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What’s your favorite monad ?

A monad over a type A:

▶ It encapsulate a certain kind of values: uA : A→M(A).

▶ It allows computation on these values: µA :M(M(A)) →M(A)

Examples:

▶ Partiality: M : A 7→ A+⊥, uA : a 7→ a

▶ Non-determinism: M : A 7→ P(A), uA : a 7→ {a}
▶ Effect: M : A 7→ (S → (A× S)), uA : a 7→ (s 7→ (a, s))
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The continuation monad

uA : A ⇒ ((A ⇒ B) ⇒ B)

a 7→ λk.ka
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The continuation monad, twisted

Linear arrow⊸: using exactly once its argument

uA : A ⇒ ((A ⇒ B)⊸B)

a 7→ λk.ka
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The continuation monad

Linear arrow⊸: using exactly once its argument

uA : A⊸((A ⇒ B)⊸ B)

a 7→ λk.D0(k)a

Making k, a non-linear map, linear: differentiation
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What’s differentiation ?

The differential of a function at a point is its best linear
approximation at that point.
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From linearity to quantitative models
Functions Programs

Power series Resources consumption or Probabilistic sums
f =

∑
n fn p(x) =

∑
pn

fn is n-linear pn consumes exactly n-times its resources.

f is Taylor Programs can be approximated

f =
∑

n
1
n!D

(n)
0 f (M)S =

∑
n

1
n! < M > S⊗n

▶ Experimentally, quantitative semantics is what gets you higher-order.

▶ It leads to new proof techniques on λ-calculus.

▶ A strong link with intersection types.

Simona Ronchi della Rocca’s talk tomorrow!

Even when trying to avoid it, we stumble back on quantitative constructions [Dabrowski,

K. 2018]

Core intuition: Differentials are enough to compute
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The quantitative monad

Theorem [K. Lemay 2023]

The following:

▶ M : E → C∞(E,K)′

▶ u : v 7→ (f 7→ D0(f)(v))

▶ µ : δϕ 7→
∑

1
n!ϕ

∗n

is a monad in quantitative models of λ-
calculus:

!u;µ = id ⇔ f =
∑
n

1

n!
D

(n)
0 f

The monad laws:

uM ;µ = id

M(u);µ = id

µM ;µ =M(µ);µ

From functional analysis to functional programming, and back
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Surprise test

Is it a function ?

f
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Surprise test

Is it a function ?

f

Yes, that’s a linear function f ∈ L (R,R)
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Surprise test

Is it a function ?

f

Yes, that’s a smooth function f ∈ C∞(R,R)
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Surprise test
Is it a function ?

δx

No, that’s:

□ A distribution

□ A generalized function

■ That’s the argument to a program.
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1 Introduction
Quantitative Semantics

2 Different type of functions
Smooth functions
Linear functions
Distribution theory

3 Analytic and Differential Linear Logic

4 Graded Monads in smooth settings
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Programs are interpreted as functions...
Programs Logic Semantics

fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.
Types Formulas Objects

Execution Cut-elimination Equality

.. but special ones.

Programs act on programs f : C(A,B) → C

▶ (AxO) Domains A and spaces of functions C(A,B) are of the same kind.
▶ (AxF) Programs and function compute on several arguments:

f : A×B → C ≡ f : A→ C(B,C)

Discrete

•

••

•
•

Continuous
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Types Formulas Objects
Execution Cut-elimination Equality

.. but special ones.

Programs act on programs f : C(A,B) → C

▶ (AxO) Domains A and spaces of functions C(A,B) are of the same kind.

