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What’s your favorite monad 7
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What’s your favorite monad 7

A monad over a type A:
> It encapsulate a certain kind of values: ua : A — M(A).
> Tt allows computation on these values: g : M(M(A)) — M(A)

Examples:
» Partiality: M: A— A+ L ug:a—a
» Non-determinism: M : A — P(A), us:a— {a}
> Effect: M: A— (S —= (A% S)),us:a— (s—(a,s))
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The continuation monad

us: A= (A= B) = B)
a — \k.ka
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The continuation monad, twisted

Linear arrow —o: using exactly once its argument

ug: A= ((A= B)—B)
a+— Mk.ka
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The continuation monad

Linear arrow —o: using exactly once its argument

ug: A—((A= B) — B)
a— \k.ka

Making k, a non-linear map, linear
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The continuation monad

Linear arrow —o: using exactly once its argument

ug: A—((A= B) — B)
a— Ae.Dy(k)a

Making %, a non-linear map, linear: differentiation
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What’s differentiation 7

ra

/

AN

M

f

The differential of a function at a point is its best linear
approximation at that point.
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From linearity to quantitative models

Functions Programs

Power series Resources consumption or Probabilistic sums

f = Zn fn p(m) = an
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From linearity to quantitative models

Functions Programs

Power series Resources consumption or Probabilistic sums

f = Zn fn p(ll?) = an

fn is n-linear P consumes exactly n-times its resources.
fis Taylor Programs can be approximated
f=, LD (M)S =%, L <M > 8%

» Experimentally, quantitative semantics is what gets you higher-order.
» It leads to new proof techniques on A-calculus.
> A strong link with intersection types.

@ Simona Ronchi della Rocca’s talk tomorrow!

@ Even when trying to avoid it, we stumble back on quantitative constructions [Dabrowski,
K. 2018]
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From linearity to quantitative models

Functions Programs

Power series Resources consumption or Probabilistic sums

f = Zn fn p(w) = an

fn is n-linear P consumes exactly n-times its resources.
fis Taylor Programs can be approximated
f=, LD (M)S =%, L <M > 8%

» Experimentally, quantitative semantics is what gets you higher-order.
» It leads to new proof techniques on A-calculus.

> A strong link with intersection types.

B Simona Ronchi della Rocca’s talk tomorrow!

@ Even when trying to avoid it, we stumble back on quantitative constructions [Dabrowski,
K. 2018]

Core intuition: Differentials are enough to compute
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The quantitative monad

Theorem [K. Lemay 2023]
The following:
> M:E — C®(E,K)

> u:v (f = Do(f)(v)) The monad laws:
e DT g i = id
is a monad in quantitative models of \- M(u); p = id

calculus:

pars e = M(p); p

1
s =id < f:ZEDg")f

From functional analysis to functional programming, and back
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Surprise test

Is it a function ?
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Surprise test

Is it a function ?

Yes, that’s a linear function f € Z(R,R)
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Surprise test

Is it a function ?

7/52



Surprise test

Is it a function ?

7

Yes, that’s a smooth function f € C*(R,R)
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Surprise test

Is it a function ?
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Surprise test

Is it a function ?

No, that’s:
O A distribution
[J A generalized function

B That’s the argument to a program.
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© Introduction
e Quantitative Semantics

© Different type of functions
@ Smooth functions
@ Linear functions
@ Distribution theory

© Analytic and Differential Linear Logic

@ Graded Monads in smooth settings
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Programs are interpreted as functions...

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

.. but special ones.
Programs act on programs f : C(4, B) = C

(AxO) Domains A and spaces of functions C(A, B) are of the same kind.

>
> (AxF) Programs and function compute on several arguments:

f:AxB—=>C=f:A-C(B,0C)

Discrete Continuous
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Programs are interpreted as functions...

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

.. but special ones.

Programs act on programs f : C(4,B) — C

(AxO) Domains A and spaces of functions C(A, B) are of the same kind.

