicit
computational complexity and linear logic: let us mention for example the work of Cop-
pola&Martini and Baillot on “light” typing algorithms (Coppola and Martini, 2001; Bail-
lot, 2004b), Terui’s Light Affine Set Theory (Terui, 2004), and his Light Affine λ-calculus
(Terui, 2002).

On the other hand, there is a softer approach to the simplification of “light” logics,
namely that of Danos and Joinet (Danos and Joinet, 2003), who redefined ELL as the
proper subset of linear logic proofs which satisfy the so-called stratification condition.
Danos and Joinet’s approach is interesting for several reasons:

— it takes advantage of existing linear logic tools like proof-nets (instead of having to
define new proof systems), getting all of their good properties (confluence, strong-
normalization, etc.) almost for free;

— it does not need any intuitionistic restriction;
— it might allow a more integrated view of complexity-bounded logical systems, in that

different complexity classes are characterized by different parts of a single system.
This could turn out to be useful for characterizing intermediate complexity classes,
or considering an integrated semantical interpretation.

The importance and usefulness of the last point has recently been demonstrated by
the work of Laurent and Tortora de Falco (Laurent and de Falco, 2005), who found a
semantical characterization of elementary time by exploiting the syntactical results of
Danos and Joinet.

The present work shows that Danos and Joinet’s methodology, originally applied only
to ELL, can be extended to LLL; in fact, we will see that it is possible to separate by
purely structural means (extending the stratification condition) a subsystem of linear
logic (with the addition of the § modality) which characterizes FP, the class of functions
computable in polynomial time by a deterministic Turing machine. The definition of
our subsystem is in the end very similar to that of LAL, even though the presence of
additive connectives makes things a little more complicated; still, it arguably simplifies
Girard’s original definition of LLL. Moreover, we prove a polystep strong normalization
result analogous to that proved by Terui for his light-affine λ-calculus (Terui, 2002): the
evaluation of a program inside our system is always polynomially bounded, no matter
what cut-elimination strategy is chosen (modulo some minor details concerning additive
reductions).

The polytime system we define actually does not fully correspond to Girard’s LLL:
there are important differences at the level of additive connectives (the “exponential
isomorphism” no longer holds). We address this issue by showing how the “original” LLL
can be recovered inside linear logic (still with the addition of the paragraph modality)
through an enhancement of Danos and Joinet’s ideas. In passing, we also show how
Lafont’s Soft Linear Logic (Lafont, 2004) can be redefined in a similar way.

From the theoretical point of view, as already pointed out above, our work may offer
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the possibility of extending Laurent and Tortora de Falco’s ideas to obtain a semantics
for LLL based on some subset of their obsessional cliques.

From the point of view of applications, the absence of any intuitionistic restriction may
turn out to be interesting: for example, Girard (Girard, 1998) remarked that it is possible
to exploit the symmetries like A ( B ' B⊥ ( A⊥ to program more “clever” algorithms
than those accessible when considering only λ-terms (and thus intuitionism). This is
of course impossible in LAL, since one cannot really work outside of its intuitionistic
fragment (not doing so would immediately pose non-confluence problems).

Acknowledgments. Many, many special thanks go to Lorenzo Tortora de Falco, whose
support has been fundamental to the development of this work. We would also like to
thank the anonymous referee for his/her comments and suggestions.

2. Preliminaries

Linear logic proofs can be presentend using two alternative syntaxes: sequent calculus
or proof-nets. In the present work, we shall largely prefer the latter, mainly because we
are concerned with the complexity of the cut-elimination procedure within (subsystems
of) linear logic. When the dynamics of cut-elimination is at study, the use of proof-
nets becomes virtually mandatory, cut-elimination in sequent calculus being blurred by
countless commuting convertions of no computational value.

More generally, we believe that proof-nets should be seen as the standard syntax for
linear logic, and we see sequent calculus as a link to tradition, a connection to other
logical systems in which proof-nets are not available. This is why we shall nevertheless
formulate all of our results also in sequent calculus, with the double benefit that it will
give us a convenient link to the λ-calculus (see Sect. 2.4) and perhaps bring our work to
a larger audience.

2.1. Syntax of LL and LL§

We start by recalling the basic syntactical definitions for second order linear logic without
neutrals, which we refer to simply as LL. Let X range over a denumerably infinite set
of propositional atoms, together with their negations X⊥. The formulas of LL, ranged
over by A,B, . . ., are generated by the following grammar:

A,B ::= X | X⊥ | A⊗B | A�B | A⊕B | A & B | ∃XA | ∀XA | !A | ?A
The negation A⊥ of a formula A is defined as follows:

(X)⊥ = X⊥ (X⊥)⊥ = X

(A⊗B)⊥ = B⊥ �A⊥ (A�B)⊥ = B⊥ ⊗A⊥

(A⊕B)⊥ = B⊥ & A⊥ (A & B)⊥ = B⊥ ⊕A⊥

(∃XA)⊥ = ∀XA⊥ (∀XA)⊥ = ∃XA⊥
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(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

We will also consider the additional modality § (paragraph), which is self-dual:

(§A)⊥ = §A⊥

We call LL§ the system obtained by adding the paragraph modality to LL.

2.2. Proof-nets for LL and LL§

In this section we briefly recall the main definitions concerning proof-nets. The presen-
tation we choose here is a variant of that proposed by Girard (Girard, 1996):

— like Girard, we decompose the introduction of a why not formula in two steps: first we
make a discharged formula [A ([A] in Girard’s notation; our notation is the one used
by Lorenzo Tortora de Falco and Olivier Laurent for the polarized fragment of linear
logic (Laurent and de Falco, 2004)), then we take several (maybe zero) occurrences
of [A and form ?A. A discharged formula is not a formula; in particular, it cannot be
composed by means of any connective.

— unlike Girard, we use boxes to treat additive conjunctions, as done by Tortora de Falco
(Tortora de Falco, 2003). Even though absolutely against the spirit of proof-nets, this
is arguably the simplest formulation in terms of correctness criteria, and since the
additive connectives do not play a fundamental role in light logics, we believe it to
be the most convenient one for our purposes.

In the following definition, and throughout the rest of the paper, unless explicitly stated
we shall make confusion between the concepts of formula and occurrence of formula. The
same will be done for links and their occurrences.

Definition 2.1 (Proof-structure). A proof-structure is a triple (G, B, J), where G is
a finite graph-like object whose nodes are occurrences of what we call links, and whose
edges are directed and labelled by formulas or discharged formulas of LL (or LL§); B is
a set of subgraphs of G called boxes; J is a partial function from the links of G to sets of
links of G, called jumps.

— Each link has an arity and co-arity, which are resp. the number of its incoming and
outgoing edges. The arity and co-arity is fixed for all links except why not links, which
have co-arity 1 and arbitrary arity. A zeroary why not link is also referred to as a
weakening link. Par, for all, and why not links are called jumping links; J is defined
only on these links.

— The incoming edges of a link (and the formulas that label them) are referred to as
its premises, and are supposed to be ordered, with the exception of cut and why not
links; the outgoing edges of a link (and the formulas that label them) are referred to
as its conclusions.

— Premises and conclusions of links must respect a precise labeling (which depends on
the link itself), given in Fig. 1. In particular:

– edges labelled by discharged formulas can only be premises of pax, pad, and why
not links;
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Fig. 1. Links

– in a for all link n, the variable Z in its premise A[Z/X] is called the eigenvariable
of n. Each for all link is supposed to have a different eigenvariable.

– in an exists link n, the formula B in its premise A[B/X] is said to be associated
to n.

— Each edge must be the conclusion of exactly one link, and the premise of at most
one link, except the case of an edge labelled by a discharged formula or by a formula
containing an eigenvariable, which must be the premise of exactly one link. Those
edges that are not premises of any link (and the formulas that label them) are deemed
conclusions of the proof-structure. The presence of these “pending” edges, together
with the fact that some premises are ordered, is why proof-structures are not exactly
graphs.

— Boxes can be of two types: additive boxes (Fig. 2a) and !-boxes (Fig. 2b). In the two
figures, π1, π2, π are proof-structures, said to be contained in their respective box; in
particular, π1 and π2 are said to be the two components of their additive box. The
links that are explicitly represented (i.e., the with, coad and pad links in Fig. 2a and
the bang and pax links in Fig. 2b) form the border of their respective box. The unique
with (resp. of course) link in the border of an additive box (resp. !-box) is called the
principal port of the box; the other links of the border, of which there may be an
arbitrary number, are called additive contractions (coad) and additive auxiliary ports
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Fig. 2. Boxes

(pad) in the case of an additive box, or simply auxiliary ports (pax) in the case of a
!-box. Boxes must have the following properties:

a. each with (resp. of course) link is the principal port of exactly one additive box
(resp. !-box);

b. each coad or pad (resp. pax) link belongs to exactly one additive box (resp. !-box);

c. any two distinct boxes are either disjoint or included one in the other.

— Proof-structures for LL§ may contain another kind of link, the paragraph link, and a
third kind of box, called §-box (Fig. 2c). §-boxes must have property c above, while
in their presence property b becomes “each pax link belongs to exactly one !- or
§-box”. On the other hand, there is no notion of principal port for §-boxes. So while
paragraph links must belong to a unique §-box, a §-box need not have any paragraph
link, provided it has in this case at least one pax, i.e., the border can never be empty.
In the context of LL§ proof-structures, we use the terminology exponential box to
mean either !- or §-box.

— For each jumping link n, the set J(n) (called the jumps of n) is defined as follows:

Par: J(n) is the set containing the link(s) whose conclusions are the premises of n.

For all: if Z is the eigenvariable of n, J(n) is the set containing:

– the link whose conclusion is the premise of n;

– any link whose conclusion is labelled by a formula containing Z;

– any exists link whose associated formula contains Z.

Why not: J(n) is the set containing the link(s) whose conclusions are the premises
of n, plus an axiom link a of G, called default jump of n, such that if B is a box
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cut
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Fig. 3. Axiom step

⊗ � cut

cut
cut

A B B⊥ A⊥

→
B B⊥

A⊥A

A⊗B B⊥ �A⊥

Fig. 4. Multiplicative step

(of any kind) of B and n is contained in B, then a is contained in B (in the same
component of n in case B is an additive box).

Definition 2.2 (Depth, sizes). Let σ be an LL or LL§ proof-structure.

— A link of σ is said to have depth d if it is contained in d (necessarily nested) exponential
boxes. The depth of a box of σ is the depth of the links forming its border. The depth
of σ, denoted ∂(σ), is the maximum depth of its links.

— The partial size at depth d of σ, denoted |σ|d is the number of links of σ different
from cut links having depth d. The size of σ, denoted |σ|, is the sum of its partial
sizes. The partial sizes and the size of a !-box B of σ, still denoted |B|d and |B|, are
the partial sizes and the size of the proof-structure it contains.

Definition 2.3 (Switching). Let σ be an LL or LL§ proof-structure. A switching of σ

is an undirected graph built as follows:

— the conclusions of σ are erased, and its edges considered as undirected;
— for each jumping link n, the premises of n are erased, exactly one node m ∈ J(n) is

chosen and a new edge between m and n is added.
— the boxes at depth zero of σ are collapsed into single nodes, i.e., if B is a box at depth

zero of σ, it is erased together with all the edges connecting its links to the rest of the
structure, and replaced with a new node n; then, for any link m of depth zero which
was connected to a link of B, a new edge between m and n is added.