▶ (AxF) Programs and function compute on several arguments:

f : A×B → C ≡ f : A→ C(B,C)

▶ Lattices

▶ Graphs

▶ Sequences

▶ Games

▶ Vector spaces

▶ Normed spaces

▶ Topological vector
spaces
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Interpreting programs by smooth functions

p : A⇒ B f ∈ C∞(A,B)

Probabilistic Programming Differentiable Programming

p
α−→ x D(p1; p2) = D(p1);D(p2)

▶ Correctness Properties JD(p)K = D(JpK)
▶ Completeness Properties ∀f, ∃p, JpK = f

▶ New programming paradigms p = d(q)

▶ New mathematical structures C∞(E,F )

Convenient vector spaces
a first interpretation of Higher-Order Smooth Functions

(AxF): C∞(A×B,C) ≃ C∞(A, C∞(B,C))

Frölicher, Kriegl, Michor (1997) Blute, Ehrhard, Tasson (2012)
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Perspective

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear

Logic [ER06]

Probabilistic and resources

λ-calculi []
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Interpreting programs by Linear Functions

JpK ∈ L(A,B)

(Ax0): If B is a complete or metrizable space, then so is L(A,B).

Trickier for A though

(AxF):
L(A⊗B,C) ≃ L(A,L(B,C))

▶ Always true algebraically.

▶ Topologically, it depends on the set B ⊂ P(A) of bounded sets on which
uniform convergence must be enforced.

▶ MANY topological tensor products: ⊗β , ⊗σ, ⊗µ, ⊗ε.

▶ MANY duals: E′
B := LB(E,R)

We are missing an important criteria
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Not Not ... Who’s there ?

((A ⇒ ⊥) ⇒ ⊥) ≃ A

C∞(C∞(A,K),K) ≃ A
No one: not a chance for A smooth enough

((A⊸ ⊥)⊸ ⊥) ≃ A

L (L (A,K),K) ≃ A
A lot of people!: Reflexive topological vector spaces.

We have plenty of examples!

▶ Finite dimensional vector spaces

▶ Hilbert spaces

▶ Spaces on which an orthogonality relation can be defined . . .

In general, reflexive spaces enjoy poor stability properties.
× higher-order, × tensor product.
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Interpreting types by reflexive topological vector spaces

Coherent Banach spaces, Girard 2004,

a norm is too restrictive

Nuclear Fréchet spaces

are reflexive and complete

C∞(Rn,R) is not finite dimensional

Let us take the other way around, through Nuclear, Complete+Metrizable
(=Fréchet) spaces.
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Polarization as a solution to reflexivity

Semantics for polarized MLL : Melliès Chiralities

(Pop,⊗, 1) (N ,`,⊥)⊥

( )⊥L

( )⊥R

P N⊥

ˆ

´

N⊥R⊥L ≃ N

Replacing (AxF) with:

N (↑ p⊗ n⊥L ,m) ≃ N (↑ p, n`m)

Interpreting formulas by two categories of topological vector spaces, with a
contravariant equivalence interpreting the involutive linear negation

15 / 52



Polarization as a solution to reflexivity

Fréchet spaces
ie metrizable and complete

DF-spaces

Nuclear spaces

⊗π = ⊗ϵ

Rn E′E

⊗π`
C∞(Rn,R) C∞(Rn,R)′

( )′

( )′

Notation : E′ := L (E,R)

Grothendieck, Produits tensoriels topologiques et espaces nucléaires, 1958

Melliès, A micrological study of negation, APAL 2017

K. A Logical Account for Linear Partial Differential Equations, LICS 2018 .
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Linear implications and reflexivity

Old and dusty mathematicians

Property: E ≃ (E′
β)

′
β ⇔ E barrelled and E weakly quasi complete.

Barrelled spaces (Bourbaki): there for Banach-Steinhauss theorem.

Theorem
▶ Barrelled and weak quasi-complete form a model of polarized calculus

(Melliès’ Chiralities).

▶ Banach-Steinhaus is exactly (AxF)!

N (↑ p⊗ n⊥L ,m) ≃ N (↑ p, n`m)
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Mixing Linear and Non-Linear Proofs:
here comes the fun!

18 / 52



Not not ... Who’s there ?