>
> (AxF) Programs and function compute on several arguments:

f:AxB—->C=f:A—-C(B,0C)

> Games
> Lattices » Vector spaces
> Graphs > Normed-spaees
» Sequences » Topological vector
spaces
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Interpreting programs by smooth functions

p:A=>DB  feC®A,B)

Probabilistic Programming  Differentiable Programming
p=a D(p13p2) = D(p1); D(p2)
» Correctness Properties [D(p)] = D([p])
> Completeness Properties Vf, 3p, [p] = f
» New programming paradigms p = d(q)
» New mathematical structures C*(E, F)

Convenient vector spaces
a first interpretation of Higher-Order Smooth Functions

(AxF): C*°(A x B,C) ~C>®(A,C=(B,(C))

W Frélicher, Kriegl, Michor (1997) ﬁ Blute, Ehrhard, Tasson (2012)
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Perspective

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality
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Perspective

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Probabilistic and resources Differential Linear
A-calculi [] Logic [ER06]

[ Linear Logic [Gir87]

Vectorial Models
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Interpreting programs by Linear Functions

[Pl € £(A, B)

(Ax0): If B is a complete or metrizable space, then so is L(A, B).

Trickier for A though
(AxF):
LA® B,C) ~ L(A,L(B,C))

> Always true algebraically.
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Interpreting programs by Linear Functions

[p] € £(A, B)
(Ax0): If B is a complete or metrizable space, then so is L(A, B).
Trickier for A though
(AxF):
Lp(A®p B,C) ~ Lp(A, Ls(B,C))

> Always true algebraically.

» Topologically, it depends on the set B C P(A) of bounded sets on which
uniform convergence must be enforced.

> MANY topological tensor products: ®g3, ®q, ®u, Qc.
> MANY duals: Ef := Lg(E,R)

WE ARE MISSING AN IMPORTANT CRITERIA
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Not Not ... Who's there ?
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Not Not ... Who's there 7
(A=1)=1)~A

C(C(A,K),K) = A
No one: not a chance for A smooth enough
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Not Not ... Who's there 7

(A=1)=>1)~A

C(C(A,K),K) = A
No one: not a chance for A smooth enough

(A—ol)—o1l)~A
L(L(A,K),K) ~ A

A lot of people!: Reflexive topological vector spaces.

We have plenty of examples!
» Finite dimensional vector spaces
» Hilbert spaces

» Spaces on which an orthogonality relation can be defined ...

In general, reflexive spaces enjoy poor stability properties.
x higher-order, x tensor product.
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Interpreting types by reflexive topological vector spaces

C>°(R™,R) is not finite dimensional

Nuclear
Fréchet
Nuclear
Reflexive

Nuclear
Quasicomplete
Quasibarreled

Nuclear Fréchet spaces

are reflexive and complete

Nuclear Normed
Quasicomplete

Reflexive Quasicomplete Complete
ornological
Coherent Banach spaces, Girard 2004,

Q ially complete
Quasibarreled Bornological
a norm is too restrictive

Let us take the other way around, through Nuclear, Complete+Metrizable
(=Fréchet) spaces.

Metrizable

Semireflexive
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Polarization as a solution to reflexivity

Semantics for polarized MLL : Mellies Chiralities

() 1
/\
(PP, ®,1) 1 (A, 3, 1) P s W
\_/ \/
0% :
Ntrle ~ N

Replacing (AzxF) with:
Nt p@ntt m)~ (1 p,n%m)

Interpreting formulas by two categories of topological vector spaces, with a
contravariant equivalence interpreting the involutive linear negation
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Polarization as a solution to reflexivity

Nuclear spaces

Fréchet spaces

ie metrizable and complete

(O

DF-spaces

E R E
23 8] O
C=(R", R) C®(R", R/
®r = ®e

Notation : E' := Z(E,R)

ﬁ Grothendieck, Produits tensoriels topologiques et espaces nucléaires, 1958
ﬁ Mellies, A micrological study of negation, APAL 2017
ﬁ K. A Logical Account for Linear Partial Differential Equations, LICS 2018 .
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Linear implications and reflexivity

Old and dusty mathematicians

Property: E =~ (Ej)j; < E barrelled and E weakly quasi complete.