Definition 2.4 (Proof-net). A proof-net is a proof-structure (G,B, J) such that:

— all of its switchings are acyclic and connected;
— if B is an additive box of B, and if G1,G2, B1, B2, and J1, J2 are the restrictions of
G, B, and J to the two respective components of B, then (G1, B1, J1) and (G2,B2, J2)
are proof-nets;

— if B is an exponential box of B, and if G1, B1, and J1 are the restrictions of G, B, and
J to the content of B, then (G1, B1, J1) is a proof-net.

In the proof-net syntax, cut-elimination becomes a graph rewriting process. The cut-
elimination steps are given in Figures 3 through 8. The only missing case is that of a cut
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in which one of the premises is the conclusion of a coad link; such a cut is called additive
commutative cut, and its reduction poses non-confluence problems. For this reason, we do
not reduce these cuts, and we restrict to lazy normalization. When a proof-net π reduces
to π′ after the application of one cut-elimination step, we write π → π′.

The graph-rewriting rules given in the figures above are not enough though. Whenever
π → π′, one must also take care of defining the jumps of π′; in fact, while the jumps for
par, for all, and the non-default jumps for why not links of π′ are forced by its structure,
default jumps are a priori arbitrary, and must therefore be given by the cut-elimination
procedure.

In order to properly describe what happens after each cut-elimination step, we need
to define the notions of lift and residue of a link, as done by Tortora de Falco (Tortora
de Falco, 2003):

Definition 2.5 (Lift, residue). Whenever π → π′, by simple inspection of the cut-
elimination rules it is clear that any link l′ of π′ different from a cut comes from a unique
(“the same”) logical link l of π; we say that l is the lift of l′, and that l′ is a residue of
l. We define the lift and residues of a box (of any kind) in the same way.

Now let π be a proof-net such that π → π′, let w′ be a why not link of π′, let w be its
lift, whose default jump is j, and let R be the set of the residues of j in π′. The default
jump j′ of w′ is defined depending on the nature of the step leading from π to π′:
Axiom step: let a and c be resp. the axiom and cut link involved in the step. If j 6= a,

then R = {j′1}, and we set j′ = j′1. If j = a, then R = ∅, and we must find a new
default jump. Now, there always exists a directed path (in plain graph-theoretical
sense) starting from an axiom or why not link l of π and ending into c without
passing through a (there may indeed be several). Let l′ be the (only) residue of l in
π′. If l is an axiom, we set j′ = l′. If l is a why-not link, let j1 be the default jump of
l. Since π is a proof-net, j1 6= a (otherwise there would be a cyclic switching), so j1
has exactly one residue j′1 in π′; we set j′ = j′1.

Multiplicative step: This step does not “touch” axioms, so R = {j′1}, and we pose
j′ = j′1.

Additive step: Let B be the additive box involved in the step. Notice that no duplica-
tions are made, so the cardinality of R is at most 1. If R = {j′1}, we pose j′ = j′1. If
R = ∅, it means that j belonged to the component of B erased by the step; in this
case, let b be an axiom link belonging to the component not erased by the step (by
correctness, there is at least one), and let b′ be its residue in π′. We set j′ = b′.

Quantifier step: As in the multiplicative step.
Exponential step: If R 6= ∅, we set j to be an arbitrary link of R. Otherwise, j has

been erased, which means that we are dealing with a weakening step. So let us call B
and w resp. the !-box and the weakening link involved. Let j1 be the default jump of
w; by acyclicity of all switchings, j1 cannot be an axiom link contained in B, therefore
it has exactly one residue j′1 in π′. We set j′ = j′1.

Paragraph step: As in the multiplicative step.
The following result assures us that the reassignment of default jumps defined above is
correct:
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Theorem 2.1 (Stability under cut-elimination (Girard, 1996)). Let π be a proof-
net such that π → π′. Then, π′ is a proof-net.

This brief presentation of proof-nets will hopefully be enough to follow the rest of our
work. For any further detail on proof-nets, we refer to the previously mentioned papers
of Girard, Tortora de Falco, and Laurent (Girard, 1996; Tortora de Falco, 2003; Laurent
and de Falco, 2004).

2.3. Sequent calculus

The sequent calculus of LL is defined by the following rules (as usual, Γ, ∆ range over
finite lists of formulas):

— Identity rules:

(axiom)
` A⊥, A

` Γ, A ` ∆, A⊥
(cut)

` Γ,∆

— Exchange (the only structural rule):

` Γ, A, B, ∆
(exchange)

` Γ, B, A, ∆

— Multiplicative rules:

` Γ, A ` ∆, B
(tensor)

` Γ,∆, A⊗B

` Γ, A, B
(par)

` Γ, A�B

— Additive rules:
` Γ, Ai

(plus i) i ∈ {1, 2}
` Γ, A1 ⊕A2

` Γ, A ` Γ, B
(with)

` Γ, A & B

— Quantifier rules:

` Γ, A[B/X]
(exists)

` Γ, ∃XA

` Γ, A
(for all) X not free in Γ

` Γ, ∀XA

— Exponential rules:

` ?Γ, A
(promotion)

` ?Γ, !A

` Γ, A
(dereliction)

` Γ, ?A

` Γ
(weakening)

` Γ, ?A

` Γ, ?A, ?A
(contraction)

` Γ, ?A
The sequent calculus of LL§ is defined by adding the rule

` ?Γ, ∆
(paragraph)

` ?Γ, §∆
to the sequent calculus of LL. Notice that ∆ may be empty; the necessity of this ap-
parently useless “do-nothing” version of the rule is a consequence of the self-duality of



Linear Logic & Polynomial Time 11

§, and becomes clear when considering cut-elimination under the stratification condition
(Definition 3.4).

In some of our definitions we shall make use of the notion of descendant of an occurrence
of formula in a sequent calculus derivation. Any LL (or LL§) sequent calculus rule
different from exchange, with, and contraction has the following shape:

` Γ1, A1 . . . ` Γn, An

` Γ1, . . . , Γn, A

Therefore, any occurrence B1 of a formula B in the conclusion of the rule, except the
occurrence of A, “comes from” a unique occurrence B0 of the same formula in one of the
premises; we say that B1 is an immediate descendant of B0. Even though the exchange
rule does not quite fit in the above scheme, any occurrence of formula in the conclusion of
such a rule still “comes from” a unique occurrence of the same formula in the premise, so
the definition of immediate descendant is identical. In a with rule, let B1 be an occurrence
of B in the context of the conclusion, and let B′

0 (resp. B′′
0 ) be the unique occurrence of B

in the left (resp. right) premise from which B1 “comes from”. Then, B1 is the immediate
descendant of both B′

0 and B′′
0 . Similarly, in a contraction rule deriving ` Γ, ?A from

` Γ, ?A, ?A, all occurrences of formulas in the conclusion descend immediately from
exactly one occurrence in the premise, except for the occurrence of ?A, which is the
immediate descendant of both occurrences of ?A in the premise. Now, if A′ and A′′ are
two occurrences of the same formula A appearing in a sequent calculus derivation, we
say that A′′ is a descendant of A′ (or that A′ has A′′ among its descendants) iff there
exist n occurrences A1, . . . , An of A such that A1 = A′, An = A′′ and, for all i, Ai+1 is
the immediate descendant of Ai.

A proof-structure is sequentializable if it can be built inductively following the rules
of sequent calculus. Proof-nets and sequent calculus derivations are linked by this fun-
damental result:

Theorem 2.2 (Girard, 1996). A proof-structure is sequentializable iff it is a proof-net.

Actually, since our proof-structures use discharged formulas, sequentialization is done
in a sequent calculus in which all rules are as above except for additive conjunction,
which becomes

` [∆1,Γ, A ` [∆2,Γ, B
(with)

` [∆1, [∆2, Γ, A & B

and the four exponential rules are replaced by

` [Γ, A
(of course)

` [Γ, !A

` Γ, [A, . . . , [A
(why not)

` Γ, ?A

` Γ, A
(flat)

` Γ, [A

with the proviso that discharged formulas are not principal formulas of any rule except
the why not rule. But the reader may check that ` Γ (with no discharged formulas in
Γ) is provable in this modified sequent calculus iff ` Γ is provable in the “standard”
one, and since proof-structures are not allowed to have discharged formulas among their
conclusions, Theorem 2.2 is already meaningful for the “standard” sequent calculus. This
sequent calculus with discharged formulas will turn out to be useful in Sect. 6.



Damiano Mazza 12

2.4. Intuitionistic sequent calculus and term assignment

It is also possible to consider an asymmetric version of the calculus above, which yields
what is usually called intuitionistic linear logic. Negation is never considered in this
system, so there are only positive variables X, Y, . . ., and formulas are given by

A,B ::= X | A⊗B | A ( B | A & B | ∀XA | !A
The only interest of the intuitionistic calculus is that it can be decorated by λ-terms,

as done by Danos and Joinet (Danos and Joinet, 2003). Here, we need to add some
constructs to the λ-calculus in order to handle the tensor connective. If x ranges over a
denumerably infinite set of variables, we start by extending variables into patterns:

x,y ::= x | x⊗ y

The terms of our calculus are then defined as follows:

t, u ::= x | λx.t | tu | t⊗ u | 〈t, u〉 | fst t | snd t

We consider application to be associative to the left, i.e., tuv is short for (tu)v, whereas
both patterns and tensors of terms are associative to the right, i.e., x⊗ (y ⊗ z) and
t ⊗ (u ⊗ v) are simply written resp. as x ⊗ y ⊗ z and t ⊗ u ⊗ v. Moreover, terms of the
form

λx⊗ z.(λy.t)z

are written more concisely as

λx⊗ y.t ,

which can be seen as a sort of η-reduction.
A term is said to match a pattern if it is a tensor of terms with the same associative

structure as the pattern. More formally, any term matches the pattern x, while t matches
x ⊗ y iff t = u ⊗ v and u matches x and v matches y. For example, t ⊗ u ⊗ v matches
x⊗ y ⊗ z, but not (x⊗ y)⊗ z, unless t = t1 ⊗ t2. Substitution can then be extended to
patterns and matching terms:

— t[u/x] is defined as usual;
— t[u⊗ v/x⊗ y] = t[u/x, v/y].

Terms are equipped with the following reduction rules:

if u matches x, then (λx.t)u→ t[u/x]

fst 〈t, u〉 → t

snd 〈t, u〉 → u

In case no rule can be applied, a term is said to be normal. For example, if t is normal,
then so is (λx⊗ y.t)z.

The term assignment for the intuitionistic version of LL is defined as follows:

x : A ` x : A

Γ ` t : A ∆, x : A ` u : B

Γ,∆ ` u[t/x] : B
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Γ ` t : A ∆, x : B ` u : C
y “fresh”

Γ,∆, y : A ( B ` u[yt/x] : B

Γ, x : A ` t : B

Γ ` λx.t : A ( B

Γ ` t : A ∆ ` u : B

Γ,∆ ` t⊗ u : A⊗B

Γ, x : A, y : B ` t : C
z “fresh”

Γ, z : A⊗B ` (λx⊗ y.t)z : C

Γ, x : A ` t : C
y “fresh”

Γ, y : A & B ` t[fst y/x]

Γ, x : B ` t : C
y “fresh”

Γ, y : A & B ` t[snd y/x]

Γ ` t : A Γ ` u : B

Γ ` 〈t, u〉 : A & B

Γ, x : A[B/X] ` t : C

Γ, x : ∀XA ` t : C

Γ ` t : A
X not free in Γ

Γ ` t : ∀XA

!Γ ` t : A

!Γ ` t : !A

Γ, x : A ` t : B

Γ, x : !A ` t : B

Γ ` t : B

Γ, x : !A ` t : B

Γ, x : !A, y : !A ` t : B

Γ, z : !A ` t[z/x, z/y] : B

The assignment is compatible with normalization:

Proposition 2.3. If D is an intuitionistic derivation reducing to D′ through cut-
elimination, and if t, t′ are the λ-terms assigned resp. to D and D′, then t→∗ t′.

