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Abstract. The symmetric interaction combinators are a variant of La-
font’s interaction combinators. They are a graph-rewriting model of par-
allel deterministic computation. We define a notion analogous to that of
head normal form in the λ-calculus, and make a semantical study of the
corresponding observational equivalence. We associate with each net a
compact metric space, called edifice, and prove that two nets are observa-
tionally equivalent iff they have the same edifice. Edifices may therefore
be compared to Böhm trees in infinite η-normal form, or to Nakajima
trees, and give a precise topological account of phenomena like infinite
η-expansion.

1 Introduction

Lafont’s interaction nets [1] are a powerful and versatile model of parallel deter-
ministic computation, derived from the proof-nets of Girard’s linear logic [2, 3].
Interaction nets are characterized by the atomicity and locality of their rewriting
rules. They can be seen as “parallel Turing machines”: computational steps are
elementary enough to be considered as executable in constant time, but several
steps can be done at the same time.

Several interesting applications of interaction nets exist. The most notable
ones are implementations of optimal evaluators for the λ-calculus [4, 5], but
efficient evaluation of other functional programming languages using richer data
structures is also possible with interaction nets [6].

However, so far the practical aspects of this computational model have ar-
guably received much more attention than the strictly theoretical ones. With
the exception of Lafont’s work on the interaction combinators [7] and Fernández
and Mackie’s work on operational equivalence [8], no foundational study of in-
teraction nets can be found in the existing literature. For example, until very
recently [9], no denotational semantics had been proposed for interaction nets.

This work aims precisely at studying and expanding the theory of interaction
nets, in particular of the symmetric interaction combinators. These latter are
particularly interesting because of their universality : any interaction net system
can be translated in the symmetric interaction combinators [7]. Therefore, a
semantical study of the symmetric combinators applies, modulo a translation,
to all interaction net systems.



We introduce observable nets, which are analogous to head normal forms in
the λ-calculus, and we define an observational equivalence based on them. This
equivalence is different from the one introduced by Fernández and Mackie: the
latter is in fact based on interface normal forms, which appear to be related to
λ-calculus weak head normal forms.

In the λ-calculus, head normal form equivalence (hnf-equivalence) was seman-
tically characterized in the early ’70s by the independent results of Wadsworth
and Hyland [10, 11]: two λ-terms are hnf-equivalent iff their Böhm tree has the
same infinite η-normal form. Shortly after, Nakajima introduced a similar char-
acterization in terms of what are now known as Nakajima trees [12].

In the present work we introduce edifices, which play the same rôle as Böhm
or Nakajima trees, in that they provide a fully abstract model of the symmetric
combinators. Edifices are compact (hence complete) metric spaces, related to
Cantor spaces. When nets are interpreted as edifices, phenomena similar to infi-
nite η-expansion, which are also present in the symmetric combinators, receive
a precise topological explanation.

Apart from characterizing the interactive behavior of nets, edifices show other
interesting aspects, not developed in this paper. They have many common fea-
tures with the strategies of game semantics, and are related to the Geometry of
Interaction interpretation of nets [13, 7]. They may be of help in improving the
theory of interaction nets, for example by serving as the base for a typed seman-
tics, or by suggesting additive (or non-deterministic) extensions of interaction
nets; they may also turn out to be useful in defining alternative models of other
systems, like proof-nets, or the λ-calculus itself, as these can all be encoded in
the symmetric combinators.

2 The Symmetric Interaction Combinators

2.1 Nets

The symmetric interaction combinators, or, more simply, the symmetric combi-
nators, are an interaction net system [1, 7]. An interaction net is the union of
two structures: a labelled, directed hypergraph, and an undirected multigraph:

Definition 1 (Net). A net µ is a triple (Ports(µ),Cells(µ),Wires(µ)), where:

– Ports(µ) is a finite set, the elements of which are called the ports of µ;
– Cells(µ) is a set of cells, which are tuples of the form (α, i0, i1, . . . , in), where
α ∈ {δ, ε, ζ}, and i0, i1, . . . , in are pairwise distinct ports, such that n = 2 if
α = δ or α = ζ, and n = 0 if α = ε;

– Wires(µ) is a multiset of wires, which are unordered pairs of distinct ports.

Cells(µ) and Wires(µ) must satisfy the following constraints:

– each port appears in at least one wire;
– each port appears at most twice in Cells(µ)+Wires(µ) (Cells(µ) is considered

as a multiset in this union).
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Fig. 1. A net (left) and its port graph (right, internal edges dotted).