Barrelled spaces (Bourbaki): there for Banach-Steinhauss theorem.

Theorem

» Barrelled and weak quasi-complete form a model of polarized calculus
(Mellies” Chiralities).
» Banach-Steinhaus is exactly (AxF)!

N (T p@ntt,m) ~ N (T p,nBm)

17/52



Mixing Linear and Non-Linear Proofs:
here comes the fun!
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Not not ... Who’s there ?
(A= 1) —o L
Z(C®(A,R),R) =C>®(A,R)
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Not not ... Who’s there ?
(A= 1) —o L
Z(C*¥(A,R),R) =C*(A,R)

Semantics Programs

Distributions Context
¢ € C®(A,RY C:(p:A— L) (value: 1)

e.g: 0, : f— f(x) [J(x) : p = plz]
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Not not ... Who’s there ?

(A= 1) —o L
L(C(A,R),R) = C*(A,R)
Semantics Programs
Distributions Context
¢ € C®(A,RY C:(p:A— L) (value: 1)
e.g: 0, : f— f(x) [J(x) : p = plz]
Reflezivity:
f(@) =6.(f) p(z) =< [J(@)[p >
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Not not ... Who’s there ?

(A= 1) —o L
L(C(A,R),R) = C*(A,R)
Semantics Programs
Distributions Context
¢ € C®(A,RY C:(p:A— L) (value: 1)
e.g: 0, : f— f(x) [J(x) : p = plz]
Reflezivity:
f(x) = 6.(f) p(z) =< [J(=)lp >
Differentiation

Do(f)(x) =< Do()(@)]f >

ﬁ Laurent Schwartz, Théorie des
distributions, 1950
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Distributions: Linear Contexts for Non-Linear Programs

C=(B, F)

> (AxO) for distributions:

> C>*(R™,R) is always Nuclear Fréchet and C*(R"™,R)’ is Nuclear DF.
> If F' is Fréchet, then C*(R", F) is Fréchet
> Higher order: a bit of work.

> (AxF) for distributions:
> For linear maps: .Z5(E, L5(F,G)) ~ fﬁ(ET@ﬁ\F,G) v
» For smooth maps: C*(E,C*(F,G)) ~C>®(E x F,G) ?
> From one to another:

Schwartz’ Kernel Theorem v
C®(B,K)'®C™(F,K) ~C®(E x F,K) J
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A monoidal operation on distributions

(¢ € C™(E,R) ® 1 € C*(E,R)) —?

Convolution, the monoidal operation on distributions:

px1p = fr ole—= Py = flz+y))

Different from ¢ + v : f — &(f) +¢(9g)
Examples:
0y * 65/ = 6f1¢+£/
61: * DO(*)(Y") = DJ?(*) (U)
Do(-)(v) * Do(-)(v) = D ()(v)

There is no "multiplication” extending from functions to distributions, this is

our multiplication !
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Quantitative semantics, another look

Vi, Yo, f(z) =3, LD8 f(x)
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Quantitative semantics, another look

VIV, Yo, < 16, >= 3, & < fID()(x) >
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Quantitative semantics, another look

Vo, Vo, 8, = ¥, 1D ()(x)
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Quantitative semantics, another look
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Quantitative semantics, another look

Do(1)(x)"

1 r_ % N

Vi, Vo, 0, =) —Do()(x) * - Do()(x)
N
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Quantitative semantics, another look

Vi, V0,8, = 3, 5Do()(x) * -+ % Do(-)(x)

" =3, bt id=e"o (Do)
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Quantitative semantics, another look

Ve, Vu,8, =3, SDo()(x) % -« Do()(x)
e’ =3, mx"  id=e"o(Dy())

A Quantitative Monad

> A functor F +— C*°(F,R)’ acting on a subcategory .Z of topological
vector spaces and linear maps.