The intuitionistic sequent calculus has therefore a very concrete computational semantics,
which turns out to be quite useful when one needs to program inside LL. Indeed, we will
rely upon it to prove the completeness of our polytime system. Notice also that everything
we said can be extended without problems to LL§: we simply need to add the typing
judgment

!Γ, ∆ ` t : A

!Γ, §∆ ` t : §A
Of course, it is always possible for an intuitionistic derivation to be translated in the

one-sided sequent calculus; it is enough to replace A ( B with A⊥�B and to negate the
formulas on the left side of the sequent. In particular, one can always see an intuitionistic
derivation of Γ ` A as a proof-net of conclusions Γ⊥, A.

3. The system LLL

3.1. Definition

We start by briefly recalling the definition of ELL, which is based upon the so-called
stratification condition. The presentation chosen by Danos and Joinet (Danos and Joinet,
2003) formulates the condition using LL sequent calculus:
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Definition 3.1 (ELL, sequent calculus (Danos and Joinet, 2003)). Elementary
Linear Logic is the subsystem of LL composed of all the derivations satisfying the fol-
lowing stratification condition: any occurrence of a why not formula ?A introduced by a
dereliction rule (resp. an axiom rule) has exactly one (resp. zero) descendant(s) in the
context of a promotion rule.

The definition can be adapted to proof-nets:

Definition 3.2 (Structural branch). A structural branch of an LL or LL§ proof-net
is a directed path (in the graph-theoretical sense) starting from a flat link and ending
into a why not link.

Definition 3.3 (ELL, proof-nets). ELL is the subsystem of LL composed of all the
proof-nets π such that any structural branch of π crosses exactly one pax link.

The main result concerning ELL is the following:

Theorem 3.1 (Danos and Joinet, 2003). ELL is sound and complete with respect
to the class of Kalmar elementary functions.

In order to transport Danos and Joinet’s approach to polynomial time, we shall follow
Girard’s recommendation, which is “to restrict promotion to a unary context”:

Definition 3.4 (LLL, proof-nets). LLL is the subsystem of LL§ composed of all the
proof-nets π which satisfy the following conditions:

i. Each !-box of π has at most one auxiliary port.
ii. Any structural branch of π crosses exactly one pax link.

Of course, condition ii is simply Danos&Joinet’s stratification, extended to §-boxes as
well.

For the sake of completeness, we also give an equivalent definition in terms of sequent
calculus:

Definition 3.5 (LLL, sequent calculus). LLL is the subsystem of LL§ composed of
all the derivations satisfying the following conditions:

i. The context of each promotion rule contains at most one formula.
ii. Any occurrence of a why not formula ?A introduced by a dereliction rule (resp. an

axiom rule) has exactly one (resp. zero) descendant(s) in the context of a promotion
or a paragraph rule.

iii. Any occurrence of a why not formula ?A appearing in the context of a promotion rule
is the descendant of at most one occurrence of ?A introduced by a dereliction rule.

Obviously, conditions i and ii are straight-forward rephrasings of the two conditions
of Definition 3.4; in particular, ii is Danos&Joinet’s stratification condition extended
to paragraph rules, and in this context we refer to it as the downward stratification
condition.

Condition iii, called upward stratification condition, is needed because of the redundant
sequential information contained in a sequent calculus derivation (and is yet another



Linear Logic & Polynomial Time 15

witness of how proof-nets are such a better syntax to work with!). Basically, it is needed
to reject derivations like

` A,A, B
========
`?A, ?A,B

`?A,B

`?A, !B
which respects conditions i and ii (assuming the sub-derivation ending with ` A,A,B

does), but is clearly “cheating”.

3.2. Cut-elimination

Cut-elimination inside LLL is defined as in LL§ (Figures 3 through 8). It takes then a
simple case-by-case inspection to verify the following:

Proposition 3.2. Let π be an LLL proof-net of depth d, and let π → π′. Then:

1 π′ is in LLL as well;
2 ∂(π′) ≤ d, and the inequality may be strict only if the cut-elimination step leading

from π to π′ is an additive step or an exponential step involving a weakening link.

The presence of second order quantification requires some care though. As a matter of
fact, it is not hard to show that the iterated substitution of a formula to a propositional
variable can cause phenomena of exponential growth in the size of the formulas typing
the proof-net, which is quite harmful if one wants to implement polytime cut-elimination
on a Turing machine. But, as already noticed by Girard, we can solve the problem by
forgetting types during reduction; once reached the normal form, the typing can be
correctly recovered if the conclusions of the proof-net contain no existential quantifier.

This means that we work with untyped lazy normalization, so we are guaranteed to
reach a well-typed cut-free proof-net only if the conclusions of the starting proof-net are
&- and ∃-free:
Definition 3.6 (Lazy proof-net). An LL§ proof-net is said to be lazy if it does not
contain additive conjunctions or existential quantifiers in its conclusions.

Theorem 3.3 (Tortora de Falco, 2003). Cut-elimination for lazy proof-nets is con-
fluent and strongly normalizing.

The restriction to lazy proof-nets will not be a problem with respect to the expressive
power of LLL, since in the completeness proof we shall use only types which respect this
constraint.

4. Cut-elimination bounds

The aim of this section is to improve Theorem 3.3 by showing that not only all reduction
sequences starting with an LLL proof-net terminate, but they do so in a number of steps
which is polynomial in the size of the starting proof-net. We refer to this property as
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π

. . .A1 An

Fig. 9. A garbage island; π is a generic proof-net.

polystep strong normalization; it was first proved by Kazushige Terui for his light-affine
λ-calculus, which is based on intuitionistic light affine logic (Terui, 2002).

Our proof roughly applies the same argument used by Terui, although the presence of
additive connectives requires some technical adjustments. The proof unfolds as follows:

(a) We first define a technical variant of the “standard” cut-elimination procedure, in
order to have a subtler handling of erasing, especially that introduced by additive
steps. This alternative cut-elimination procedure (called GC-cut-elimination, “GC”
standing for garbage collection) is shown to be no better than the standard one in
terms of the length of the longest reduction sequence normalizing an LLL proof-net
(Proposition 4.2, Sect. 4.1).

(b) Using GC-cut-elimination, we can normalize a proof-net by first applying only non-
erasing reduction steps at non-decreasing depth, and perform the garbage collection,
i.e., the erasing, only when there is nothing else left to do. Reduction sequences
following this “protocol” are called slow, and they are shown to be indeed the worst
in terms of length (Slowdown Lemma, Sect. 4.2). This is intuitively justified by the
fact that a slow reduction sequence never tries to do work before duplicating it and
never refrains from performing useless work.

(c) Using an argument similar to that of Girard (Girard, 1998), we prove that for any
LLL proof-net π there exists an explicit bound to the length of its slow reduction
sequences, and thus, by point (b), of all possible reduction sequences starting from
π. This bound is polynomial in the size of π, and doubly-exponential in its depth
(Theorem 4.9, Sect. 4.4). Although formulated in terms of GC-cut-elimination, by
point (a) the bound is valid for “standard” cut-elimination as well, and the proof of
polystep strong normalization is then complete.

4.1. Cut-elimination with explicit garbage collection

For technical reasons, it turns out to be necessary to slightly modify the “standard” cut-
elimination procedure described and used in Sections 2 and 3. Basically, we shall make
explicit the garbage collection process in cut-elimination.

Definition 4.1 (Garbage island, GC-proof-net). A garbage island is an LL§ proof-
net the conclusions of which have been “killed” by a special link, called garbage link,
of arbitrary arity and coarity zero (Fig. 9). A GC-proof-net is an LL§ proof-net as in
Definition 2.4 plus any number of (necessarily unconnected) garbage islands.

Of course it makes sense to speak of LLL GC-proof-nets, as the constraints of Defini-
tion 3.4 can be applied just as they are to LL§ GC-proof-nets. The same applies to lazy
GC-proof-nets. The definitions of depth, size, etc. also remain unchanged.
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The cut-elimination procedure is extended to GC-prof-nets by modifying the additive
cut-elimination step, which will be responsible for the introduction of garbage islands,
and by adding a further step, called garbage collection step, which simply removes a
garbage island:
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(the additive step involving a ⊕1 link is defined symmetrically). All other cut-elimination
steps remain defined as in Sect. 2.2. The cut-elimination procedure for GC-proof-nets will
be called GC-cut-elimination. Notice that a garbage island may contain cuts, which can
be reduced before applying a garbage collection step. The addition of this useless work
is actually the reason behind the introduction of GC-proof-nets.

GC-cut-elimination is confluent and strongly normalizing (cut-free in the case of lazy
GC-proof-nets), and Proposition 3.2 holds for GC-cut-elimination as well, with the fun-
damental difference that, in point 2, the depth of a proof-net can no longer decrease
after an additive step but after a garbage collection step. Moreover, we clearly have the
following:

Proposition 4.1.

1 The normal form of a GC-proof-net under GC-cut-elimination is always a proof-net,
i.e., it contains no garbage island.

2 Let π be an LL§ proof-net. Then, the normal form of π found through the “standard”
cut-elimination procedure and the normal form found through GC-cut-elimination
coincide.

If π is an LL§ proof-net, ‖π‖ will denote the length of the longest GC-cut-elimination
sequence starting from π. When we want to speak at the same time of the two cut-
elimination procedures, the notation ‖π‖std will be used to refer to the “standard” one.

Definition 4.2 (Standard reduction sequence). A sequence of GC-cut-elimination
steps is called standard if every additive step is followed by a garbage collection step.

Standard reduction sequences are nothing but sequences in the. . . “standard” cut-
elimination procedure, i.e., the set of standard reduction sequences between π and π′

is in bijection with the reduction sequences between π and π′ in the “standard” cut-
elimination procedure; the only difference is that each additive step counts as two steps.
We thus have the following:
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Proposition 4.2. If π is an LL§ proof-net, then ‖π‖std ≤ ‖π‖.
Proof. Simply observe that, by the above remark, given (one of) the longest reduc-

tion sequence(s) starting from π in the “standard” cut-elimination procedure, there is a
standard GC-cut-elimination sequence starting from π of at least the same length.

Propositions 4.1 and 4.2 basically assure us that we can use GC-cut-elimination as a
tool for a worst-case analysis of the runtime of an LLL proof-net under the “standard”
cut-elimination procedure.

For this reason, in the following sections we shall speak of “proof-nets” and “cut-
elimination” actually meaning “GC-proof-nets” and “GC-cut-elimination”, while it
should be clear that whenever we state a runtime bound, we implicitly (and most im-
portantly) state it also for the “standard” cut-elimination procedure.

4.2. Slow reduction sequences

Let us start by introducing some useful notations and terminology. In the sequel, instances
of cut-elimination steps and the steps themselves will be systematically confused.

— LL§ cut-elimination steps (or, more simply, steps) will be ranged over by e. Reduction
sequences are words over steps, i.e., if e1, . . . , en are steps, S = e1 · · · en is a reduction
sequence, the length of which is denoted by |S|;

— if an LL§ proof-net π reduces to π′ through a reduction sequence S, we write π
S

→∗ π′;
— we use the notation e ∈ S to say that e is a step contained in the reduction sequence

S. Two steps e, e′ ∈ S are naturally ordered by e ≤S e′ iff e is applied before or is
equal to e′ in S. We use the notation e <1

S e′ to indicate that e is applied immediately
before e′;

— suppose that S = S1 · e′ · e · S2, more precisely

π
S1→∗ π1

e′→ π2
e→ π3

S2→∗ π′.