(A ⇒ ⊥)⊸ ⊥
L (C∞(A,R),R) = C∞(A,R)′

Semantics Programs

Distributions Context
ϕ ∈ C∞(A,R)′ C : (p : A→ ⊥) 7→ (value : ⊥)

e.g.: δx : f 7→ f(x) [ ](x) : p→ p[x]

Reflexivity :
f(x) = δx(f) p(x) =< [ ](x)|p >

Differentiation
D0(f)(x) =< D0( )(x)|f >

Laurent Schwartz, Théorie des
distributions, 1950
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Distributions: Linear Contexts for Non-Linear Programs

C∞(E,F )′

▶ (AxO) for distributions:
▶ C∞(Rn,R) is always Nuclear Fréchet and C∞(Rn,R)′ is Nuclear DF.
▶ If F is Fréchet, then C∞(Rn, F ) is Fréchet
▶ Higher order: a bit of work.

▶ (AxF) for distributions:

▶ For linear maps: L β(Ê,L β(F ,G)) ≃ L β(Ê ⊗β F ,G) ✓
▶ For smooth maps: C∞(E, C∞(F ,G)) ≃ C∞(E × F ,G) ?
▶ From one to another:

Schwartz’ Kernel Theorem ✓

C∞(E,K)′⊗̂C∞(F ,K)′ ≃ C∞(E × F ,K)′
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A monoidal operation on distributions

(ϕ ∈ C∞(E,R)′ ⊗ ψ ∈ C∞(E,R)′) 7→?

Convolution, the monoidal operation on distributions:

ϕ ∗ ψ := f 7→ ϕ(x 7→ ψ(y 7→ f(x+ y)))

Different from ϕ+ ψ : f 7→ ϕ(f) + ψ(g)
Examples:

δx ∗ δy = δx+y

δx ∗D0( )(v) = Dx( )(v)

D0( )(v) ∗D0( )(v) = D
(2)
0 ( )(v)

There is no ”multiplication” extending from functions to distributions, this is
our multiplication !
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Quantitative semantics, another look

∀x,∀v, f(x) =
∑

n
1
n!D

(n)
0 f(x)
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Quantitative semantics, another look

∀x,∀v, δx =
∑

n
1
n!D0( )(x) ∗ · · · ∗D0( )(x)

ex =
∑

n
1
n!x

n id = e∗ ◦ (D0( ))

A Quantitative Monad

▶ A functor E 7→ C∞(E,R)′ acting on a subcategory L of topological
vector spaces and linear maps.

▶ Differentiation as a unit: u : x 7→ D0( )(x)

▶ The convolutional exponential as a multiplication: µ : δϕ 7→
∑

n
1
n!ϕ

∗n

Monad ⇝ ∀f ∈ L!(A,B) ≃ C∞(A,B), f is Taylor.

Examples: Relational model, Weighted Relational Model, Species, Nuclear Fréchet spaces
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It was never about the quantitative semantics of
λ-calculus.

Differential Linear Logic: from resources to distributions,
from discrete to continuous settings
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Exponential rules of (Differential) Linear Logic

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Resources calculi LINEAR LOGIC Topological vector spaces

Exponential connectives:

J!AK := C∞(JAK,K)′

J?BK := C∞(JBK′,K)

Linear Logic, Jean-Yves Girard 1987

Differential Interaction Nets, Thomas Erhard and Laurent Regnier, 2006
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Linear Logic

A decomposition of the implication

A⇒ B ≃ !A⊸ B

A linear proof is in particular non-linear.

A ⊢ B is linear. !A ⊢ B is non-linear.

A ⊢ Γ
dereliction

!A ⊢ Γ

Slogan: ! in the hypotheses, speaking of resources.
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Differential Linear Logic: co-structural rules

A ⊢ B
linear proof

Linear Logic !A ⊢ B
non-linear proof

ℓ : A ⊢ B d, dereliction
ℓ : !A ⊢ B

f : !A ⊢ B
d, co-dereliction

D0(f) : A ⊢ B
linear ↪→ non-linear. non-linear ↪→ linear
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Dereliction and co-dereliction:

A ⊢ B
linear proof

DiLL !A ⊢ B
non-linear proof

ℓ : A ⊢ B
d
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From resources to functions and distributions