The ports of µ appearing only once in Cells(µ)+Wires(µ) are called free; the set
of the free ports of µ is referred to as its interface. In a cell (α, i0, i1, . . . , in), the
port i0 is called principal, and the ports i1, . . . , in are called auxiliary.

Most of the time, it is convenient to present a net graphically, as in Fig. 1. In
these representations, only cells and wires are drawn, and ports are left implicit.
For a binary cell (i.e., of type δ or ζ), the principal port is represented by one of
the “tips” of the triangle representing it. A wire is represented as. . . a wire, and
the free ports appear as extremities of “pending” wires. For example, the net in
Fig. 1 has 7 free ports. In the rest of the paper, we shall always assume that if
a net has n free ports, then they are labelled by the integers in {1, . . . , n}. Note
also that graphical representations equate nets differing only modulo an injective
renaming of ports and a collapse/extension of wires (a sort of α-equivalence).

Each net µ determines an undirected multigraph PG(µ), which will be useful
to speak of paths in µ (see Fig. 1):

Definition 2 (Port graph). The port graph of a net µ, denoted PG(µ), is the
undirected multigraph whose vertices are the elements of Ports(µ) and such that
there is an edge between two ports i, j iff one of the following (non mutually
exclusive) conditions hold:

External edges: {i, j} ∈ Wires(µ) (multiplicities are counted here, i.e., if {i, j}
appears twice in Wires(µ), there will be two edges relating i and j in PG(µ));

Internal edges: i and j are principal and auxiliary ports of a cell of µ.

2.2 Interaction Rules

An active pair is a net consisting of two cells whose principal ports are connected
by a wire. Active pairs may be reduced according to the interaction rules (Fig. 2):
the annihilations, concerning the interaction of two cells of the same type, and
the commutations, concerning the interaction of two cells of different type.

Reducing an active pair inside a net means removing it and replacing it with
the net given by the corresponding rule. If a net µ is transformed into µ′ after
such an operation, we write µ → µ′. We define µ 'β ν iff there exists o such
that µ →∗ o and ν →∗ o. It is easy to show that the relation →∗ is (strongly)
confluent, so 'β is an equivalence relation (indeed a congruence).

The interest of the symmetric combinators is given by the following result:
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Fig. 2. The interaction rules: annihilation (left) and commutation (right). In the an-
nihilation, the right member is empty in case α = ε.

Theorem 1 (Lafont [7]). Any interaction net system can be translated in the
symmetric combinators.

The definitions of interaction net system and of the notion of translation are
out of the scope of this paper. We shall only say that, modulo an encoding,
Turing machines, cellular automata, and the SK combinators are all examples
of interaction net systems [7, 9]. An example of encoding of linear logic and the
λ-calculus in the symmetric combinators1 is given by Mackie and Pinto [14].
We refer the reader to Lafont’s paper [7] for a proper formulation and proof of
Theorem 1.

2.3 Basic Nets

Wirings. A net containing no cell and no cyclic wire is called a wiring. Wirings
are permutations of free ports; they are ranged over by ω.

Trees. A single ε cell is a tree with no leaf, denoted by ε; a single wire is a tree
with one leaf (it is arbitrary which of the two extremities is the root and which
is the leaf), denoted by •; if τ1, τ2 are two trees with resp. n1, n2 leaves, and if
α ∈ {δ, ζ}, the net

τ

τ1 τ2

α

=

. . .

. . . . . .

is a tree with n1 + n2 leaves, denoted by α(τ1, τ2).
Trees annihilate in a way which generalizes the annihilation of binary cells:

Lemma 1. Let τ be a tree. Then, we have

..
.

..
.

..
.

..
.

τ τ →∗

Proof. By induction on τ . ut
1 Actually these encodings use the interaction combinators, but they can be adapted

with very minor changes to the symmetric combinators.
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Fig. 3. The equations defining η-equivalence (α ∈ {δ, ζ}).

3 Observational Equivalence

3.1 Eta Equivalence and Internal Separation

As in the λ-calculus, if reduction is extended by adding other suitable rewriting
rules, a result similar to Böhm’s theorem can be proved [15].

Definition 3 (Context, test). Let µ be a net with n free ports. A context for
µ is a net C with at least n free ports. We denote by C[µ] the application of C
to µ, which is the net obtained by plugging the free port i of µ to the free port i
of C, with i ∈ {1, . . . , n}. A test for µ is a forest of n trees τ1, . . . , τn such that
the root of each τi is labelled by i. A test θ is therefore a particular context, and
we denote by θ[µ] its application to µ.

Definition 4 (η- and βη-equivalence). η-equivalence is the reflexive, transi-
tive, and contextual closure of the equations of Fig. 3. βη-equivalence is defined
as 'βη= ('β ∪ 'η)+.