We say that e pre-commutes with e′ if we can find another reduction sequence S′ =
S1 · e · S′′ · S2 such that

π
S1→∗ π1

e→ π′2
S′′

→∗ π3

S2→∗ π′

where S′′ is a non-empty sequence containing only copies of e′. In such a case, we
obviously have |S| ≤ |S′|;

— the depth of a step e, denoted ∂(e), is the depth of the cut link reduced by e;
— we call non-erasing a reduction sequence in which neither garbage collection steps

nor exponential steps involving a weakening link are performed;

Definition 4.3 (Monotonic reduction sequence). A reduction sequence S is said to
be monotonic iff for any two cut-elimination steps e, e′ ∈ S, e ≤S e′ implies ∂(e) ≤ ∂(e′).

Definition 4.4 (Slow reduction sequence). A reduction sequence S is slow iff
S = M · E, where M is a monotonic non-erasing reduction sequence and E contains
only garbage collection steps or exponential steps involving weakening links.
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Lemma 4.3 (Slowdown). For any LL§ proof-net π there exists a slow reduction se-
quence S (lazy-)normalizing π such that |S| = ‖π‖.

Proof. Let π′ be the cut-free form of π, and let S′ be a non-slow reduction sequence
leading to it. We shall “slow down” S′ by transforming it into a slow reduction sequence

S such that π
S

→∗ π′ and |S′| ≤ |S|, which is enough to prove our statement.
First of all, observe that if e′ <1

S′ e and e′ is a garbage collection or weakening step,
then e always pre-commutes with e′ without altering the reduction length. In other
words, erasing steps can always be “delayed” and pushed toward the end of the reduction
sequence.

It is then enough to consider a non-erasing S′, and show that if e, e′ ∈ S′ are such
that e′ <1

S′ e but ∂(e) < ∂(e′), then e pre-commutes with e′, and the monotonicity is
locally established. By iterating this procedure, we obviously obtain a globally monotonic
sequence of length at least |S′|.

We start by observing that any cut-elimination step can only affect the depths greater
or equal to its own, and by hypothesis ∂(e) < ∂(e′); this means that the cut reduced by
e is “already there” when e′ is executed. We can then always execute e first, and since
by hypothesis it is non-erasing, after its execution we are left with at least one copy of
the cut involved in e′, which means that e always pre-commutes with e′.

For what concerns the monotonicity, observe that the execution of e can affect the cut
c reduced by e′ only if e is an exponential step; but even in this case, the depths of the
copies of c produced by e are no smaller that ∂(e), which means that the sequence is
locally monotonic.

The Slowdown Lemma is very useful: it tells us that in a worst-case analysis, it is enough
to consider slow reduction sequences.

4.3. Legs and contractive proof-nets

Let us introduce yet another class of reduction sequences:

Definition 4.5 (k-leg). A non-erasing reduction sequence S is a k-leg iff for all e ∈ S,
∂(e) = k. A k-leg S is stretched iff whenever e ∈ S is an exponential step and e′ ∈ S is
a non-exponential step, e′ ≤S e. A k-leg is complete iff it ends with a proof-net which is
lazy-cut-free at depth k.

Lemma 4.4 (Stretching). Let S be a k-leg such that π
S

→∗ π′. Then, there exists a

stretched k-leg S′ such that π
S′

→∗ π′ and |S′| = |S|.

Proof. Any step at depth k pre-commutes with an exponential step at the same depth,
without altering the length of the reduction.

Definition 4.6 (k-contractive proof-net). A proof-net π is said to be k-contractive
iff all cuts at depth k in π are exponential.
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Notice that executing a step at depth k in a k-contractive proof-net yields another k-
contractive proof-net, i.e., k-legs preserve “k-contractiveness”.

From here on, we only consider LLL proof-nets. By the stratification condition, any
premise of a why not link l of an LLL proof-net must belong to a structural branch
crossing an auxiliary port of exactly one exponential box C; we then say that C is above
l. Additionally, the notation π(k) is used to denote the portion of a proof-net π of depth
k, i.e., when we refer to a link or a box of π(k), we are talking about a link or a box
having depth k in π.

Definition 4.7 (Contractive order). Let π be a k-contractive LLL proof-net. If B
and C are two !-boxes of π(k), we write BC1

π C iff there is a cut of π(k) whose premises are
the conclusion of the principal port of B and the conclusion of a why not link l such that
C is above l. The reflexive-transitive closure of C1

π, denoted Eπ, is called the contractive
order of π(k).

In the above definition, Eπ(k) would be a heavier but more rigorous notation; we omit
the depth because we never consider two contractive orders of two different depths in the
same proof-net.

Proposition 4.5. Eπ is an arborescent partial order.

Proof. The anti-symmetry of Eπ is a consequence of the acyclicity of proof-nets. For
what concerns the arborescence, simply consider that any LLL !-box B has at most one
auxiliary port, which means that C C1

π B for at most one C.
Intuitively, B Eπ C means that at some point in the reduction of π(k) a copy of the
content of B will be “poured” into C. The maximal elements of the contractive order are
!-boxes which are either not involved in any non-erasing step, or whose content is entirely
“poured” into §-boxes. Notice that Proposition 4.5 is false in ELL, i.e., the order is not
arborescent; this is the ultimate reason behind the polystep bounds holding for LLL.

If B is a !-box involved in an exponential cut with a why-not link l, in the following
we denote by ∇(B) the arity of l minus the number of !-boxes above l. If the conclusion
of the principal port of B is not the premise of a cut link, we shall conventionally set
∇(B) = 1.

Definition 4.8 (Contractive factor, potential size). If π is a k-contractive LLL
proof-net, the contractive factor of an exponential box B of π(k), denoted µ(B), is defined
as follows:

I if B is a §-box, then µ(B) = 1.
I if B is a !-box, then µ(B) =

∑
BEπC ∇(C).

For all i such that k < i ≤ ∂(π), the potential size at depth i of an exponential box B of
π(k), denoted [B]i, is the product of its partial size at depth i and its contractive factor:

[B]i = µ(B) · |B|i .

The potential size at depth i of π, also denoted [π]i, is the sum of all the potential sizes
at depth i of all exponential boxes of π(k).
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The contractive factor has the following properties:

Lemma 4.6. Let π be a k-contractive LLL proof-net, and B a !-box of π(k). Then:

1 µ(B) ≤ |π|k;
2 µ(B) = ∇(B) +

∑
BC1

πC µ(C) .

Proof. For what concerns point 1, simply observe that, for any !-box C of π(k), ∇(C)
is at most equal to the arity of some why not link at depth k, unique for each C. Now,
a why not link of arity n at depth k in LLL requires the presence of n pax links at the
same depth, therefore the sum of the arities of all why not links cannot exceed |π|k.

Point 2 is a consequence of Proposition 4.5:

µ(B) =
∑

BEπC
∇(C) = ∇(B) +

∑

BC1
πC

∑

CEπD
∇(D) = ∇(B) +

∑

BC1
πC

µ(C) .

Lemma 4.7. Let π be a k-contractive LLL proof-net, and let i be such that k < i ≤
∂(π). Then:

1 if π is lazy-cut-free at depth k, then [π]i = |π|i;
2 if π reduces to π′ after executing one non-erasing step at depth k, then [π′]i = [π]i.

Proof. First observe that if π does not contain cuts at depth k, its contractive order is
trivial, i.e., for each !-box B, B is maximal and moreover ∇(B) = 1. Therefore, µ(B) = 1
for any exponential box of π(k), so [B]i = |B|i and [π]i = |π|i.

For what concerns point 2, let B and l be resp. the !-box and the why not link (by
hypothesis of arity n ≥ 1) involved in the cut-elimination step, and let C1, . . . , Cn be the
exponential boxes above l. If ∇(B) = m, we can assume that C1, . . . , Cm are §-boxes, and
Cm+1, . . . , Cn are !-boxes, so that, using Lemma 4.6,

µ(B) = m +
n∑

j=m+1

µ(Cj).

The execution of the step does not concern any box other than B and C1, . . . , Cn. More
precisely:

— B has no residue; its content is copied and “poured” into C1, . . . , Cn.
— C1, . . . , Cn have exactly one residue, which we call resp. C′1, . . . , C′n.
— For all i such that k < i ≤ ∂(π), |C′j |i = |B|i + |Cj |i.
— ∇(C′j) = ∇(Cj).
— Apart from the removal of B, the contractive order is unchanged: if D′ is the residue

of D, C′j C1
π′ D′ iff Cj C1

π D.
— As a consequence of the last two points above, µ(C′j) = µ(Cj).
Now, the potential size at depth i of π′ is the sum of the [C′j ]i plus the sum of the potential
sizes of those boxes not touched by the step, which we call c:

[π′]i = c +
n∑

j=1

[C′j ]i = c +
n∑

j=1

µ(C′j)|C′j |i = c +
n∑

j=1

µ(Cj)(|B|i + |Cj |i) =
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= c +
n∑

j=1

µ(Cj)|B|i +
n∑

j=1

[Cj ]i = c + (m +
n∑

j=m+1

µ(Cj))|B|i +
n∑

j=1

[Cj ]i =

= c + µ(B)|B|i +
n∑

j=1

[Cj ]i = c + [B]i +
n∑

j=1

[Cj ]i = [π]i

which proves point 2 of our statement.

4.4. Runtime bound

Lemma 4.8. Let π be an LLL proof-net of depth d such that π
S

→∗ π′, where S is a
complete stretched k-leg. Then, if s0, . . . , sd are the partial sizes of π, the partial sizes of
π′ are at most s0, . . . , sk, sksk+1, . . . , sksd. Moreover, |S| ≤ sk.

Proof. First of all notice that since S is non-erasing, by point 2 of Proposition 3.2
∂(π′) = d, which means that there are indeed exactly d partial sizes for π′, let us call
them s′i, 0 ≤ i ≤ d.

Now, since nothing is done at depth i 6= k, and since whenever the content of a box
is duplicated, the only partial sizes affected are those at depth greater than that of the
box, we have that for all i < k, s′i = si.

The fact that S is stretched means that S = N · X, where N contains only non-
exponential steps and X only exponential steps. Non-exponential steps do not alter the
partial sizes at depth different than k (not even paragraph steps), and strictly shrink
the size at depth k. Therefore, after executing N , we have a k-contractive proof-net of
partial sizes at most equal to those of π.

During the execution of X, the size continues to shrink at depth k, so s′k cannot be
bigger than sk; this also proves that |S| ≤ sk. On the other hand, at depth i > k, we can
use Lemmas 4.6 and 4.7 to obtain

s′i = [π]i =
∑

B∈π(k)

[B]i =
∑

B∈π(k)

µ(B)|B|i ≤ sk

∑

B∈π(k)

|B|i = sksi .

Theorem 4.9 (Polystep strong normalization). Let π be an LLL proof-net of size
s and depth d. Then, ‖π‖ ≤ 2s2d

.

Proof. By the Slowdown Lemma 4.3, we know that there is a slow reduction sequence
S normalizing π in ‖π‖ steps. By definition, we have S = M · E, where M is monotone
non-erasing, and E is made of weakening and garbage collection steps only. But by
monotonicity, and by point 2 of Proposition 3.2, M = L0 · · ·Ld, where each Lk is a
(maybe empty) complete k-leg. Moreover, by the Stretching Lemma 4.4, we can assume
Lk to be stretched.