(Co)-weakening

c :⊢ Γ w
cstc : !A ⊢ Γ

⊢ Γ
w̄⊢ Γ, δ0 : !A

The constant function is non-linear One can evaluate a function at 0

(Co)-contraction

x : !A, y : !A ⊢ g(x, y) : Γ
c

x : !A ⊢ g(x, x) : Γ
⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A

c̄⊢ Γ,∆, ψ ∗ ϕ : !A

The multiplication of scalar functions Convolution of distributions
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Symmetric cut-eliminations procedures

!A⊗ !A !A

!A !A⊗ !A

cA

1!A ⊗ wA

cA

1!A ⊗ wA

!A⊗ !A !A

!A !A⊗ !A

cA

1!A ⊗ wA

cA

1!A ⊗ wA

The function cst1 is neutral for
scalar multiplication

The dirac at 0 is neutral for the con-
volution

!A !A⊗ !A

A

cA

dA wA ⊗ dA + dA ⊗ wA

!A !A⊗ !A

A

cA

dA wA ⊗ dA + dA ⊗ wA

ϕ∗ψ(ℓ) = ϕ(ℓ)ψ(cst1)+ψ(ℓ)ϕ(cst1) D0(f ·g) = D0(f)·g(0)+D0(g)·f(0)
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Symmetric cut-elimination procedures

d;w = 0 and w; d = 0
D0(cst1) = 0 and ℓ(0) = 0

!A 1

!A⊗ !A

cA

wA

wA ⊗ wA

!A 1

!A⊗ !A

cA

wA

wA ⊗ wA

(ϕ ∗ ψ)(cst1) = ϕ(cst1) · ψ(cst1) (f · g)(0) = f(0) · g(0)

⊗ = · in R
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Finitary differential Linear Logic

The first version by Erhrard and Regnier in 2006:

⊢ Γ w
⊢ Γ, cst1 : ?A

⊢ Γ, f : ?A, g : ?A
c

⊢ Γ, f.g : ?A

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?A

⊢ Γ
w̄⊢ Γ, δ0 : !A

⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A
c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0( )(x) : !A

It’s a maths world.
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Higher-Order
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Higher-Order via promotion

Exponential rules of Linear Logic (Resources)

⊢ Γ w
⊢ Γ, cst1 : ?A

⊢ Γ, f : ?A, g : ?A
c

⊢ Γ, f.g : ?A

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?A

!Γ ⊢ x : A p
!Γ ⊢ δx : !A

Exponential rules added by Differential Linear Logic (Distributions)

⊢ Γ
w̄⊢ Γ, δ0 : !A

⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A
c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0( )(x) : !A

The promotion rule p : !A→ !!A δx 7→ δδx :

▶ Makes (!, ,.p) a co-monad : p; d = id.

▶ Is a co-monoidal operation on !A : p; c = c; p⊗ p

▶ The cut-elimination between p and d express the chain rule:

D0(g ◦ f) = Df(0)g ◦D0f d; p = w ⊗ d; p⊗ d; c
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Codigging

Exponential rules of Linear Logic (Resources or functions)

⊢ Γ w
⊢ Γ, cst1 : ?A

⊢ Γ, f : ?A, g : ?A
c

⊢ Γ, f.g : ?A

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?A

!Γ ⊢ x : A p
!Γ ⊢ δx : !A

Exponential rules added by Differential Linear Logic (Distributions)

⊢ Γ
w̄⊢ Γ, δ0 : !A

⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A
c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0( )(x) : !A

?Γ ⊢ x : A p̄
?Γ ⊢ : ?A

Digging p : !A→ !!A:

▶ p; d = id.

▶ p; c = c; p⊗ p

▶ d; p = w ⊗ d; p⊗ d; c

Co-digging ? p : !!A→ !A:

▶ d; p = id

▶ c; p = p⊗ p; c

▶ p; d = c; p⊗ d;w ⊗ d
¨
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▶ p; d = id.

▶ p; c = c; p⊗ p

▶ d; p = w ⊗ d; p⊗ d; c

Co-digging ? p : !!A→ !A: g : !A⇒ !A

▶ d; p = id D0(g) = id.

▶ c; p = p⊗ p; c g(x+ y) = g(x) ∗ g(y)
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The missing rule of Differential Linear Logic

Digging p : !A→ !!A:

▶ p; d = id.