In the following, W and E denote the nets with two free ports consisting
resp. of a single wire and of two ε cells.

Theorem 2 (Separation [15]). Let µ, ν be two total2 nets with the same in-
terface, such that µ 6'βη ν. Then, there exists a test θ such that θ[µ] →∗ W and
θ[ν] →∗ E, or vice versa.

The following result is the analogous of Lemma 1 for η-equivalence, and will
be used in Sect. 5 (like Lemma 1, the proof is a straight-forward induction):

Lemma 2. Let τ be a tree without ε cells. Then, we have

...
...τ τ 'η

2 Total means admitting a normal form without vicious circles. A vicious circle is
either a cyclic wire, or a configuration consisting of n binary cells c1, . . . , cn such
that, for all i ∈ {1, . . . , n− 1}, the principal port of ci is connected to an auxiliary
port of ci+1, and the principal port of cn is connected to an auxiliary port of c1. Such
configurations are stable under reduction, because cells can interact only through
their principal port. Totality will not be relevant to the main definitions and results
of this paper.
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Fig. 4. An observable path.

Corollary 1. For any net ν and for any trees without ε cells τ1, . . . , τn, there
exists a net ν′ such that

. . . . . .

. . .

τ1 τn

ν′

'ην

Proof. Simply “η-expand” the wires connected to the free ports of ν as in
Lemma 2. ut

3.2 Path-based Observational Equivalence

The Separation Theorem distinguishes two nets by sending one to a net present-
ing a direct connection between its free ports, and the other to a net in which
no such direct connection will ever form. This inspires the following definitions.

Definition 5 (Straight path, Danos and Regnier [13]). Let µ be a net, and
i, j ∈ Ports(µ). We say that there is a straight path between i and j in µ iff there
is a path (not necessarily simple) connecting i and j in PG(µ) and alternating
between internal and external edges (see Definition 2). We say that a straight
path crosses an active pair iff it contains an edge connecting two principal ports.
A maximal path is a non-empty straight path connecting two free ports of µ.

Definition 6 (Observable path). Let µ be a net. An observable path of µ is a
maximal path crossing no active pair. We denote by op(µ) the set of observable
paths of µ, and we set

op∗(µ) =
⋃

µ→∗µ′
op(µ′).

It is perhaps useful to visualize observable paths. A net µ contains an ob-
servable path between its free ports i and j iff it is of the shape given in Fig. 4.
If i = j, then τ1 = τ2, and the wire shown connects two leaves of the same tree.
The actual observable path, if seen from i to j, takes the branch of τ1 leading
to the leaf connected by the wire shown, follows this wire, and descends to the
root of τ2 through the only possible branch.

Proposition 1. Let µ→∗ µ′. Then, op(µ) ⊆ op(µ′), and op∗(µ) = op∗(µ′).

Proof. An immediate consequence of the locality of interaction rules. ut
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Note that, for any net µ, op(µ) is always finite; then, by Proposition 1, op∗(µ)
is finite whenever µ has a normal form. The stability of observable paths under
reduction is the main reason for considering them as the base of observational
equivalence.

Definition 7 (Observability predicates). We say that µ is immediately ob-
servable, and we write µ↓, iff op(µ) 6= ∅. We say that µ is observable, and we
write µ⇓, iff op∗(µ) 6= ∅, or, equivalently, µ →∗ µ′↓. If op∗(µ) = ∅, we say that
µ is blind, and we write µ⇑.
Definition 8 (Observational equivalence). Two nets µ, ν with the same in-
terface are observationally equivalent, and we write µ ' ν, iff for all contexts
C, C[µ]⇓ iff C[ν]⇓.

It helps thinking of an immediately observable net as a head normal form in
the λ-calculus. As a matter of fact, it is possible to extend our definition of ob-
servable path to any interaction net system, in particular to sharing graphs [4]. In
these latter, observable paths can be seen to be related to persistent paths [13].
Then, one can adapt the definition of observable net so as to obtain that a λ-term
is in head normal form iff its corresponding net is immediately observable. This
adaptation, which we do not detail here, takes into account only the observ-
able paths starting from the free port representing the “root” of the term, and
iteratively using the “root” of each subterm.

The existence of a “root” (i.e., a distinguished free port in sharing graphs)
is what allows one to define the notion of principal head normal form, of which
no meaningful equivalent exists for nets. This is because nets, like proof-nets,
are “classical”, as opposed to λ-terms, which are “intuitionistic”. This is also
the reason why the symmetric combinators equivalent of Böhm trees will not be
trees (cf. Sect. 4).