Now, if s0, . . . , sd are the partial sizes of π, by Lemma 4.8 we know that |L0| ≤ s0,
yielding a proof-net of partial sizes at most s0, s0s1, . . . , s0sd; in the same way, |L1| ≤
s0s1, yielding a proof-net of partial sizes s0, s0s1, s

2
0s1s2, . . . , s

2
0s1sd, and so on. In general,
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we have

|Lk| ≤ sk

k−1∏

i=0

s2i

k−i−1 , 0 ≤ k ≤ d .

Therefore, using the fact that the partial sizes cannot be greater than the total size, the
length of M can be bounded as follows:

|M | =
d∑

k=0

|Lk| ≤
d∑

k=0

sk

k−1∏

i=0

s2i

k−i−1 ≤
d∑

k=0

sk

k−1∏

i=0

s2i

=

=
d∑

k=0

sks
Pk−1

i=0 2i

=
d∑

k=0

sks2k−1 ≤ s2d−1
d∑

k=0

sk = s2d

.

An identical calculation shows that the proof-net obtained at the end of M has total
size at most s2d

, which means that |E| ≤ s2d

(the size strictly decreases under the
execution of an erasing step). So ‖π‖ = |S| = |M |+ |E| ≤ 2s2d

.

5. Polytime soundness and completeness

We proceed now with the proofs of soundness and completeness of LLL with respect to
the class FP. Actually, the hard part of proving soundness has already been done in the
previous section; here we just need to define exactly how we represent functions inside
LLL. Some care is needed since the bound proved is polynomial in the size, but can be
as bad as doubly-exponential in the depth! Fortunately, LLL is not very different from
the other “light” systems, and the standard types and encodings used for LLL and LAL
work just fine.

In particular, the main technical issue concerning completeness, which is encoding the
transition of a Turing machine in such a highly constrained language as LLL, is addressed
by suitably reworking Luca Roversi’s argument for LAL (Roversi, 1999). Therefore, our
proof does not contain any noteworthy novelty at all, and we shall be brief on it.

It must also be mentioned that, following a recent work of Harry Mairson and
Kazushige Terui (Mairson and Terui, 2003), the additive-free fragment of Girard’s LLL
is FP-time complete. Now, since LLL without additives is clearly a subsystem of LLL,
no completeness proof would actually be needed, which is a further reason why we can
avoid showing it in full detail. In fact, our encoding (which by the way uses the additives)
is sketched here solely for the sake of self-containedness.

5.1. Representing functions on integers and strings

In order to get closer to usual functional languages and types, we shall shift to the
intuitionistic framework (Sect. 2.4), and replace multiplicative disjunction with linear
implication, defined as A ( B := A⊥ �B.

Using the abbreviation An = A⊗ · · · ⊗A, we define

Sk = ∀X.(!(X ( X))k ( §(X ( X)
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as the type of finite strings over an alphabet of k symbols. The cases S1 and S2 correspond
resp. to unary integers and binary strings, and are abbreviated resp. N and S. The terms
attached to the derivations of ` N are the Church integers, denoted n; an example of
a term attached to a derivation of ` S is λs1 ⊗ s0.λz.s1(s1(s0(s1z))), representing the
binary string 1011 and therefore denoted 1011.

We now formalize the notion of representation inside LLL for the crucial cases of
functions from binary strings to binary strings and from natural numbers to natural
numbers. In the following, §pA is short for § . . . §A, where A is preceded by p paragraph
modalities.

Definition 5.1 (Representation). A function f : {0, 1}∗ → {0, 1}∗ (resp. f : Nk → N)
is representable inside LLL if there exist a non-negative integer p and an intuitionistic
derivation f of the sequent S ` §pS (resp. Nk ` §pN) such that, for any binary string
x (resp. k non-negative integers n1, . . . , nk), f(x) = y (resp. f(n1, . . . , nk) = m) iff the
proof obtained by cutting the proof x of the sequent ` S (resp. the tensor of the proofs
n1, . . . , nk of ` N) to f normalizes to a proof of ` §pS (resp. ` §pN) which is y (resp.
m) with the addition of p paragraph rules at the end. We shall denote by FLLL the set
of functions from binary strings to binary strings representable inside LLL.

5.2. FP-soundness

A fundamental remark is that the proof-nets of conclusion S have all depth 1 and size
proportional to the length of the binary string they represent. Therefore, if ϕ is a proof-
net of conclusions S⊥, §pS, say of size s and depth d, the proof-net π obtained by cutting
any x of conclusion S with ϕ has depth c = max{d, 1} and size k|x|+ m, where k and m

are suitable constants (m depending on s). By Theorem 4.9, there exists a polynomial
P of degree depending on c (and so depending solely on ϕ) such that the normal form
of π is reached in less than P (k|x|+ m) = O(P (|x|)) steps. Since each reduction step at
most squares the size of a proof-net, implementing reduction on a Turing machine can
be done at worst with a polynomial slowdown, so we get

Theorem 5.1 (Polytime soundness). Every function from binary strings to binary
strings representable inside LLL is computable in polynomial time by a deterministic
Turing machine, i.e. FLLL ⊆ FP.

5.3. FP-completeness

The rest of the section is devoted to sketching the proof of the converse of Theorem 5.1:

Theorem 5.2 (Polytime completeness). Every function from binary strings to bi-
nary strings computable in polynomial time by a deterministic Turing machine is repre-
sentable inside LLL, i.e. FP ⊆ FLLL.

In the following, we will use expressions of the form

name[x1, . . . , xn] : C1, . . . , Cn ` A
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to say that name is a proof of the sequent C1, . . . , Cn ` A whose decoration is a λ-term
(also called name) of type A and containing the free variables x1, . . . , xn of respective
types C1, . . . , Cn.

Iteration, concatenation/addition, and polynomials. Given k proofs stepi : Ci, A ` A,
1 ≤ i ≤ k (where Ci does not need to be there), and a proof base : ∆ ` A, we can define
the iteration scheme itkstep1,...,stepk,base[x] as follows (we write Sk[A] for the instantiation
of the second order quantifier in Sk over the formula A):

··· step1

C1, A ` A

C1 ` A ( A

!C1 ` A ( A

!C1 ` !(A ( A) . . .

··· stepk

Ck, A ` A

Ck ` A ( A

!Ck ` A ( A

!Ck ` !(A ( A)
=================================

!C1, . . . , !Ck ` (!(A ( A))k

··· base

∆ ` A A ` A

∆, A ( A ` A
================
!∆′, ∆′′, A ( A ` A

!∆′, §∆′′, §(A ( A) ` §A
!C1, . . . , !Ck, !∆′, §∆′′,Sk[A] ` §A
!C1, . . . , !Ck, !∆′, §∆′′,Sk ` §A

The attached term is x(step1 ⊗ . . .⊗ stepk)base, where x is the free variable of type Sk.
Using the iteration scheme, we can program coercions as in (Girard, 1998), i.e. proofs of
Sk ` §p+1!qSk which represent the identity.

Now, if A(n) stands for n occurrences of the formula A, it is obvious that, for any
n ≥ 1 and any formula A, using n axioms and n− 1 tensor rules, we can build a proof of
A(n) ` An. If we put I := X ( X, then we can consider the following derivation:

···
(!I)(p) ` (!I)p

···
(!I)(p) ` (!I)p

X ` X

X ` X X ` X

X, I ` X

X, I, I ` X

I, I ` I

§I, §I ` §I
===============================================

(!I)(2p),Sp[X],Sp[X] ` §I
====================
(!I)(p),Sp[X],Sp[X] ` §I
===================
Sp[X],Sp[X] ` Sp[X]
=================

Sp,Sp ` Sp[X]

Sp,Sp ` Sp

We shall call this proof concatp[x, y]; it is easy to see that concatp[s, t] reduces to st, i.e.
it concatenates two strings.

The reader can check that in the case p = 1, the term attached to the proof is
λs.λz.ms(nsz), which is the standard term for addition on Church numerals; so we put
add[m,n] := concat1[m, n]. Using this, we can build the term it1add,0[m,n] :!N,N ` §N,
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from which by a paragraph rule and a cut with two suitable coercions we obtain
mul[m,n] : N,N ` §2N, which represents multiplication. Notice that mul cannot be iter-
ated further, i.e. it cannot be used as the step in the iteration scheme, which is natural,
since the contrary would allow us to program exponential functions.

It is not hard to see that out of add and mul we can build a proof P [n] : N ` §d+5N rep-
resenting any polynomial P of degree d with non-negative integer coefficients. Actually,
substraction and division can also be programmed in LLL, and arbitrary polynomials
can be built, but what we have done so far is already enough to represent polytime
bounds.

Turing machines. Using the abbreviation A&n = A & · · ·& A, we first define the type of
finite alphabets of k symbols as

Fk = ∀X.X&k ( X .

Following the decoration given in Sect. 2.4, one sees for example that the only two terms
of type F2 are λx.fstx and λx.sndx, i.e., the two boolean values.

We then introduce the type of configurations of Turing machines with p symbols and
q states:

Tp,q = ∀X.(!(X ( X))p ( §(X2 ( (X2 ⊗ Fq)) .

As an example, the following is the term representing the configuration of a Turing
machine with 3 symbols (0, 1 and blank) and q states, in which the current state is
represented by the λ-term Q : Fq, the tape contains the string 10110, and the head is
positioned on the leftmost 0:

λs1 ⊗ s0 ⊗ sb.λl ⊗ r.s0(s1l)⊗ s1(s1(s0r))⊗Q .

Given a Turing machine M with 3 symbols (represented resp. by the proofs 0, 1 and
b) and q states, calculating some function f from binary strings to binary strings, we
need a proof transM [t] : T3,q ` T3,q such that, whenever T : T3,q is a configuration of
M , transM [T ] reduces to T ′ iff according to the transition table of M , the configuration
T yields the configuration T ′. This is the technically difficult part of the completeness
proof; as already said, it is possible to address it using an adaptation of Roversi’s solution
(Roversi, 1999).

A crucial step is encoding a function that, given a string on the alphabet {0, 1, b},
returns at the same time the first character and the rest of the string. Such a function
would correspond to a proof of S3 ` F3 ⊗ S3; actually, for the purpose of encoding the
transition of a Turing machine, a proof of S3 ` F3⊗X sufficies, where X is a propositional
variable.

We start by introducing an auxiliary type

H = F3 ⊗ (X & X).

By means of a with and a tensor rule, we first build a derivation base[z] whose attached
term is b ⊗ 〈z, z〉. Then, let j ∈ {0, 1, b}, let sj be variables of type I = X ( X, and
consider the trivial derivations 〈sj〉 : I ` I&3 and 〈id〉 : ` I&3, whose attached terms
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are resp. 〈〈sj , sj〉, sj〉 and 〈〈λz.z, λz.z〉, λz.z〉. Observe that, for any term c of type F3,
c〈sj〉 →∗ sj and c〈id〉 →∗ λz.z. Using these derivations, we build fetchj [sj ] as follows
(below, F3[I] denotes the instantiation of the second order quantifer in F3 over the
formula I, and both of the with rules applied to the left of sequents introduce the “left”
occurrence of X in X & X):

··· j` F3

··· 〈sj〉
I ` I&3

X ` X X ` X

I,X ` X

I, X & X ` X

I,F3[I], X & X ` X
================

I,H ` X

!I,H ` X

··· 〈id〉
` I&3

X ` X X ` X

I, X ` X

I, X & X ` X

F3[I], X & X ` X
==============

H ` X

!I,H ` X

!I,H ` X & X

!I,H ` H

!I ` H ( H

!I ` !(H ( H)

The derivation is in LLL, since the promotion rule applied at the end has only one
formula in its context, and this formula descends from only one dereliction. The term
attached to fetchj [sj ] is

λx.(j ⊗ 〈 (λc⊗ r.c〈sj〉fst r)x , (λc⊗ r.c〈id〉fst r)x 〉) .