> Differentiation as a unit: w: 2 — Dg(-)(x)

» The convolutional exponential as a multiplication: j: d, — ), %d)*n

Monad ~ V[ € £ (A, B) ~C>*(A, B), [ is Taylor.

Examples: Relational model, Weighted Relational Model, Species, Nuclear Fréchet spaces
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It was never about the quantitative semantics of
A-calculus.

Differential Linear Logic: from resources to distributions,
from discrete to continuous settings
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Exponential rules of (Differential) Linear Logic

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of AF- B f+A— B.
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Exponential rules of (Differential) Linear Logic

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of AF- B f+A— B.
Resources calculi LINEAR LOGIC Topological vector spaces

Exponential connectives:
['A] := C>=([A],K)

[?B] :=c>([B]',K)

ﬁ Linear Logic, Jean-Yves Girard 1987

ﬁ Differential Interaction Nets, Thomas Erhard and Laurent Regnier, 2006
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Linear Logic

A decomposition of the implication

A=B~!A—B

25 /52



Linear Logic

A decomposition of the implication
A=B~!A—-B
» Usual non-linear implication

A linear proof is in particular non-linear.

A+ B is linear. !A + B is non-linear.

AFT
IAFT

dereliction

Slogan: ! in the hypotheses, speaking of resources.
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Linear Logic

A decomposition of the implication

A= B~|A-—-B

» Usual non-linear implication

» Linear implication

A linear proof is in particular non-linear.

A+ B is linear. !A + B is non-linear.

AFT
IAFT

dereliction
Slogan: ! in the hypotheses, speaking of resources.
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Linear Logic
A decomposition of the implication

A= B~!A—-B

» Usual non-linear implication
» Linear implication

» Exponential: Usually, the duplicable copies of A.

A linear proof is in particular non-linear.

A+ B is linear. !A + B is non-linear.

AFT
IAFT

dereliction
Slogan: ! in the hypotheses, speaking of resources.
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Differential Linear Logic: co-structural rules

linear proof LeTTTTTT -~ non-linear proof

-
~

Linear Logic AF B

~ -

GAEB g gereten AR
T AF B d, dereliction Do(/):AF B d, co-dereliction
linear < non-linear. non-linear — linear
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Differential Linear Logic: co-structural rules

linear proof LeTTTTTT -~ non-linear proof

-
~

Linear Logic

~ -

{: A+ B q FAv: A _
(. IAFB F A, (f = Do(f)(v)) 14 9
linear < non-linear. non-linear — linear
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Differential Linear Logic: co-structural rules

linear proof LeTTTTTT -~ non-linear proof

-
~

Linear Logic (1AF B

-
~ -

/- AF B J FAv: A _
(. IAF B FA, (/= Do(/)(v) : 14 ¢
linear < non-linear. non-linear — linear

Cut-elimination:
FT,bv:lA _ /- AF B
Fr04 9 AR B
FT,A

K

d, dereliction
cut

FT, A A AL

FT.A cut
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Differential Linear Logic: co-structural rules

linear proo .- TS S~ non-linear proo
P . P
Linear Logic (IAF B

(:AFB FAv:A -
(1AF B FA, (= Do(f)(v) 14 9
linear — non-linear. non-linear — linear

Cut-elimination:
Flbv:A  _  (:AFB
FT,Do()(v): 14 ¢ T.IAFB
FT,A

d, dereliction

cut

FT,u: A A AL
~ cut

= F) A) DO(g)('U) = g(v)
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Dereliction and co-dereliction:

linear proo .- Tl non-linear proo
- -

~

DILL

/- A+ B d FAv:A _
(1AF B FA, (= Do(f)(v) 14 9
linear — non-linear. non-linear < linear