Following the analogy with the λ-calculus, blind nets correspond to unsolv-
able terms. If we deem semi-sensible a congruence on nets including 'β and not
equating a blind and an observable net, then it is not hard to show that ' is
the greatest semi-sensible congruence, just like the corresponding theory H∗ in
the λ-calculus.

We also have that, if µ is a blind net with n free ports, then µ ' En, where
En is the net consisting of n cells of type ε. Thus, each equivalence class of
blind nets (for any interface) has a representative which is normal, in sharp
contrast with the λ-calculus. In this respect, one may consider ε cells as the
“reification” of unsolvability. Additionally, it can be shown that 'βη is a semi-
sensible congruence, so that 'βη ⊆'. Therefore, by Theorem 2, 'βη and '
coincide on total nets; in particular, two normal nets without vicious circles
are observationally equivalent iff they are βη-equivalent.3 These results are all
consequences of Theorem 3 (Sect. 5), but can also be proved independently.

We conclude by stating an important Context Lemma, saying that tests
suffice to discriminate between nets (the proof is technical, and is omitted here):

Lemma 3 (Context). µ ' ν iff, for every test θ, θ[µ]⇓ iff θ[ν]⇓.
3 See footnote 2 for the definition of vicious circle and total net.
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4 Edifices

We shall now introduce the main mathematical objects of our paper, namely ed-
ifices. These will be used to develop a denotational semantics for nets, borrowing
ideas from the path semantics of linear logic, i.e., Girard’s Geometry of Inter-
action as formulated by Danos and Regnier [13]. Although edifices and Böhm
trees are technically quite different, there are strong analogies between the two.
Also, the topology used to define edifices is the same used by Kennaway et al.
to define the infinitary λ-calculus [16].

In what follows, C = {p,q}N is the set of infinite binary words, ranged over
by x, y, equipped with the Cantor topology. We remind that C is metrizable,
with the distance defined for example by dC(x, y) = 2−k, where k is the length
of the longest common prefix of x, y. We denote by B◦x,r the open ball of center x
and radius r. The elements of C×C, which is also a Cantor space, will be denoted
by x⊗ y, and ranged over by u, v, w. Below, the set N of non-negative integers,
ranged over by i, j, will be considered equipped with the discrete topology.

Definition 9 (Pillar). Given I ⊆ N, set PI = C × C × I, equipped with the
product topology. A pillar is an element of P = PN. Pillars are denoted by u@ i,
and are ranged over by ξ, υ. The pillar u@ i is said to be based at i.

Observe that P is also metrizable; if ξ = x⊗ y@ i and υ = x′ ⊗ y′@ i′, we shall
consider the distance d(ξ, υ) = max{dC(x, y), dC(x′, y′), ddisc(i, i′)}, where ddisc

is the discrete metric, defined as ddisc(i, j) = 0 if i = j, and ddisc(i, j) = 2 if
i 6= j. Therefore, to be “close”, two pillars must be based at the same integer.

Definition 10 (Arch). Given I ⊆ N, pose −→AI = PI × PI , equipped with the
product topology, and set (ξ, υ) ∼ (ξ′, υ′) iff ξ′ = υ and υ′ = ξ, or ξ′ = ξ and
υ′ = υ. We then define AI = −→AI/ ∼, equipped with the quotient topology. An
arch is an element of A = AN. Arches are denoted by ξ _ υ (which is the same
as υ _ ξ), and ranged over by a; sets of arches are ranged over by E. An arch
is said to be based at the unordered pair where its two pillars are based.

The following helps understanding the topology given to A:

Proposition 2. The space A is metrizable; if a = ξ _ υ and a′ = ξ′ _ υ′,
the function D(a, a′) = min{max{d(ξ, ξ′), d(υ, υ′)},max{d(ξ, υ′), d(υ, ξ′)}} is a
distance inducing its topology.

In other words, to compare two arches, we overlap them in both possible ways,
and we take the way that “fits best”. The distance D is in fact the standard
quotient metric; in this case, it collapses to this simple form.

The space A is not compact. In fact, we can give a characterization of its
compact subsets:

Proposition 3. E is compact iff it is a closed subset of AI for some finite I.

Proof. If E is compact, then it must be closed; suppose however that E 6⊆ AI for
any finite I. Then, let ai,j be a sequence of arches spanning all of the i, j where
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the arches of E are based, and set Ui,j = E ∩ B◦ai,j ,2. These are all open sets in
the relative topology, and since, for all i, j, D(ai,j , a) < 2 iff a is based at i, j,
they form an open cover of E. Now observe that, by the same remark on the
distance, if we remove any Um,n we loose all arches of E based at m,n. But we
have supposed the sequence ai,j to be infinite, so Ui,j is an infinite open cover
of E admitting no finite subcover, in contradiction with the compactness of E.