▶ p; c = c; p⊗ p

▶ d; p = w ⊗ d; p⊗ d; c

Co-digging ? p : !!A→ !A: g : !A⇒ !A

▶ d; p = id D0(g) = id.

▶ c; p = p⊗ p; c g(x+ y) = g(x) ∗ g(y)
▶ p; d = c; p⊗ d;w ⊗ d ?

Implicit definition of the exponential:

g = exp∗ : ϕ 7→
∑

n
1
n!ϕ

∗ p : δϕ 7→
∑

n
1
n!ϕ

∗n

The co-chain rule:

p(δϕ)(ℓ) =
∑
n≥0

1

n!
ϕ∗n(ℓ) =

∑
n≥1

n

n!
ϕ(l)·ϕ∗(n−1)(cst1) = ϕ(ℓ)·p(δϕ)(cst1) = c; p⊗d;w⊗d

The monadic rules:

!d; p = id ∀v, p(δD0( )(v)) = δv ∀v,∀f,
∑
n

1

n!
D

(n)
0 f(v) = f(v)

35 / 52



The missing rule of Differential Linear Logic

Digging p : !A→ !!A:

▶ p; d = id.

▶ p; c = c; p⊗ p

▶ d; p = w ⊗ d; p⊗ d; c

Co-digging ? p : !!A→ !A: g : !A⇒ !A

▶ d; p = id D0(g) = id.

▶ c; p = p⊗ p; c g(x+ y) = g(x) ∗ g(y)
▶ p; d = c; p⊗ d;w ⊗ d ?

Implicit definition of the exponential:

g = exp∗ : ϕ 7→
∑

n
1
n!ϕ

∗ p : δϕ 7→
∑

n
1
n!ϕ

∗n

The co-chain rule:

p(δϕ)(ℓ) =
∑
n≥0

1

n!
ϕ∗n(ℓ) =

∑
n≥1

n

n!
ϕ(l)·ϕ∗(n−1)(cst1) = ϕ(ℓ)·p(δϕ)(cst1) = c; p⊗d;w⊗d

The monadic rules:

!d; p = id ∀v, p(δD0( )(v)) = δv ∀v,∀f,
∑
n

1

n!
D

(n)
0 f(v) = f(v)

35 / 52



The missing rule of Differential Linear Logic

Digging p : !A→ !!A:

▶ p; d = id.

▶ p; c = c; p⊗ p

▶ d; p = w ⊗ d; p⊗ d; c

Co-digging ? p : !!A→ !A: g : !A⇒ !A

▶ d; p = id D0(g) = id.

▶ c; p = p⊗ p; c g(x+ y) = g(x) ∗ g(y)
▶ p; d = c; p⊗ d;w ⊗ d ?

Implicit definition of the exponential:

g = exp∗ : ϕ 7→
∑

n
1
n!ϕ

∗ p : δϕ 7→
∑

n
1
n!ϕ

∗n

The co-chain rule:

p(δϕ)(ℓ) =
∑
n≥0

1

n!
ϕ∗n(ℓ) =

∑
n≥1

n

n!
ϕ(l)·ϕ∗(n−1)(cst1) = ϕ(ℓ)·p(δϕ)(cst1) = c; p⊗d;w⊗d

The monadic rules:

!d; p = id ∀v, p(δD0( )(v)) = δv ∀v,∀f,
∑
n

1

n!
D

(n)
0 f(v) = f(v)

35 / 52



A completely uniform logical and categorical structure

Exponential connectives:
J!AK := C∞(JAK,K)′ J?AK := C∞(JAK′,K)

⊢ Γ w
⊢ Γ, cst1 : ?A

⊢ Γ, f : ?A, g : ?A
c

⊢ Γ, f.g : ?A

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?A

!Γ ⊢ x : A p
!Γ ⊢ δx : !A

⊢ Γ
w̄⊢ Γ, δ0 : !A

⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A
c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0( )(x) : !A

?Γ ⊢ x : A p̄
?Γ ⊢ ex| : ?A

Linear

Logic

[Girard1987]

Differential Linear Logic

[Ehrhard&Regnier2006]
[Kerjean & Pacaud Lemay 2023]
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A reason for this symmetry

Exponential connectives:

J!AK := C∞(JAK,K)′ J?AK := C∞(JAK′,K)

Do you remember the Laplace transformation ?