Cut-elimination:
Flv:A  _ (:AFB
FT, Do) 1A 9 7.1AF B
FT,A

d, dereliction

cut

Fl,bu: A AN
~ cut

FT,A, Dy(€)(v) = £(v)
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From resources to functions and distributions

(Co)-weakening

c:+FT

cst, VAT v

The constant function is non-linear

(Co)-contraction

x: 1Ay A g(a,y) : T
x: 1Ak g(a,x): T

C

The multiplication of scalar functions

FI @
"F,(S()Z!A

One can evaluate a function at 0

FT,¢:1A FA: 1A

FT,A 0«0 1A

Convolution of distributions
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Symmetric cut-eliminations procedures

IA—SA A0 14
Lig®@way 1ia®@wy

AR A———1A

The function cst1 is neutral for

scalar multiplication

da A®da+ds Rdwa

IA+—1AR A
cA

dxp(l) = p(0)h(estr) + (L) p(csty)

1ia®@wy

44 14g14
Lia®@wWg

The dirac at 0 is neutral for the con-
volution

da Wa®ds+ds@wy

'AC—A>'A QA

Do(f-g) = Do(f)-9(0)+Do(g)-f(0)
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Symmetric cut-elimination procedures

d;w=0and W;d =0
Dy(esty) =0 and £(0) =0

IA®!1A A®!A
Ca A D Wa CJ WA @ Wy
!AW—A>1 A W 1
(¢ 1p)(estr) = d(estr) - (esty) (f - 9)(0) = £(0) - g(0)
®=-in R
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Finitary differential Linear Logic

The first version by Erhrard and Regnier in 2006:

FT FT,f:74,9:7A FT,0: A
L w c — 5 d
FTest; i 7A FI,fg:74 FI,0:7A

FT & FT,¢:1A FAY 1A FT x: A q
FT,0,: 1A FT,A, 0 +o: 1A © FL,Do()(2): 14

It’s a maths world.
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Higher-Order




Higher-Order via promotion

Exponential rules of Linear Logic (Resources)

FT w I—F,f:?A,g:?AC FI,0: A
FT,csty: 7A FT,fg:74 FT,0:7A

Exponential rules added by Differential Linear Logic (Distributions)

FT @ FT,¢: 1A FAYIA FT,z: A _
FT,0,: 14 FT.A G 0 1A ¢ FT Do) 14 @

The promotion rule p:!A — 1A 6, — d5,:
> Makes (!,,p) a co-monad : p;d = id.
» Is a co-monoidal operation on !A : p;c=c;p®p
» The cut-elimination between p and d express the chain rule:
Do(go f) =DpoygoDof  dip=wodipodc
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Codigging

Exponential rules of Linear Logic (Resources or functions)

FT w l—l—‘,f:?A,g:?Ac FT,0: A
FTest; i 7A FI,fg:7A FI,0:7A

Exponential rules added by Differential Linear Logic (Distributions)

FT @ FTo: 1A | EA,@E):!A : FD,z: A J MThrx: A -
FTdo: 1A FT, A x¢: 1A FT, Do()(z): 1A ME_:74
Digging p: !4 — 1 A: Co-digging 7 p: !4 — A:
> p;d=id. » d:;p=id
> pic=cpep > p=popc
> dp=wodpadc > pd=cpedwed
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Codigging

Exponential rules of Linear Logic (Resources or functions)

FT w l—l—‘,f:?A,g:?Ac FT,0: A
FTest; i 7A FI,fg:7A FI,0:7A

Exponential rules added by Differential Linear Logic (Distributions)

=T @ FP,()'A FA,’L)'A _ #P,J‘A _ MTrHxr: A _
FT,00: 14 FT,A 0014 C FL,Do()(x):14 9 7Tk 24
Digging p: !4 — 1 A: Co-digging 7 p:!lA - 14: g: 1A= 14

> p;d=id. > d;p=id Dg(g) = id.