For the converse, I being finite, it is not hard to show that PI is homeomor-
phic to C. Therefore, PI is a Cantor space, hence compact. So AI is compact,
because it is the quotient of a product of compact spaces. But a closed subset
of a compact space is compact, hence the result. ut
It can be shown that each AI is also perfect and totally disconnected, which
means that actually these are all Cantor spaces whenever I is finite. What really
matters to us though is compactness, which implies completeness (with respect
to the metric D of Proposition 2): when I is finite, there is identity between
closed, compact, and complete subsets of AI .

Definition 11 (Edifice). An edifice is a compact set of arches.

5 Nets as Edifices

The basic idea to assign an edifice to a net is that arches model observable
paths.4 These latter in fact can be seen as unordered pairs of addresses in trees;
now, in a pillar x ⊗ y@ i, any pair of finite prefixes of x, y may be seen as an
address, and the base i identifies the tree (a net may have several free ports,
and each may be the root of a tree). The need for infinite words arises from η-
expansion (the αα equation at left in Fig. 3), which can be applied indefinitely,
as in the pure λ-calculus.

In the following, we let a, b range over the set {p,q}∗ of finite binary words,
and we denote by 1 the empty word. Pairs of finite words are denoted by a⊗ b,
and ranged over by s, t. The concatenation of two finite words a, b or of a finite
word a and an infinite word x are denoted by simple juxtaposition, i.e., as ab
and ax respectively. The concatenation of two pairs of finite words a⊗ b, a′ ⊗ b′
or of a pair of finite words a ⊗ b and a pair of infinite words x ⊗ y are defined
resp. as aa′ ⊗ bb′ and ax ⊗ by, and are also denoted by juxtaposition. If u is a
pair of infinite words, when we say that s is a prefix of u we mean that u = su′

for some u′, and we always implicitly assume that s = a ⊗ b with a, b of equal
length, which is also said to be the length of s.

Definition 12 (Address of a leaf). Let τ be a tree, and l a leaf of τ . The
address of l in τ , denoted by addrτ (l), is a pair of finite binary words defined by
induction on τ :5

– τ = •: addrτ (l) = 1⊗ 1;
4 Graphically (Fig. 4), observable paths look like arches, hence the terminology.
5 For the acquainted reader, addrτ (l) is nothing but the GoI weight of the path going

down from l to the root of τ [7]. This justifies our notations for binary words.
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– τ = δ(τ1, τ2): addrτ (l) = (p ⊗ 1)addrτ1(l) if l is a leaf of τ1, addrτ (l) =
(q⊗ 1)addrτ2(l) if l is a leaf of τ2;

– τ = ζ(τ1, τ2): addrτ (l) = (1 ⊗ p)addrτ1(l) if l is a leaf of τ1, addrτ (l) =
(1⊗ q)addrτ2(l) if l is a leaf of τ2.

Definition 13 (Edifice of an observable path). Let µ be a net, and let φ
be an observable path of µ connecting the free ports i and j. By definition, φ
is completely described by the free ports i, j and the leaves li, lj of the two trees
τi, τj rooted at i, j which are connected in φ (cf. Fig. 4). Therefore, if we put
s = addrτi(li) and t = addrτj (lj), we define

φ• = {sw@ i _ tw@ j ; ∀w ∈ C × C}.
It is not hard to check that the set defined above is indeed an edifice:

Proposition 4. If µ is a net with n free ports and φ an observable path of µ,
φ• is a closed subset of A{1,...,n}.

Definition 14 (Edifice of a net). Let µ be a net. The pre-edifice of µ is the
set

E0(µ) =
⋃

φ∈op∗(µ)

φ•.

The edifice of µ is the closure of its pre-edifice: E(µ) = E0(µ).

The soundness of the above definition can be checked as follows: by Proposition 4,
all of the φ• are subsets of AI for some finite I; arches based outside I are “too
far” to be adherent to E0(µ), therefore its closure is still in AI . By Proposition 3,
this is enough to ensure the compactness of E(µ).

Observe that if µ is normalizable, then op∗(µ) is finite, hence by Proposition 4
E0(µ) is already closed. It is however possible to find non-normalizable nets
whose pre-edifice is not an edifice (e.g. the net of Fig. 5 discussed below).