A continuous version of a power series

L :

{
!E → ?E

ϕ 7→ (ℓE
′ 7→ ϕ(yE 7→ e<ℓ|y>))

L (w, c, d, p) = w, c, d, p
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Let’s make things concrete

▶ M : E →!E := J(JEK ⇒ ⊥)⊸ ⊥K = C∞(JEK,K)′

▶ u : v 7→ (f 7→ D0(f)(v))

▶ µ : δϕ 7→
∑

1
n!ϕ

∗n

The way I make things concrete
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Existential questions

Does p = e∗ even exists ?

Bad news: sums need to converge.

At least at every point:
(
∀f,∀ϕ,

∑
n

1
n!ϕ

∗n

(f)
)
∈ R

▶ In discrete models of computations (e.g:
relations over sets), sums are union, not
an issue.

▶ In continuous models of computations,
well...
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Convolutional exponential VS exponential maps

(AxC) Proofs/Programs/Functions must compose

p : δϕ 7→
∑ 1

n!
ϕ∗n

p(δδx)(x 7→ ex) =
∑ 1

n!
enx = ee

x

✓

p(δδx)(x 7→ ee
x

) =
∑ 1

n!
ee

nx ×

This example is due to T. Ehrhard

▶ p and p do not mix well.

▶ We need to quantify over the exponential growth of the functions p is
applied to.
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Grading Exponentials

A⊸ B !A⊸ B
Linear programs/proofs/functions Usual programs/proofs/functions
using exactly once their resource

!nA⊸ B

▶ n-linear functions.

▶ Programs/proofs using exactly n-times their resource.

▶ Quantitative semantics: !A =
∑

!nA.

Exponentials indexed by semi-rings S

∀s ∈ S, !sA⊸ B

Jean-Yves Girard, Andre Scedrov,
Philip J. Scott, 1992

Martin Hoffman, Ugo Dal Lago,2009

Applications in implicit complexity and differ-
ential privacy.
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From resources to differential equations

⊢ Γ w
⊢ Γ, cst1 : ?A

⊢ Γ, f : ?A, g : ?A
c

⊢ Γ, f.g : ?A

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?A

!Γ ⊢ x : A p
!Γ ⊢ δx : !A

w̄⊢ δ0 : !A
⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A

c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0( )(x) : !A

?Γ ⊢ x : A p̄
?Γ ⊢ ex| : ?A
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From resources to differential equations

Grading LL: a story of resources, again

⊢ Γ w
⊢ Γ, cst1 : ?0A

⊢ Γ, f : ?xA, g : ?yA
c

⊢ Γ, f.g : ?x+yA

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?1A

!Γy ⊢ x : A
p

!Γz×y ⊢ δx : !zA

w̄⊢ δ0 : !A
⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A

c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0( )(x) : !A

?Γ ⊢ x : A p̄
?Γ ⊢ ex| : ?A
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!Γ ⊢ δx : !A
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w̄⊢ δ0 : !?A
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Joining Quantitative, Graded
and Differential Linear Logic

(AxC) Proofs/Programs/Functions must compose

µ : δδx 7→
∑ 1

n!
δnx =

(
f 7→

∑ 1

n!
f(nx)

)
µ(δδx)(x 7→ ex) =

∑
1
n!e

nx = ee
xn ✓

µ(δδx)(x 7→ ee
x

) =
∑

1
n!e

enx ×

The quantitative monad does not apply to all functions, but only to those
whose convergence is exponentially bound, according to some Young function θ.

