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What do we want

We want a model of classical Differential Linear Logic, where
proofs are interpreted by smooth functions.

What do we get

Almost that, but we can solve Linear Partial Differential equations
in it.
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Smoothness

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation d(f )(x) : v 7→ d(f )(x)(v) of f near x .

f ∈ C∞(R,R)

d(f )(0)

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.



Proofs and smooth objects A model with Distributions Linear PDE’s as exponentials

Differentiating proofs

I Differentiation was in the air since the study of Analytic
functors by Girard :

d̄(x) :
∑

fn 7→ f1(x)

I DiLL was developed after a study of vectorial models of LL
inspired by coherent spaces : Finiteness spaces (Ehrard 2005),
Köthe spaces (Ehrhard 2002).

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

The rules of DiLL are those of MALL and :

co-dereliction

d̄ : x 7→ f 7→ df (0)(x)
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Smoothness of proofs

I Traditionally proofs are interpreted as graphs, relations
between sets, power series on finite dimensional vector spaces,
strategies between games: those are discrete objects.

I Differentiation appeals to differential geometry, manifolds,
functional analysis : we want to find a denotational model of
DiLL where proofs are general smooth functions.
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The categorical semantic of Differential Linear Logic

Linearity and Smoothness

We work with vector spaces with some notion of continuity on
them : for example, normed spaces, or complete normed spaces
(Banach spaces).

What’s required

I A (monoidal closed) ∗-autonomous category : E ' (E⊥)⊥

I A comonad ! verifying : !E⊗!F '!(E × F )

I A bialgebra structure (!E ,w , c , w̄ , c̄)

I A good notion of differentiation d̄ such that d̄ ◦ d = Id

I And coherence conditions



Proofs and smooth objects A model with Distributions Linear PDE’s as exponentials

Spaces of linear and smooth functions

The linear dual

A⊥ is the linear dual of A, interpreted by L(A,R) = A′. We want
reflexive vector spaces : A′′ ' A.

We want non-linear proof to be interpreted by smooth functions :

L(!E ,F ) ' C∞(E ,F ).

The exponential is the dual of the space of smooth scalar
functions

!E ' (!E )′′ ' L(!E ,R)′' C∞(E ,R)′

A typical inhabitant of !E is evx : f 7→ f (x).



Proofs and smooth objects A model with Distributions Linear PDE’s as exponentials

An exponential for smooth functions

A space of (non necessarily linear) functions between finite
dimensional spaces is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails
(Coherent Banach spaces).

I We want to use functions.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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A model with Distributions
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Topological vector spaces

We work with Hausdorff topological vector spaces : real or
complex vector spaces endowed with a Hausdorff topology making
addition and scalar multiplication continuous.

I The topology on E determines E ′.

I The topology on E ′ determines whether E ' E ′′.

We work within the category TopVect of topological vector
spaces and continuous linear functions between them.
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Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.
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Fréchet and DF spaces

I Fréchet : metrizable complete spaces.

I (DF)-spaces : such that the dual of a Fréchet is (DF) and the
dual of a (DF) is Fréchet.

Fréchet-spaces DF-spaces

Rn EE ′

P ⊗ QM ` N

( )′

( )′

These spaces are in general not reflexive.
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Nuclear spaces
Nuclear spaces are spaces in which one can identify the two
canonical topologies on tensor products :

∀F ,E ⊗π F = E ⊗ε F

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

A polarized ?-autonomous category

A Nuclear space which is also Fréchet or dual of a Fréchet is
reflexive.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

We get a polarized model of MALL : involutive negation ( )⊥, ⊗,
`, ⊕, ×.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Distributions and the Kernel theorems

A typical Nuclear Fréchet space is the space of smooth functions
on Rn : C∞(Rn,R).

A typical Nuclear DF spaces is Schwartz’ space of distributions
with compact support : C∞(Rn,R)′.

The Kernel Theorems

C∞(E ,R)′ ⊗ C∞(F ,R)′ ' C∞(E × F ,R)′

!Rn = C∞(Rn,R)′.
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A model of Smooth differential Linear Logic

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces

Rn
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A Smooth differential Linear Logic

A graded semantic

Finite dimensional vector spaces:

Rn,Rm := R|Rn ⊗ Rm|Rn ` Rm|Rn ⊕ Rm|Rn × Rm.

Nuclear spaces :

U,V := Rn|!Rn|?Rn|U ⊗ V |U ` V |U ⊕ V |U × V .