The closure is in fact essential for yielding a fully-abstract denotational se-
mantics of nets. It is crucial in the proof of the following result:

Lemma 4. Let µ, ν be two nets with n free ports. Then, E(µ) 6= E(ν) implies
that there exist i, j ∈ {1, . . . , n}, two pairs of finite words s, t, and two observable
paths φ ∈ op∗(µ) and ψ ∈ op∗(ν) such that, if we put aw = sw@ i _ tw@ j,
either for all w, we have aw ∈ φ• \ E(ν), or for all w, we have aw ∈ ψ• \ E(µ).

Proof. Suppose, without loss of generality, that there exists a ∈ E(µ) \ E(ν),
based at i, j ∈ {1, . . . , n}. Remember that E(µ) and E(ν) are defined as the
closures of resp. E0(µ) and E0(ν), and that by Proposition 3 they are both
compact, hence complete. Then, if a ∈ E(µ)\E0(µ), a must be a “missing limit”
of a Cauchy sequence an ∈ E0(µ). Since a subsequence of a Cauchy sequence
is still a Cauchy sequence, there must exists an integer m such that, for all
n ≥ m, an ∈ E0(µ) \ E(ν), otherwise a would belong to E(ν) because of its
completeness. Therefore, modulo replacing it by one of these an, we can always
assume that a ∈ E0(µ). If it is so, then by definition there exists an observable
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path φ ∈ op∗(µ) such that a ∈ φ•, which means that a = sw0 @ i _ tw0 @ j and,
for every w ∈ C × C, sw@ i _ tw@ j ∈ φ•, where s and t are the addresses of
two leaves in the reduct(s) of µ in which φ appears. Now let s′1, . . . , s

′
n, . . . be a

sequence of prefixes of increasing length of w0, and set, for all n, sn = ss′n and
tn = ts′n. Suppose that, for all n, there exist two pairs of infinite words un, vn such
that an = snun @ i _ tnvn @ j ∈ E(ν); it is not hard to verify that the arches
an would form a Cauchy sequence of limit a, and thus, by the completeness of
E(ν), we would obtain a ∈ E(ν), a contradiction. Therefore, there must exist an
integer n such that, for all w, snw@ i _ tnw@ j ∈ φ• \ E(ν). ut
Lemma 5. µ 'η ν and µ →∗ µ′ implies that there exist µ′′ 'η ν′′ such that
µ′ →∗ µ′′ and ν →∗ ν′′.

Proof. Omitted (see [15]). ut
Definition 15 (η-equivalent observable paths). Let τ1, τ2, τ ′1, τ

′
2 be trees,

with τ1 = τ2 iff τ ′1 = τ ′2, and let φ, φ′ be two observable paths, such that in φ
there is a connection between two leaves l1, l2 of τ1 and τ2, and in φ′ there is a
connection between two leaves l′1, l

′
2 of τ ′1 and τ ′2. We say that φ is η-equivalent

to φ′ iff

'η

. . . . . . . . . . . .
ε

τ1 τ2

ε ε ε
. . . . . . . . . . . .

ε

τ ′1 τ ′2

ε ε εl1 l2 l′1 l′2

Lemma 6. Let µ 'η ν, and let φ ∈ op∗(µ). Then, there exists ψ ∈ op∗(ν) such
that φ and ψ are η-equivalent.

Proof (sketch). By definition, φ ∈ op∗(µ) means that φ is an observable path of
a reduct µ′ of µ. By Lemma 5, µ′ →∗ µ′′ and ν →∗ ν′′ such that µ′′ 'η ν

′′. But
observable paths are preserved under reduction, so φ is also present in µ′′. Now
if, in rewriting µ′′ to ν′′, no active pair is introduced to alter the observability of
φ, then clearly ν′′ contains an observable path η-equivalent to φ. Otherwise, it
is easy to check that an αα equation must have been used. In this case, one can
prove that the active pairs introduced can be reduced to obtain ν′′ →∗ o such
that o contains an observable path ψ η-equivalent to φ. But the reducts of ν′′

are also reducts of ν, so ψ ∈ op∗(ν). ut
Lemma 7. If µ 'η ν, then E0(µ) = E0(ν) (hence E(µ) = E(ν)).

Proof (sketch). By Lemma 6, it is enough to check that, whenever φ and ψ are
η-equivalent observable paths, φ• = ψ•. The η-equations concerning ε cells need
not be considered; in the case of the δζ equation, the fact that in pillars δ and
ζ cells are treated by separate words makes their relative order irrelevant, and
thus accounts for the their commutation; the αα equations, which in this case
may only be applied to the wire connecting the two leaves of an observable path,
are modelled by the fact that all possible “uniform completions” of the addresses
of the leaves are taken in the edifice of an observable path. ut

11



We now prove that E(·) induces a congruence with respect to tests:

Lemma 8. 1. Let τ be a tree, and let

µ0

τ

. . .