> pic=cpep > cp=pwpc glz+y) =g@)*gy)
> dp=wodpadc » pd=cpedw®d
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The missing rule of Differential Linear Logic

Digging p: A — 1 A: Co-digging 7 p:!lA - 14: g: 1A= 14
> p:d=id. > d;p=id Dq(g) = id.
> pic=cp®Rp > Gp=pamC  glx+y)=g(@)*g(y)
> dp=w®d;pxdc > pd=cpedwed?

Implicit definition of the exponential:
g=exp* oy Lo B:6¢»—>Zn%¢*n
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The missing rule of Differential Linear Logic

Digging p: A — 1 A: Co-digging 7 p:!lA - 14: g: 1A= 14
> p:d=id. » d:p=id Dg(g) = id.
> pic=cpep > Tp=p@p;c g(z+y)=g(x)*g(y)
> dp=w®dp®dc > pid=cpdw®d?

Implicit definition of the exponential:
_ * . 1o 5:6 1™
g_emp¢’_>2nn'¢ p¢’_>2nn'¢
The co-chain rule:

P00 =3 6 (1) = 30 P p)-67 "V (esta) = 6(0)B(55) (estn) = ¢ pod; wed

n>0 n! n>1
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The missing rule of Differential Linear Logic

Digging p: A — 1 A: Co-digging 7 p:!lA - 14: g: 1A= 14
> p:d=id. » d:p=id Dg(g) = id.
> pic=cpep > Tp=p@p;c g(z+y)=g(x)*g(y)
» dip=w®d;p®dc > pd=cpodwed?

Implicit definition of the exponential:
g=exp* oy Lo 5:5¢»—>Zn%¢*n

The co-chain rule:

P00 =3 6 (1) = 30 P p)-67 "V (esta) = 6(0)B(55) (estn) = ¢ pod; wed

n>0 n! n>1

The monadic rules:

— . _ 1 n
dp=id  Y0.p(0p,w) =0 Vo.¥f ) DGV f(v) = f(v)

n
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A completely uniform logical and categorical structure

Exponential connectives:

[14] := Cc>=([A],K)

[74] := Cc>=([4]’,K)

e T L fetdg:td
—.? '7 1riear
FT,csty : 7A FT,fg:?74 Logic

FI,0: A ThHz:A p [Girard1987]
FT,0:7A TFd,:1A
T _ FT,0:14 FAp:1A
FT,00: 14 FT,A 0% 14 ¢
I_F.L A _ e
\_ FLbuQ@ 14 ¢ Tk e : 74

Differential Linear Loglc
[Ehrhard&Regnier2006]

[Kerjean & Pacaud Lemay 2023]
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A reason for this symmetry

Exponential connectives:

[A] = c=([ALK) [?A] == C>=([A]". K)

Do you remember the Laplace transformation ?

A continuous version of a power series

'l —=7FE

T o 0 o oy o <))

£(W,c,d,p) =w,c,d,p
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Let’s make things concrete
> M:E—IE = [([E] = L) — 1] = ¢>([E],K)

> wives (o5 Dolf)(0))
> 0y HZ%(ﬁ*n
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Let’s make things concrete

> M:ESIE = [([E] = L) — 1] = C=([E],K)’
> uwive (f = Do(f)(v))
> [ 54) — Z #(f)*n

The way I make things concrete
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Existential questions

Does p = €* even exists 7
Bad news: sums need to converge.

At least at every point: (Vf,Vd), don %o*n(j)) eR

» In discrete models of computations (e.g:
relations over sets), sums are union, not
an issue.

» In continuous models of computations,
well...
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Convolutional exponential VS exponential maps

(AxC) Proofs/Programs/Functions must compose

ﬁ(SQHZ%C)*n
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Convolutional exponential VS exponential maps

(AxC) Proofs/Programs/Functions must compose

p: 65:,, = Z %6717’ = (f = Z %f(?’LI))
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Convolutional exponential VS exponential maps

(AxC) Proofs/Programs/Functions must compose

[
= . T 1 nx e’
p(ds,) (v — €)= Z et =e v
5(5: (. N 1 ne
p(05.) (2 — e )—Zme X

This example is due to T. Ehrhard

» p and p do not mix well.