Together, base and fetchj can be used to extract the head and tail of a list. As a matter
of fact, we invite the reader to check that the term

λs.(λc⊗ p.c⊗ snd p)(s(fetch1 ⊗ fetch0 ⊗ fetchb)base[z]),

applied to a string on the alphabet {0, 1, b} of the form λs1⊗ s0⊗ sb.λz.sjS yields j⊗S,
or b⊗ z if the list is empty. The latter behavior accounts for the case in which the head
of the machine tries to read “beyond” the boundaries of the tape: a blank character is
read, and the tape is “extended”.

Notice that the additives play a key rôle in the implementation of the function; they
are used in a way which is reminiscent of Danos and Joinet’s encoding of the predecessor
(Danos and Joinet, 2003).

The idea above is the key to the encoding of Turing machines: without going over
the details, the current configuration is transformed into an object of type F3 ⊗H⊗H,
which contains the current state and resp. the “left” and “right” portions of the tape,
with their first symbols (thus including the current one) already extracted. Then, the
current state and symbol are fed into a lookup-table encoding the transition function
(still implemented using the additives), and the new configuration is produced.

To conclude, we still need a few “helper functions” (again, we shall not show the
derivations explicitly): a proof len[x] : S ` N, which returns the length of a binary string,



Damiano Mazza 28

a proof init[x] : S ` T3,q which, given a binary string x, yields the starting configuration
of a Turing machine with the string x on the tape, and a proof read[t] : T3,q ` §S which,
given a configuration, reads the string which is written on the tape. The attached terms
are

len[x] = λs.λz.xssz

init[x] = λs1 ⊗ s0 ⊗ sb.λl ⊗ r.l ⊗ (x(s1 ⊗ s0)r)⊗Q0

read[t] = (λr ⊗ l ⊗ k.λs1 ⊗ s0.λz.k〈. . . 〈id, id〉 . . . id〉
(r(s1 ⊗ s0)(l(s1 ⊗ s0)z)))
(t((λx.concat2[x, 1])⊗
(λx.concat2[x, 0])⊗
(λx.concat2[x, 0]))(ε⊗ ε))

where Q0 : Fq is the term representing the initial state of the Turing machine, id = λx.x

and ε is the term representing the empty binary string, i.e. λs1 ⊗ s0.λz.z.

Let now M be a Turing machine with 3 symbols and q states whose runtime is bounded
by a polynomial P (of degree d) in the length of the input string. With the iteration
scheme, we build it1transM ,init[x,m] :!S,N ` §T3,q, which takes a binary string x, an integer
m, and yields the configuration resulting from the execution of m elementary transitions
of M with initial input x.

Since M does not need more than P (|x|) steps to get to the result, we can imagine m

to be exactly the result of the evaluation of P applied to |x|; so we apply a few paragraph
rules to get a proof of §d+5!S, §d+5N ` §d+6T3,q, which can be cut with P and a coercion
to obtain S,N ` §d+6T3,q.

This latter proof can now be cut with len on the conclusion of type N to get
comp′M [x, y] : S,S ` §d+6T3,q. It is evident that comp′M [x, x] takes a binary string x

and yields the configuration resulting from P (|x|) transitions of M with initial input
x, which is right what we want. So we just need to add a couple of derelictions and a
paragraph rule, and then contract to get compM [x] :!S ` §d+7T3,q.

Our read can now easily be transformed into a proof of §d+7T3,q ` §d+8S, which cut
with compM yields a proof of !S ` §d+8S. One more paragraph rule and a cut with a
coercion and we get f : S ` §d+9S, which represents the function f computed by M .

Feeding a binary string x into f means cutting the proof representing x with f ; we
thus obtain a proof π of conclusion ` §d+9S. It is fundamental here to remark that the
formula S does not contain additive conjunctions or existential quantifiers, which means
that the proof-net corresponding to π is lazy (Definition 3.6). Therefore, Theorem 3.3
applies, and after eliminating the cuts we get the cut-free proof-net representing f(x)
“boxed” inside a certain number of §-boxes, as required by Theorem 5.2 and the definition
of representability.

Additive connectives are thus used only during the computation, without appearing in
the result; their convenience has already been pointed out in the encoding of the function
described above, which splits a list into head and tail.
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6. Other subsystems of LL/LL§

We have seen how the addition of a simple structural condition to Danos&Joinet’s ELL
(plus the addition of the paragraph modality) yields a logical system faithfully charac-
terizing deterministic polytime computation, in which moreover the polynomial bound
does not depend upon the reduction strategy. How does this system compare to existing
“light logics”?

It is not hard to see that the multiplicative/exponential fragment of LLL coincides with
the corresponding fragment of LLL. The additive connectives behave quite differently
though. The main diverging point is the lack of the “exponential isomorphism” in LLL:
because of condition i of Definition 3.4, it is impossible to prove !A⊗!B ( !(A & B).

There are also minor differences in the other direction, i.e., formulas that LLL validates
but that fail in LLL, but they are all ascribable to the unprovability of !1 in LLL, a
feature which Girard himself states to be “a matter of taste”. Therefore, LLL can be
seen as a subsystem of LLL; except for the absence of free weakening, it looks more akin
to Asperti’s LAL than to Girard’s original system. Essentially, it would be fair to say
that LAL is the affine variant of LLL, and not of LLL.

6.1. Light Linear Logic

Is it possible to “strengthen” the additives of LLL to obtain a system which truly corre-
sponds to LLL? As we shall see, the answer is positive, but requires structural conditions
which are more complicated to formulate than those of Definition 3.4. The reward is that
we find a framework in which also other “light logics” (i.e., ELL and SLL) can be
recovered.

Definition 6.1 (Weighed proof-net). Consider the commutative monoid

Q =
{ m

2n
| m,n ∈ N

}
∪ {ω},

where the extra element ω is such that, for all q ∈ Q, q + ω = ω. If we define ω/2 = ω,
Q is closed under division by 2. It is also a totally ordered set, as soon as we set q ≤ ω

for all q ∈ Q.
Let now π be an LL§ proof-net, and let S be the set of the edges of π labelled by

discharged formulas. We define a function w : S → Q as follows:

— if s is the conclusion of a flat link, w(s) = 1;
— if s, s′ are resp. the premise and the conclusion of a pad link, w(s′) = w(s)

2 ;
— if s is the conclusion of a pax link, w(s) = ω.

Let B be an exponential box of π, and let s1, . . . , sn be the premises of its auxiliary
ports. We define the weight of B as

w(B) =
n∑

i=1

w(si).

Let B be an additive box of π, and let s1
1, . . . , s

1
n1

and s2
1, . . . , s

2
n2

be the premises of
the pad links of B belonging resp. to the “left” and “right” component of B, such that
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sj
i 6= ω. We define the left weight of B as

←−w (B) =
n1∑

i=1

w(s1
i ),

and the right weight of B as

−→w (B) =
n2∑

i=1

w(s2
i ).

We remark that the (boolean) weights found in Girard’s proof-nets (Girard, 1996) are
completely unrelated to the ones defined above.

Danos&Joinet’s stratification can be reformulated in terms of weights:

Definition 6.2 (ELL, weighed proof-nets). ELL is the subsystem of LL composed
of all the proof-nets π such that:

(4) if s is the premise of a why not link of π, then w(s) = ω;
(T)if B is a !-box of π, then w(B) < ω.

Condition (4) forbids dereliction; if we restrict to proof-nets satisfying it, we obtain
the subsystem of LL that Danos and Joinet call 4LL. Similarly, condition (T) forbids
digging, and in its presence we obtain the subsystem called TLL. These two systems
intersect in ELL, and this is why both conditions are required in the definition.

LLL can be defined by adding the restriction to at most one auxiliary port, but this
constraint looks a little “out of style” in this context. In fact, the following is a much
more natural definition:

Definition 6.3 (LLL, weighed proof-nets). LLL is the subsystem of LL§ composed
of all the proof-nets π such that:

(4) if s is the premise of a why not link of π, then w(s) = ω;
(L)if B is a !-box (resp. §-box) of π, then w(B) = 1 (resp. w(B) < ω);
(A)if B is an additive box of π, then ←−w (B) = −→w (B).

Condition (L) implies condition (T), so the above system (if we do not consider the
paragraph modality) is obviously a subsystem of ELL. It could be replaced by w(B) ≤ 1,
which would allow the provability of !1 (if we had admitted neutrals), but we prefer to
stick to Girard’s original definition (Girard, 1998).

The fact that Definition 6.3 actually defines a subsystem, i.e., a set of proof-nets stable
under cut-elimination, is not trivial; as a matter of fact, condition (A) plays a crucial
role in this respect.

Lemma 6.1. Let π be an LLL proof-net, B an additive box of π, and let s1, . . . , sn be
the conclusions of the pad links of B such that si 6= ω. Then,

n∑

i=1

w(si) =←−w (B) = −→w (B).
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Proof. Clearly,
n∑

i=1

w(si) =
←−w (B) +−→w (B)

2
.

But by condition (A), ←−w (B) = −→w (B), hence the thesis.

Proposition 6.2. LLL is stable under cut-elimination.

Proof. Condition (4) does not need to be checked, because, as remarked above, we are
in a subsystem of ELL (modulo the addition of the paragraph modality, which hardly
changes anything), and ELL is stable under cut-elimination. The other two conditions
of Definition 6.3 concern discharged formulas, so we can concentrate on the only two
cut-eliminations steps that manipulate them: the additive step and the exponential step.
In both cases, we suppose that the proof-net we are reducing satisfies the conditions of
Definition 6.3, and we show that the resulting proof-net does too.

In the case of an additive cut, let us call A the additive box whose principal port is
concerned by the cut under reduction. We assume that A has pad links in its border,
otherwise there is nothing to check. Let p be a pad link of A such that its premise and
conclusion have both weight ω, and let l be the why not link (which must exist by the
requirement that proof-structures have no discharged formulas among their conclusions)
ending the structural branch passing through p; the corresponding premise of l has clearly
weight ω. Depending on the component chosen by the reduction, the residue of l either
has one premise less, or still has a premise of weight ω. In both cases, no threat of
violating the conditions of Definition 6.3 is posed.

Now, let s1, . . . , sn be the conclusions of A such that w(si) 6= ω. For all i such that
0 ≤ i ≤ n, let pi be the pad link whose conclusion is si, and let ϕi be the structural branch
to which pi belongs. By condition (c) on boxes in proof-structures (Definition 2.1), if B
is a box (of any kind) containing A such that one of the ϕj crosses its border, then every
ϕi also crosses its border, and if B is additive, the ϕi all belong to the same component
of B. Moreover, by condition (4), one of these boxes must be an exponential box, let us
call it C.