. . .

ν0

τ

. . .

. . .

=µ =ν

Then, E(µ) = E(ν) iff E(µ0) = E(ν0).
2. Let µ, ν be two nets with the same interface such that E(µ) = E(ν), and let

τ be a tree without ε cells. Then, if we pose

τ
. . . . . .

µ

=µ′

τ
. . . . . .

ν

=ν′

we have E(µ′) = E(ν′).
3. Let µ, ν be two nets with the same interface such that E(µ) = E(ν), and let

. . .

µ

=µ′

. . .

ν

=ν′

ε ε

Then, E(µ′) = E(ν′).

Proof. 1. Easy.
2. Simply consider the nets µ′′, ν′′ obtained from µ′, ν′ by adding a copy of τ

to the one already existing in the two nets, so that each leaf l in one copy is
connected to the same leaf l in the other copy. By Lemma 2, we have that
µ′′ 'η µ and ν′′ 'η ν; by point 1, we have E(µ′) = E(ν′) iff E(µ′′) = E(ν′′);
but by Lemma 7, and by hypothesis, E(µ′′) = E(µ) = E(ν) = E(ν′′).

3. Call k the free port of µ to which the ε cell is connected in µ′. Observe that
such ε cell can either disappear, or be duplicated, and that, in any case, ε
cells cannot be used by observable paths. Hence, φ ∈ op∗(µ′) iff φ ∈ op∗(µ)
and φ connects two free ports of µ both different than k. Therefore, E(µ′) =
{u@ i _ u@ j ∈ E(µ) ; j, k 6= i}. The same holds for ν, so from E(µ) = E(ν)
it easily follows that E(µ′) = E(ν′). ut

Corollary 2. Let µ, ν be two nets with the same interface, and let θ be a test.
Then, E(µ) = E(ν) implies E(θ[µ]) = E(θ[ν]).

To prove full abstraction, we first need the following separation result:

Lemma 9. Let W be a net with two free ports connected by a wire, and let µ be
a net with two free ports, such that φ ∈ op∗(µ) implies that φ does not connect
the port 1 to the port 2. Then, there exists a test θ such that θ[W ]⇓ and θ[µ]⇑.
Proof. If µ⇑, the identity test suffices, so suppose µ⇓. By hypothesis, all observ-
able paths appearing in the reducts of µ connect one of the free ports to itself.
Therefore, there exists µ′ such that µ→∗ µ′, and

12



=µ′
. . .

µ′′

τ

In the above picture, we have supposed that the observable path connects the free
port 1 to itself, and that the leaves connected in the path are the two “leftmost”
leaves of τ . These are just graphically convenient assumptions, causing no loss
of generality: the observable path may as well connect port 2 to itself, and the
leaves connected may be any two leaves of τ . Now, if we define

=θ

ε ε

. . .

ε ε

. . .

ε

τ τ

ε

we have that, thanks to Lemma 1, θ[W ] →∗ W , while θ[µ] reduces to a net whose
free port 1 is connected to an ε cell. If this net is blind, we are done; otherwise,
there is a reduct of θ[µ] containing an observable path between the free port 2
and itself. This observable path can be “eliminated” with the same technique,
while the ε cell on port 1 will “eat” any tree fed to it, so in the end we obtain a
test θ′ such that θ′[W ] →∗ W↓, while θ′[µ]⇑, as desired. ut

We are now ready to prove our main result:

Theorem 3 (Full abstraction). µ ' ν iff E(µ) = E(ν).

Proof. Consider first the backward implication (also known as the adequacy
property). We start by observing that, for any net o, o ⇓ iff op∗(o) 6= ∅ iff
E(o) 6= ∅. Now, suppose E(µ) = E(ν), and let θ be a test. By Corollary 2, we
have E(θ[µ]) = E(θ[ν]), so following the above remark θ[µ]⇓ iff E(θ[µ]) 6= ∅ iff
E(θ[ν]) 6= ∅ iff θ[ν]⇓. Then µ ' ν follows from the Context Lemma 3.

Now we turn to the actual full abstraction property. For this, we consider the
contrapositive statement, and assume E(µ) 6= E(ν). Let I be the interface of µ
and ν. By Lemma 4, we know that there exist i, j ∈ I, φ ∈ op∗(µ), and two leaves
in a reduct of µ of addresses s, t such that, for all w, sw@ i _ tw@ j ∈ φ• \E(ν)
(it could actually be that these arches belong to ψ• \ E(µ), where ψ ∈ op∗(ν),
but obviously our assumption causes no loss of generality). We shall suppose
i 6= j; the reader is invited to check that the argument can be adapted to the
case i = j. By Definition 13, and by the fact that φ ∈ op∗(µ), we have

. . . . . . . . . . . .
s t

τi τj

i j

→∗µ

. . .