?θ,m(F ) := {f : F ′ → C,∀m,∃K,∀z, |f(z)| ≤ Keθ(m||z||)}.

p : !θ1 (!θ2(E)) → !(θ1∗eθ2∗)
∗(E)

Gannoun, Hachaichi, Ouerdiane, et Rezgui, Un théorème de dualité entre espaes
de fonctions holomorphes à croissance exponentielles, 1999
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Les fonctions parlent aux fonctions

!θ,m(F ) := {f : F → C,∀m,∃K,∀z, |f(z)| ≤ Keθ(m||z||)}′.

issue: ||z|| : F needs to be normed.

▶ One single norm is too restrictive: we want to quantify over the
convergence of the derivative of each function.

▶ The power of Fréchet spaces comes from their descriptions as a countable
limit of Banach spaces:

F ′ := lim
p
N ′

p

!θF := lim
m,p

(?m,θFp)
′
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Les fonctions parlent aux fonctions
We have a quantitative and graded monad of Nuclear Dual of Fréchet spaces.

!θFp : {f : Fp → C,∀m,∃K,∀z, |f(z)| ≤ Keθ(m||z||)}′

!θF := (lim
m,p

(?m,θFp)
′)′

The space of Young functions is a semi-ring with a new duality operation ( )⋆.

Θ : {θ,+, ( × e ), ( )⋆}

Fréchet spaces DF-spaces

Nuclear spaces

N ′N

Fθ(N
′) F ′

θ(N)

( )′

( )′
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Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Resource and probabilistic

λ-calculus [Ehr04]

Smooth and
graded semantics

Analytic
Linear Logic

Monadic reformulation
of resource calculi ?
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Types Formulas Objects
Execution Cut-elimination Equality
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Differential Operators
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Perspectives
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Quantitative Semantics: Approximating functions by Polynomials

▶ Taylor: Orthogonal Basis = {Xn}
▶ recurrence : Tn+1 = XTn

▶ composition Tn ◦ Tm = Tnm

▶ Other Bases ? Chebychev ?
▶ recurrence Tn+2 = 2Tn+1 − Tn

▶ composition Tn ◦ Tm = Tnm

▶ Characterization of approximation and orthogonality ?
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Grading with partial differential operators

Grading by Linear Partial Differential Equations with constant coef.

J!DAK := D((C∞(JAK,K)′) J?DAK := D−1(C∞(JA′K,K))

parameters of the equations solutions of the equations

D( ) = f ϕ ◦D =

⊢ Γ w
⊢ Γ, cst1 : ?IdA

⊢ Γ, f : ?D1
A, g : ?D2

A
c

⊢ Γ, f.g : ?D1◦D2A

⊢ Γ, f : ?D1
A

d⊢ Γ, f ∗ ED2
: ?D1◦D2

A

w̄⊢ δ0 : !IdA
⊢ Γ, ϕ : !D1A ⊢ ∆, ψ : !D2A

c̄⊢ Γ,∆, ψ ∗ ϕ : !D1◦D2
A

⊢ Γ, ϕ : !D1A
d̄⊢ Γ, ϕ ◦D2 : !D1◦D2

A

Monoid: (D, ◦, Id)

Breuvart, K. Mirwasser, 2023
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The computational content of differentiation.

Differentiation : (?P = (P ⊸ ⊥) ⇒ ⊥) → ((P ⊸ ⊥)⊸ ⊥) ≡ P )

Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS ’10 .

This can also be witnessed by identifying the computational content of
Dialectica as a CPS style differential λ-calculus.[PMP,K 22]
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Open questions

▶ p and p do not interact well: cut-elimination ?

▶ More intricate differential operators semi-rings? Higher-order methods ?
Can we embed approximate resolution methods in the sequent calculus ?

▶ Can we express resolution methods in differential λ-calculi ?

▶ Can we make the categorical semantics of differentiation closer to the one
of type theory ?
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Conclusion

Take away

▶ The semantics of λ-calculus is not as much about discrete structures than
about approximating continuous ones.

▶ The notion of linear type ⊸ has been influential in functional
programming. Let’s now make use of the distribution type !, which
internalizes external transformations on programs.

▶ Functional analysis and functional programming might enrich each other:
the former gives the latter new concepts, the latter gives the former
new structures.

Thank you for listening!
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