So let B be either C or an additive box contained in C and containing A. The weight
(or left weight, or right weight) of B is

q +
n∑

i=1

w(si)
2k

,

where q ∈ Q and k ∈ N are suitable constants. But by Lemma 6.1,
n∑

i=1

w(si)
2k

=
1
2k

n∑

i=1

w(si) =
1
2k
←−w (A) =

1
2k
−→w (A) ,

so the weight (or left weight, or right weight) of the residue of B is identical to the weight
(or left weight, or right weight) of B, whatever component of A is chosen. This assures
us that conditions (L) and (A) are preserved.

Let us turn to the case of an exponential cut. Let B be the !-box whose principal port
is concerned by the cut, let l be the why not link also concerned by the cut, and let b be
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a flat link whose structural branch ends in l. By conditions (4) and (L), there is exactly
one pax link p “between” b and l. Let then x be any link on the directed path from b to
p, excluding b itself, let s be the premise of x, and let C be the box to whose border x

belongs. The weight (or left weight, or right weight) of C is

q + w(s) = q +
1
2k

,

where k is the number of links “between” b and x, and q ∈ Q is a suitable constant.
Now, after the execution of the cut-elimination step, x is replaced by n copies of a link

of the same nature, where n ≥ 1 is the number of auxiliary ports of B (n = 0 would
imply w(B) = 0, violating condition (L)), and the residue of C has weight (or left weight,
or right weight)

q +
w(B)
2k

.

But by condition (L), w(B) = 1, so the weight (or left weight, or right weight) has not
changed, preserving conditions (L) and (A).

We shall now prove that the system of Definition 6.3 is indeed Girard’s LLL without
neutrals (which we refer to simply as “Girard’s LLL”). The proof will use the sequent
calculi of both systems, which enable us to reason by induction on the last rule of a
proof. On the side of LL§, we shall employ the sequent calculus with discharged formulas
presented in Sect. 2.3; on the side of Girard’s LLL, we shall consider the “two-layer”
sequent calculus defined in the original paper (Girard, 1998) and recalled in Appendix A.

We first introduce weights in the sequent calculus with discharged formulas, using
the notation [A〈q〉 to denote that an occurrence of discharged formula [A has weight
q, where q is always an element of Q. If Γ = A1, . . . , An, then [Γ〈~q〉 is short for
[A1〈q1〉, . . . , [An〈qn〉. The sequent calculus is defined as the “standard” one, except for
additive conjunction, which becomes

` [∆1〈~q1〉,Γ, A ` [∆2〈~q2〉,Γ, B

` [∆1〈~q1/2〉, [∆2〈~q2/2〉, Γ, A & B

and for the exponential rules, which are replaced by

` [Γ〈~q〉, A
` [Γ〈~ω〉, !A

` Γ, [A〈q1〉, . . . , [A〈qn〉
` Γ, ?A

` Γ, A

` Γ, [A〈1〉
` [Γ〈~q〉, ∆
` [Γ〈~ω〉, §∆

Of course we impose that discharged formulas cannot be principal formulas of any rule
except the why not rule.

We call partial payload of a sequent ` [Γ〈~q〉, ∆ the sum of the qi such that qi 6= ω,
the full payload being the sum of all qi. Then, the following is clearly the equivalent of
Definition 6.3 for sequent calculus:

Definition 6.4 (LLL, sequent calculus with discharged formulas). LLL is the
subsystem of LL§ composed of all the derivations D such that:
(4) if [A〈q〉 is the premise of a why not rule of D, then q = ω;
(L)if q is the full payload of the premise of an of course (resp. paragraph) rule of D, then

q = 1 (resp. q < ω);
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(A)if q1, q2 are the partial payloads of the two premises of a with rule of D, then q1 = q2.

Notice that condition (A) has a very strong consequence on payloads:

Lemma 6.3. The partial payload of any sequent of an LLL derivation is an integer.

Proof. The only rule that may introduce non-integer payloads is the with rule, but
by condition (A), the payload of the conclusion is exactly equal to the payload of the
premises (Lemma 6.1).

Lemma 6.3 justifies the notation ` [Γ〈k〉, [∆〈ω〉,Σ for the generic LLL sequent: [Γ
contains all the discharged formulas whose weight is not ω, so that k is the partial
payload of the sequent, [∆ contains all the discharged formulas whose weight is ω, and
Σ contains all “plain” formulas of the sequent.

Theorem 6.4 (Soundness of Definition 6.4). For each LL§ derivation of the se-
quent ` [Γ〈k〉, [∆〈ω〉,Σ respecting the conditions of Definition 6.4, there exist k blocks
A1, . . . ,Ak such that A1]· · ·]Ak = Γ and a derivation in Girard’s LLL sequent calculus
of the sequent ` A1; . . . ;Ak; [∆]; Σ.

Proof. The only interesting cases are the additive conjunction and the exponential
rules:

With rule. By condition (A), our derivation ends with

` [Γ1〈k〉, [∆1〈ω〉,Σ, A ` [Γ2〈k〉, [∆2〈ω〉,Σ, B

` [Γ〈k〉, [∆〈ω〉,Σ, A & B

where Γ = Γ1 ] Γ2 and ∆ = ∆1 ] ∆2. By induction hypothesis, we have a proof
of ` A1

1; . . . ;A
1
k; [∆1]; Σ; A and a proof of ` A2

1; . . . ;A
2
k; [∆2]; Σ; B. If we put Ai =

A1
i ]A2

i and ∆ = ∆1 ]∆2, using additive and multiplicative weakenings we obtain

` A1
1; . . . ;A

1
k; [∆1]; Σ; A

===================
` A1; . . . ;Ak; [∆]; Σ; A

` A2
1; . . . ;A

2
k; [∆2]; Σ; A

===================
` A1; . . . ;Ak; [∆]; Σ; A

` A1; . . . ;Ak; [∆]; Σ; A & B

which clearly verifies A1 ] · · · ]Ak = Γ.
Of course rule. By condition (L), our derivation ends with

` [Γ〈1〉, A
` [Γ〈ω〉, !A

Using the induction hypothesis, if Γ = B1, . . . , Bn, we have a proof of ` B1, . . . , Bn;A
in Girard’s sequent calculus, from which we obtain ` [B1]; . . . ; [Bn]; !A by means of
an of course rule.

Why not rule. By condition (4), our derivation ends with

` [Γ〈k〉, [∆〈ω〉, Σ, [A〈ω〉, . . . , [A〈ω〉
` [Γ〈k〉, [∆〈ω〉, Σ, ?A

which means that by induction hypothesis we have a proof of
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` A1; . . . ;Ak; [∆]; Σ; [A]; . . . ; [A] in Girard’s sequent calculus. By repeated ap-
plication of multiplicative contractions and a why not rule, we obtain

` A1; . . . ;Ak; [∆]; Σ; [A]; . . . ; [A]
=========================
` A1; . . . ;Ak; [∆]; Σ; [A]

` A1; . . . ;Ak; [∆]; Σ; ?A

Flat rule. Our derivation ends with
` [Γ〈k〉, [∆〈ω〉, Σ, A

` [Γ〈k〉, [∆〈ω〉, Σ, [A〈1〉
By induction hypothesis, we have a proof of ` A1; . . . ;Ak; [∆]; Σ; A. But this proof is
already what we are looking for, since A is itself a block, and A1 ] · · · ]Ak ] {A} =
Γ ] {A}.

Paragraph rule. By condition (L), our derivation ends with

` [Γ〈k〉,Σ
` [Γ〈ω〉, §Σ

The induction hypothesis gives us a proof of ` A1; . . . ;Ak; Σ, where the additive
block are such that A1 ] · · · ]Ak = Γ. From this, after applying a paragraph rule we
obtain ` [Γ]; §Σ, which is what we want.

As we have seen in the above proof, any sequent of Girard’s calculus for LLL can be
written as ` A1; . . . ;Ak; [∆]; Σ. In what follows, we make the additional requirement that
the Ai are “real” additive blocks, i.e., they contain at least two undischarged formulas;
blocks containing only one discharged or undischarged formula are supposed to be resp.
in [∆] and Σ.

Let us introduce some useful notations:

— we write Γ′ v Γ iff Γ = A1, . . . , An and there exist n non-negative integers m1, . . . ,mn

such that Γ′ = A
(m1)
1 , . . . , A

(mn)
n , where A

(mi)
i stands for mi occurrences of Ai;

— we write Γ′ v∗ Γ iff Γ′ v Γ and Γ′ 6= ∅;
— [Γ〈q〉 is short for [Γ〈~q〉 such that

∑
i qi = q.

Lemma 6.5.

1 Union: if Γ′1, Γ
′
2 v Γ then Γ′1 ] Γ′2 v Γ.

2 Weakening : if Γ′ v Γ, then, for any ∆, Γ′ v Γ ]∆.
3 Contraction: if Γ′ v Γ ] {A,A}, then Γ′ v Γ ] {A}.
4 Non-empty case: all of the above hold replacing v with v∗.

Proof. Obvious.

Theorem 6.6 (Completeness of Definition 6.4). For each derivation of
` A1; . . . ;Ak; [∆]; Σ in Girard’s sequent calculus for LLL, there exists an LL§ derivation
D of ` [Γ1〈1〉, . . . , [Γk〈1〉, [∆′〈ω〉,Σ such that:

— D satisfies the conditions of Definition 6.4;
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— for all i such that 1 ≤ i ≤ k, Γi v∗ Ai;
— ∆′ v ∆.

Proof. Identity, cut, multiplicative, quantifier, and additive disjunction rules are sim-
ulated by their direct counterparts without problems. For what concern the other rules,
we have:

With rule. Our derivation ends with
` A1; . . . ;Ak; [∆]; Σ;A ` A1; . . . ;Ak; [∆]; Σ; B

` A1; . . . ;Ak; [∆]; Σ; A & B

By induction hypothesis, we can build the following proof:

` [Γ1
1〈1〉; . . . ; [Γ1

k〈1〉; [∆′
1〈ω〉; Σ; A ` [Γ2

1〈1〉; . . . ; [Γ2
k〈1〉; [∆′

2〈ω〉; Σ; B

` [Γ1
1〈1/2〉, [Γ2

1〈1/2〉, . . . , [Γ1
k〈1/2〉, [Γ2

k〈1/2〉, [∆′
1〈ω〉, [∆′

2〈ω〉,Σ, A & B

Now, if we pose Γi = Γ1
i ] Γ2

i and ∆′ = ∆′
1 ]∆′

2, we have that the overall weight of
each [Γi is 1, and by Lemma 6.5 we have Γi v∗ Ai and ∆′ v ∆.

Of course rule. Our derivation ends with
` B1, . . . , Bn; A

` [B1]; . . . ; [Bn]; !A

Applying the induction hypothesis, we obtain a proof of ` [Γ〈1〉, A, where
Γ = B

(m1)
1 , . . . , B

(mn)
n and at least one mi is non-null. Then, we are in position

to apply an of course rule respecting condition (L), to obtain ` [Γ〈ω〉, !A, and
Γ v {B1, . . . , Bn} already holds by induction.

Why not rule. Our derivation ends with

` A1; . . . ;Ak; [∆]; Σ; [A]

` A1; . . . ;Ak; [∆]; Σ; ?A

By induction hypothesis, we have a proof of the sequent

` [Γ1〈1〉, . . . , [Γk〈1〉, [∆′〈ω〉,Σ, [∆′′〈ω〉
where Γi v∗ Ai, ∆′ v ∆, and most importantly ∆′′ v {A}. This means
that, if we put Φ = [Γ1〈1〉, . . . , [Γk〈1〉, [∆′〈ω〉,Σ, our sequent actually looks like
` Φ, [A〈ω〉, . . . , [A〈ω〉, so we can apply a why not rule respecting condition (4), ob-
taining ` Φ, ?A, which is exactly what we are looking for.