> We need to quantify over the exponential growth of the functions p is

applied to.
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Grading Exponentials

A—oB !1A— B
Linear programs/proofs/functions  Usual programs/proofs/functions
using exactly once their resource

1,A— B
» n-linear functions.

» Programs/proofs using exactly n-times their resource.
> Quantitative semantics: !4 = > 1, A.

Exponentials indexed by semi-rings S
VseS,ILA—- B J

ﬁ Jean-Yves Girard, Andre Scedrov, Applications in implicit complexity and differ-
Philip J. Scott, 1992 ential privacy.
Martin Hoffman, Ugo Dal Lago,2009
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From resources to differential equations

FT w FT,f:7A,9:7A
FT,csty i 7A FT,fg:7A ¢
FT,0: A TrEz:A »

FI,0: 74 d ko, :1A
W FT,¢0:1A A A

= w ) )
014 FT,A, 050 1A
FD,z: A _ MEFz: A -
FT, Do()(x) 14 ¢ MF et 24
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From resources to differential equations

Grading LL: a story of resources, again

FT w FL,f:7A,g: A
FT,esty : 70A FT,fg: TxiyA
FT,0: A TyFx:A
FT,0:7,4 ¢ .., Fo, LA
W FT,¢: 1A FA YA
= w ’ ) _
oo :14 FTLA oA ¢
FTz: A _ MEx: A -
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From resources to differential equations

Grading LL: a story of resources, again

FT w FT,f:74,9g:7A
FT,csty 1 7A FT,fg:7A

FT,0: A Tkax:A p

FT,0:74 ¢ T+ o, : 1A

Grading DiLL: well, not so clear

- = FT,o: 1A FAY A
w ) )
Fdo: A FT,A 00 LA ¢
FT,z: A _ 72Fx: A p
FT, Do()(0) - b4 ¢ 2T F e 7,4
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Joining Quantitative, Graded
and Differential Linear Logic

(AxC) Proofs/Programs/Functions must compose

W ds, — Z %5% = <f = Z ;,f(”l”))
=ef'n

P35 ) (o ) = D e =
(35, (x> ) = 3 e

The quantitative monad does not apply to all functions, but only to those
whose convergence is exponentially bound, according to some Young function 6.

Z9.m(F) == {f: F' = C,¥m,3K,Vz,|f(z)| < Ke/tmlzIDy,

B2, (0.(E)) = gy ()

@ Gannoun, Hachaichi, OQuerdiane, et Rezgui, Un théoreme de dualité entre espaes
de fonctions holomorphes a croissance exponentielles, 1999
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Les fonctions parlent aux fonctions

lym(F) == {f: F = C,¥m,3K,Vz,|f(2)] < Ke’MIFID},

issue: ||z]| : F needs to be normed.

» One single norm is too restrictive: we want to quantify over the
convergence of the derivative of each function.

» The power of Fréchet spaces comes from their descriptions as a countable

limit of Banach spaces:
F':=lim N,
P

lgF := lim(?,,0F),)
m,p
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Les fonctions parlent aux fonctions
We have a quantitative and graded monad of Nuclear Dual of Fréchet spaces.

WWF, : {f: F, = C,Ym,3K,Vz,|f(2)] < Kef(mIFIDy

!gF = (lim(?mﬂFp)')'
m,p

The space of Young functions is a semi-ring with a new duality operation (-)*.