µ′

where we have explicitly drawn the connection between the two leaves of resp.
addresses s and t. On the other hand, by Corollary 1, we have
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ι

δ δ

ι →∗

Fig. 5. A non-normalizable net observationally equivalent to a wire.

. . . . . . . . . . . .
k l

τi τj

i j

'ην

. . .

ν′

where we have called k and l the two free ports of ν′ corresponding resp. to
the addresses t and s in τi and τj . Observe that, by Lemma 5, the edifice of
the net on the right is still E(ν). Now if, in any reduct of ν′, there appeared an
observable path between k and l, then we would contradict the fact that, for all
w, sw@ i _ tw@ j 6∈ E(ν). Therefore, no observable path ever appears between
k and l in any reduct of ν′.

Consider then the test
i j

. . .

. . . . . . . . . . . .

ε ε ε ε ε ε

s t

=θ τi τj

where we have left free only the leaves corresponding to the addresses s and t of
τi and τj . Now, by Lemma 1, θ[µ] →∗ W , where W is a wire plus a net with no
interface; on the other hand, we have

ε ε ε ε ε ε

lk

ν′

'βη
. . . . . . . . . . . . . . .θ[ν]

But ν′ never develops observable paths between k and l, so Lemma 9 applies,
and we obtain µ 6' ν. ut

As an immediate application of Theorem 3, we give an example of a net
which is not normalizable, and yet is observationally equivalent to a wire; this
is analogous to Wadsworth’s “infinitely η-expanding” term J = RR, where
R = λxzy.z(xxy), which is well known to be hnf-equivalent to λz.z.

Consider a net ι containing no observable paths, and reducing as in Fig. 5.
Such a net exists, although its description is not as concise as that of J .
We see that φ ∈ op∗(ι) iff φ• = {qnpx⊗ y@ 1 _ qnpx⊗ y@ 2 ; ∀x, y ∈ C}
for some non-negative integer n. On the other hand, if W denotes a wire,
E(W ) = E0(W ) = {u@ 1 _ u@ 2 ; ∀u ∈ C × C}. Now, if q∞ denotes an infinite
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sequence of q’s, all arches of the form ay = q∞ ⊗ y@1 _ q∞ ⊗ y@ 2 are missing
from E0(ι), hence E0(ι)  E0(W ). But these arches are all adherent to E0(ι): in
fact, it is very easy to construct a Cauchy sequence in E0(ι) of limit ay, for any
y. Therefore, E(ι) = E(W ), and ι 'W .

Notice that the reducts of ι are “almost” η-equivalent to a wire: there is just
one missing connection. We can say that this connection forms “in the limit”,
when the reduction is carried on forever. When one interprets nets as edifices,
this informal remark becomes a precise topological fact, i.e., we have a true limit.

Compactness is crucial for obtaining full abstraction. Notice in fact that
E0(·) already gives an adequate semantics of nets, which however fails to be
fully abstract, as the above example itself shows.
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4. Gonthier, G., Abadi, M., Lévy, J.J.: The geometry of optimal lambda reduction.
In: Conference Record of POPL 92, ACM Press (1992) 15–26

5. Mackie, I.: Efficient lambda evaluation with interaction nets. In: Proceedings of
RTA ’04. LNCS, Springer (2004) 155–169

6. Mackie, I.: An interaction net implementation of additive and multiplicative struc-
tures. Journal of Logic and Computation 15(2) (2005) 219–237

7. Lafont, Y.: Interaction combinators. Information and Computation 137(1) (1997)
69–101

8. Fernández, M., Mackie, I.: Operational equivalence for interaction nets. Theoretical
Computer Science 297(1–3) (2003) 157–181

9. Mazza, D.: A denotational semantics for the symmetric interaction combinators.
To appear in Mathematical Structures in Computer Science 17(3) (2007)

10. Wadsworth, C.: The relation between computational and denotational properties
for Scott’s D∞ models. Siam J. Comput. 5(3) (1976) 488–521

11. Hyland, M.: A syntactic characterization of the equality in some models of the
lambda calculus. J. London Math. Society 2(12) (1976) 361–370

12. Nakajima, R.: Infinite normal forms for the λ-calculus. In Böhm, C., ed.: Lambda-
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