Paragraph rule. This case is virtually identical to that of the of course rule.
Structural rules. Let ` A1; . . . ;Ak; [∆]; Σ be the premise of our last rule. In the case

of a multiplicative (resp. additive) weakening, we have that ∆ becomes ∆]{A} (resp.
some Ai becomes Ai ] {A}). By the induction hypothesis, we have a proof ending
with ` [Γ1〈1〉, . . . , [Γk〈1〉, [∆′〈ω〉, Σ such that ∆′ v ∆ (resp. Γi v∗ Ai). But then, by
Lemma 6.5, ∆′ v ∆]{A} (resp. Γi v∗ Ai ]{A}), so we do not need to do anything.
In the case of a multiplicative (resp. additive) contraction, we have that ∆ = ∆′′ ]
{A, A} becomes ∆′′ ] {A} (resp. for some i, Ai = A′

i ] {A,A} becomes A′
i ] {A}).

Again, by Lemma 6.5, we still have ∆′ v ∆′′ ] {A} (resp. Γi v∗ A′
i ] {A}), so we

have nothing to do.
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Combined together, the two theorems above prove that we have actually captured
Girard’s LLL: if A1, . . . , An are “plain” LL§ formulas, ` A1; . . . ; An is provable in Gi-
rard’s LLL iff ` A1, . . . , An is provable in LL§ with a derivation satisfying Definition 6.4.
Moreover, there is a tight correspondence (which is not one-to-one only because of minor
structural details) between the proofs of the two systems.

This correspondence gives a nice insight on the nature of LLL blocks: they are lists
of discharged formulas of overall weight 1; this is why they “count” as one discharged
formula.

6.2. Soft Linear Logic

While we are at it, let us also give a reformulation of Lafont’s SLL (Lafont, 2004) in
terms of weighed proof-nets and sequent calculus with discharged formulas. We remind
that SLL is obtained by replacing the four exponential rules of LL sequent calculus
(Sect. 2.3) with

` Γ, A
(soft promotion)

` ?Γ, !A

` Γ, A, . . . , A
(multiplexing)

` Γ, ?A

Definition 6.5 (SLL, weighed proof-nets). SLL is the subsystem of LL composed
of all the proof-nets π such that:

(T)if B is a !-box of π, then w(B) < ω;
(S)if w(s) = ω, then s is the premise of a unary why not link.
(A′)if B is an additive box of π, then ←−w (B) = −→w (B) = 0.

As we have already pointed out, condition (T) forbids digging; condition (S) forces soft
promotion, and the additional condition (A′) simply states that additive boxes in SLL
cannot have any pad link.

The following result is actually much simpler to prove than its LLL counterpart above,
so the proof is omitted:

Theorem 6.7. For each SLL derivation of ` Γ there is an LL proof-net of conclusions
Γ satisfying Definition 6.5, and vice-versa.

7. Conclusions

We have seen how Danos and Joinet’s approach can be extended to obtain a purely logical
characterization of FP, arguably simpler than LLL. We have also enhanced Danos and
Joinet’s ideas in order to recover Girard’s LLL without changing the syntax of linear logic
(except for the addition of the paragraph modality), but rather by imposing structural
constraints on proofs. We would like to make here a few concluding remarks.

Lazy cut-elimination and polytime strong normalization. Our work excludes a priori the
reduction of additive commutative cuts, i.e., cuts whose one of the premises is the conclu-
sion of an additive contraction link. In Sect. 2 we said that the reason for ignoring these
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cuts is that they pose non-confluence problems; we have seen in the completeness proof
that this restriction is not harmful, since Theorem 3.3 applies to proof-nets representing
data and functions on integers or binary strings, and we are sure that the cut-elimination
process ends with a truly cut-free proof-net even without reducing additive commutative
cuts.

There is actually another reason justifying the use of lazy cut-elimination: without
it, strong polytime normalization for LLL would fail. Indeed, consider the additive
η-expansion of the identity, which corresponds to the λ-term

A = λx.〈fst x, snd x〉 .

If we apply the nth Church integer to A, we obtain a term for which, if we admit additive
commutative reductions, there exists a reduction sequence of length O(2n). In terms of
proof-nets, after a number of steps equal to n plus a constant, the reduction stumbles
upon the following “chain” composed of n additive boxes (we omit the types, which are
irrelevant):

⊕1 ⊕2

&

ax

ax

⊕1 ⊕2

&

ax

ax

coad

cut cut

coad

. . .

�

Lazy cut-elimination would stop at this moment; on the contrary, allowing the reduction
of additive commutative cuts duplicates the boxes, and if no reduction inside an addi-
tive box is performed before all reductions outside the boxes are completed, we get an
exponentially big proof-net.

In LLL (we mean the system introduced in Definition 6.3) the situation is even worse:
strong polytime normalization fails even under lazy cut-elimination. As a matter of fact,
we can consider a construction similar to the one above, but instead of η-expanding the
identity on A & B, we η-expand the identity on !(A & B), obtaining the proof-net

coad

⊕1 ⊕2

&

ax

ax

[

pax

?

!

!(A & B)?(B⊥ ⊕A⊥)

(only the conclusions are given, the other types can be uniquely inferred from them).
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Now we “turn” the additive contraction into a multiplicative one, and build the following
proof-net, which we call ρ:

⊕1 ⊕2

ax

ax

?

&

[ [

pad pad

pax pax !

!(A & B)?(B⊥ ⊕A⊥)

ρ is clearly not in LLL (it violates condition i of Definition 3.4), but the reader can check
that it satisfies the requirements of Definition 6.3, thus being a valid LLL proof-net. In
fact, passing from the η-expansion of !(A & B) ( !(A & B) to ρ is possible thanks to
the exponential isomorphism, in particular the direction which holds in LLL but is false
in LLL, namely !A ⊗ !B ( !(A & B). In categorical terms, the fact that an additive
contraction can be turned into a multiplicative one is justified by the commutation of
the following diagram:

!C

ctr

²²

!〈f,g〉

**UUUUUUUUUUUUUUUUUUUU

!C⊗!C
!f⊗!g

// !A⊗!B
iso

// !(A & B)

where f, g are two morphisms of source C and resp. targets A and B, 〈·, ·〉 denotes the
cartesian product of two morphisms, !(·) and ·⊗ · are resp. the bang and tensor functors,
and ctr and iso are resp. the contraction map on !C and the morphism from !A ⊗ !B to
!(A & B) which represents one side of the exponential isomorphism. Clearly !〈f, g〉 uses
additive contraction, while iso ◦ !f⊗!g ◦ ctr does not (it uses multiplicative contraction
instead).

If we define θ to be the proof-net (which is also in LLL)

ax

⊕1

[

pax !

?
!A?(B⊥ ⊕A⊥)

we can build the following “chain” of length n, which we call χn:

?(B⊥ ⊕A⊥) !A

ρ ρ θ

cut cut cut
. . .
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Now, χn has size linear in n, and moreover it is a lazy proof-net (we can assume A and B

to be propositional variables). Therefore, it can be brought to its cut-free form without
reducing additive commutative cuts; yet, if we always reduce cuts at depth zero first, we
obtain a reduction sequence of length O(2n).

Girard (Girard, 1998) avoids this problem by reducing exponential cuts in a careful
way, taking into account some conditions on his boolean weights. In our setting, his
conditions can be reformulated as follows. Suppose that a !-box B is cut with an n-ary
why not link l. The cut-elimination procedure we have considered so far reduces this cut
by finding the flat links “above” l and dispatching one copy of the contents of B to each
of these n links. Here, we dispatch a copy of the contents of B to a flat link b only if the
exponential branch starting from b and ending into l does not cross any pad link. The
arity of l is thus reduced, but maybe not enough to make it disappear, in which case a
residue of B and of l can still be found in the reduct, still cut one with the other, until
some additive reduction “unlocks” the situation.

The reader may check that this “hyper-lazy” procedure is linear in the case of χn,
no matter what reduction sequence is chosen. We believe that this is not an accident,
and indeed we conjecture that LLL is polytime strongly normalizing under this cut-
elimination procedure (of course for lazy proof-nets only).

Following a remark of Terui (Terui, 2002), this would seem to exclude the possibility of
encoding Bellantoni & Cook’s safe recursion (Bellantoni and Cook, 1992) in light linear
logic even with the aid of addive connectives.

The paragraph modality. Imagine to take an LLL/LLL proof-net and “strip off” all
of its §-boxes, erasing at the same time every § from its formulas. It is not hard to
see that what we get is a correct LL proof-net, which almost certainly violates the
stratification condition, but whose normalization obviously takes no more steps than the
original LLL/LLL proof-net (there are fewer cuts to reduce!).

This means that §-boxes do not play any role in the dynamics of cut-elimination, in
particular with respect to its efficiency. Our work confirms the idea, already suggested
by Asperti and Roversi (Asperti and Roversi, 2002), that the fundamental nature of the
§ modality is that of a statical depth-marker.

In light logics, we need to be able to delimit sub-proof-nets which can communicate
only with a limited number of other sub-proof-nets, namely those at the same depth;
one could imagine to do this by “framing” LL sub-proof-nets in order to restrict their
interactions. The § modality internalizes this restriction into the logic: a “framed” A

should not interact with A⊥, so we turn it into §A; we then see how our “frames”
become §-boxes.

This casts doubts on the logical value of the paragraph modality, and may justify why
it has not so far received any interesting semantical interpretation.
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Appendix A. LLL sequent calculus

The material in this appendix is taken from (Girard, 1998).
We briefly recall the definition of Girard’s LLL sequents:

I A discharged formula is an expression [A], where A is a formula;
I a block A is a sequence A1, . . . , An of formulas, or a single discharged formula [A];
I a sequent is an expression ` A1, . . . ,An, where A1, . . . ,An are blocks.

The intuitive meaning of a block A1, . . . , An is A1 ⊕ · · · ⊕An; the intuitive meaning of a
discharged formula [A] is ?A; if A1, . . . ,An correspond to the formulas A1, . . . , An, then
the intuitive meaning of the sequent ` A1, . . . ,An is A1 � · · ·�An.
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Identity/Negation

(identity)
` A; A⊥

` Γ;A ` ∆;A⊥
(cut)

` Γ;∆

Structure
` Γ;A;B;∆

(M-exchange)
` Γ;B;A;∆

` Γ;A, C, D,B
(A-exchange)

` Γ;A, D, C,B

` Γ
(M-weakening)

` Γ; [A]

` Γ;A
(A-weakening)

` Γ;A, B

` Γ; [A]; [A]
(M-contraction)

` Γ; [A]

` Γ;A, B, B
(A-contraction)

` Γ;A, B

Logic

` Γ; A ` B;∆
(times)

` Γ;A⊗B;∆

` Γ;A; B
(par)

` Γ; A�B

` Γ;A ` Γ;B
(with)

` Γ;A & B

` Γ; Ai
(plus i) i ∈ {1, 2}

` Γ;A1 ⊕A2

` B1, . . . , Bn; A
(of course)

` [B1]; . . . ; [Bn]; !A

` Γ; [A]
(why not)

` Γ; ?A

` B1| . . . |Bn;A1; . . . ;Am
(neutral) ‘|’ stands for ‘,’ or ‘;’

` [B1]; . . . ; [Bn]; §A1; . . . ; §Am

` Γ;A
(for all) X not free in Γ

` Γ; ∀XA

` Γ;A[B/X]
(there is)

` Γ;∃XA