©:{0,+, (- xe), ()"}
Nuclear spaces

O’

Fréchet spaces DF-spaces
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Recap

Programs Logic Semantics

fun (x:4A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality
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Recap

Programs Logic Semantics
fun (x:4)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality
[ Differentiable Programming } [ Differential Operators }
Monadic reformulation Analytic Smooth and
of resource calculi ? Linear Logic graded semantics
Resource and probabilistic Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

Vectorial Models

Automatic [ Linear Logic [Gir87] ]
‘ Differentiation [80s] F\%Dialectica [God58]
A-calculus Min. Logic [ Normal functors ]
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Perspectives
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Quantitative Semantics: Approximating functions by Polynomials

» Taylor: Orthogonal Basis = {X™}
» recurrence : Th+1 = XT,
» composition 1), 0 T, = Thum

» Other Bases 7 Chebychev ?

» recurrence Typ42 = 2Tn1 — Th
» composition T}, 0 Th, = Thm

» Characterization of approximation and orthogonality ?
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Grading with partial differential operators
Grading by Linear Partial Differential Equations with constant coef.

['pA] := D((C*([A]K))  [’pA] := D7H(C=([A],K))

parameters of the equations solutions of the equations

D) =f poD =._

- w TS24, FT,f 70 A d\
FT,esty : 7r4A FT,f.9:7pop,A FT,f*Ep, : ?pop, A
|_5.—IA1I} "F,@Z!DIA "A,L/)'DQA : "F,¢Z!D1A J

s bie FD,A Y *¢:!pop, A FI,¢po0Ds:!pop,A Y,

Monoid: (D, o, Id)

ﬁ Breuvart, K. Mirwasser, 2023
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Grading with partial differential operators

Grading by Linear Partial Differential Equations with constant coef.

['pA] := D((C*([A],K)))  [?pA]:= D™HC*([A],K))

parameters of the equations solutions of the equations
For D an LPDOcc: (¢po D) x) = (¢p*1)o D DEp«*f)=1f
FT w FL,f:7p,A,g:7p, A . FI,f:7p, A p
FT,csty : 71aA FT, fg: ?DloDQA = F,f * ng2 : ?DlngA
5 FL,0o:!pA FAY:Ip, A FL,o:1p A _
"50:!1(114 B c 0 d
FF,AJ/}*@..DloDzA }—F,¢)OD2..D10D2A

Monoid: (D, o, Id)

ﬁ Breuvart, K. Mirwasser, 2023
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The computational content of differentiation.

The codereliction of differential proof nets: In terms
of polarity in linear logic [23], the V-—-free constraint
characterizes the formulas of intuitionistic logic that can be
built only from positive connectives (&, ®, 0, 1, !) and the
why-not connective (“?”). In this framework, Markov’s prin-
ciple expresses that from such a V-—-free formula A (e.g.
7@, (PA(x)®?B(x))) where the presence of “7” indicates
that the proof possibly used weakening (efq or throw) or
contraction (catch), a linear proof of A purged from the
occurrences of its “7” connective can be extracted (meaning
for the example above a proof of @.(A(x) ® B(x))).
Interestingly, the removal of the “7”, ie. the steps from
7P to P, correspond to applying the codereliction rule of
differential proof nets [24].

Differentiation : ("P=(P —-l)= 1)+ ((P—l) —-1)=P)

@ Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS ’10 .

This can also be witnessed by identifying the computational content of

Dialectica as a CPS style differential \-calculus.[PMP,K 22]
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Open questions

» b and p do not interact well: cut-elimination 7

» More intricate differential operators semi-rings? Higher-order methods ?
Can we embed approximate resolution methods in the sequent calculus ?

» Can we express resolution methods in differential A-calculi 7

» Can we make the categorical semantics of differentiation closer to the one
of type theory ?
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Conclusion

Take away

» The semantics of A-calculus is not as much about discrete structures than
about approximating continuous ones.

» The notion of linear type _ —o _ has been influential in functional
programming. Let’s now make use of the distribution type !, which
internalizes external transformations on programs.

» Functional analysis and functional programming might enrich each other:
the former gives the latter new concepts, the latter gives the former
new structures.

Thank you for listening!
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