!Rn = C∞(Rn,R)′ ∈ Nucl

!Rn⊗!Rm '!(Rn+m)

We have obtained a smooth classical model of DiLL, to the price
of Digging !A (!!A.
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Smooth DiLL, a failed exponential

A new graded syntax

Finitary formulas : A,B := X |A⊗ B|A` B|A⊕ B|A× B.
General formulas : U,V := A|!A|?A|U ⊗ V |U ` V |U ⊕ V |U × V

For the old rules

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

`
w̄` !A

` Γ,A
d̄` Γ, !A

The categorical semantic of smooth DiLL is the one of LL, but
where ! is a monoidal functor and d and d̄ are to be defined
independently.
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Linear Partial Differential Equations as Exponentials
Work in progress
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Linear functions as solutions to an equation

f ∈ C∞(Rn,R) is linear iff ∀x , f (x) = D(f )(0)(x)
iff f = d̄(f )
iff ∃g ∈ C∞(Rn,R), f = d̄g

Another definition for d̄

A linear partial differential operator D acts on C∞(Rn,R) :

D(f )(x) =
∑
|α|≤n

aα(x)
∂αf

∂xα
.
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Another exponential is possible

Definition

!DA = (D(C∞(A,R)))′

that is the space of linear functions acting on functions f = Dg ,
for g ∈ C∞(A,R), when A ⊂ Rn for some n.

d̄D :!DA→!A;φ 7→ (f 7→ φ(D(f )))

dD :!A→!DA;φ 7→ φ|D(C∞(A)

Functions E ′ D(C∞(A)) C∞(A)
! E ′′ ' E !DA = D(C∞(A))′ !A = C∞(A)′

d φ 7→ φ|(A)′ φ 7→ φ|D(C∞(A))

d̄ x 7→ (f 7→ d(f )(0)(x)) φ 7→ (f 7→ φ(D(f )))
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Recall : The structural morphisms on !E

I The codereliction d̄E : E →!E = C∞(E ,R)′ encodes the
differential operator.

I In a ?-autonomous category dE : E →?E encode the fact that
linear functions are smooth.

I c :!E →!E⊗!E → is deduced from the Seely isomorphism and
maps evx ⊗ evx to evx .

I c̄!E⊗!E →!E is the convolution ? between two distributions

I w :!E → R maps evx to 1.

I w̄ : R→!E maps 1 to ev0 : f 7→ f (0), the neutral for ?.
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!D
Consider D a LPDO with constant coefficients :

D =
∑

α,|α|≤n

aα
∂α

∂xα
.

Existence of a fundamental solution

For such D there is E0 ∈ C∞(A)′ such that DE0 = ev0.

D commutes with convolution

If f ∈ D(C∞(A)) and g ∈ C∞(A), then f ∗ g ∈ D(C∞(A)).

?A⊥ E ′ D(C∞(A,R)) C∞(A,R)

!A E ′′ ' E D(C∞(A,R))′ C∞(A,R)′

c̄ ∗ :!A⊗!DA→!DA ∗ :!A⊗!A→!A

w̄ 1 7→ E0 1 7→ ev0

and a co-algebra structure
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Intermediates rules for D
work in progress

Syntax

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

` Γ, !A, !A
c̄` Γ, !A

` Γ
w̄` Γ, !A

` Γ,A
d̄` Γ, !A

Syntax for !D
` Γ w

` Γ, ?DA
` Γ, ?A, ?DA c
` Γ, ?DA

` Γ, ?DA
dD` Γ, ?A

` w̄D` !DA
` Γ, !A ` ∆, !DA c̄D` Γ,∆, !DA

` Γ, !DA
d̄` Γ, !A
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Solving Linear PDE’s with constant coefficient

w̄ is the fundamental solution

E0 is the fundamental solution, such that DE0 = ev0. Its existence
is guaranteed when D has constant coefficients.

Solving Linear PDE through w̄ and c̄

If f ∈ C∞(A), then D(E0 ∗ f ) = f .

If f ∈ E ′, then d(ev0 ∗ f ) = f .

The algebraic equation is the one of the resolution of the
differential equation.
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Conclusion

What we have :

I An interpretation of the linear involutive negation of LL in
term of reflexive TVS.

I An interpretation of the exponential in terms of distributions.

I The first hints for a generalization of DiLL to linear PDE ’s .

What we could get :

I A constructive Type Theory for differential equations.

I Logical interpretations of fundamental solutions, specific
spaces of distributions, Fourier transformations or operation
on distributions.
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