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Denotational semantics of LL A model with Distributions Linear PDE as exponentials

Linear Logic

A decomposition of the implication

A⇒ B '!A ( B

Denotational semantic

We interpret formulas as sets and proofs as functions between
these sets.

Denotational semantic of LL

We have a cohabitation between linear functions and non-linear
functions.
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Linear Logic

Classical logic

¬A = A⇒ ⊥ and ¬¬A ' A.

Linear Logic features an involutive linear negation :

A⊥ ' A ( 1

A⊥⊥ ' A
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Smoothness

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation d(f )(x) : v 7→ D(f )(x)(v) of f near x .

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.
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Differential Linear Logic

A modification of the exponential rules of Linear Logic in order to
allow differentiation.

Semantics

For each f :!A ( B ' C∞(A,B) we have Df (0) : A ( B

Syntax

` Γ,A
d` Γ, ?A

` Γ w` Γ, ?A
` Γ, ?A, ?A

c` Γ, ?A
` Γ, !A, !A

c̄` Γ, !A
` Γ

w̄` Γ, !A
` Γ,A

d̄` Γ, !A

co-dereliction

d̄ : x 7→ f 7→ Df (0)(x)
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Why differential linear logic ?

I Differentiation was in the air since the study of Analytic
functors by Girard :

d̄(x) :
∑

fn 7→ f1(x)

I DiLL was developed after a study vectorial models of LL
inspired by coherent spaces : Finiteness spaces (Ehrard 2005),
Köthe spaces (Ehrhard 2002).

It leads to differential λ-calculus and applications for probabilistic
programming languages.

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Smoothness of proofs

I Proofs are interpreted as graphs, relations between sets, power
series on finite dimensional vector spaces, strategies between
games: those are discrete objects.

I Differentiation appeals to differential geometry, manifolds,
functional analysis : we want to find a denotational model of
DiLL where proofs are smooth functions.

TEASING: to get to differential equations.
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Plan

Denotational semantics of LL

A model with Distributions

Linear PDE as exponentials
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Denotational semantics of classical linear logic
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Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or
Banach spaces.

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕

!

U
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Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or
Banach spaces.

The product

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕

!

U
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Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or
Banach spaces.

The product

The coproduct

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕

!

U
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Interpreting LL in vector spaces
Consider formulas interpreted by finite dimensional vector spaces or
Banach spaces.

The product

The coproduct

The tensor product

The epsilon product 1

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕

!

U

1Work with Y. Dabrowski
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Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or
Banach spaces.

Linear Functions
A(B, ⊗, `
A⊗ B ( C ' A ( (B ( C )
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Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or
Banach spaces.

Linear Functions
A(B, ⊗, `
A⊗ B ( C ' A ( (B ( C )

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕

!

U

!E⊗!F '!(E × F )
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Interpreting DiLL in vector spaces

!EE

Linear Functions
A(B, ⊗, `

Non-linear functions
!A ( B, &, ⊕

d

d̄

!E⊗!F '!(E × F )

d ◦ d̄ = IdE

!E⊗!F '!(E × F ) allows to have a cartesian closed Co-Kleisli
category
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Interpreting DiLL in vector spaces

!EE

Linear Functions
A(B, ⊗, `

Non-linear functions
!A ( B, &, ⊕

d

d̄

!E⊗!F '!(E × F )

d ◦ d̄ = IdE

d ◦ d̄ = IdE expresses the fact that the differential at 0 of a linear
function is the same linear function.

We want to find good spaces in which we can interpret all these
constructions, and an appropriate notion of smooth functions.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Weak topologies for Linear Logic, K. LMCS 2015.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

I A model of LL with Schwartz’ epsilon product, K. and Dabrowski, In
preparation.

I Distributions and Smooth Differential Linear Logic, K., In preparation
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The categorical semantics of an involutive linear negation

Linear Logic features an involutive linear negation :

A⊥ ' A ( 1

A⊥⊥ ' A

*-autonomous categories are monoidal closed categories with a
distinguished object 1 such that E ' (E ( 1) ( 1 through dA.

dA :

{
E → (E ( 1) ( 1

x 7→ evx : f 7→ f (x)
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∗-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous
category: ⊥ neutral for `, thus ⊥ ' R, A ( 1 is A′ = L(A,R).

dA :

{
E → E ′′

x 7→ evx : f 7→ f (x)

should be an isomophism.

Exclamation

Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not
closed (eg: Hilbert spaces).
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∗-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous
category: ⊥ neutral for `, thus ⊥ ' R, A ( 1 is A′ = L(A,R).

dA :

{
E → E ′′

x 7→ evx : f 7→ f (x)

should be an isomophism.

Exclamation

Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not
closed (eg: Hilbert spaces).
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A model with Distributions
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Topological vector spaces

We work with Hausdorff topological vector spaces : real or
complex vector spaces endowed with a Haussdorf topology making
addition and scalar multiplication continuous.

I The topology on E determines E ′.

I The topology on E ′ determines whether E ' E ′′.

We work within the category TopVect of topological vector
spaces and continuous linear functions between them.
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Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.
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Polarized models of LL

Negative Positive
M,N P,Q

X⊥X

P ⊗ QM ` N
!N

?P
( )⊥

( )⊥
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Fréchet and DF spaces

I Fréchet : metrizable complete spaces.

I (DF)-spaces : such that the dual of a Fréchet is (DF) and the
dual of a (DF) is Fréchet.

DF-spaces Fréchet-spaces

Rn EE ′

P ⊗ QM ` N

( )′

( )′
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Nuclear spaces
Nuclear spaces are spaces in which for which you can identify the
two canonical topologies on tensor products :

∀F ,E ⊗π F = E ⊗ε F

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

A polarized ?-autonomous category

A Nuclear space which is also Fréchet or (DF) is reflexive.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

We get a polarized model of MALL : involutive negation ( )⊥, ⊗,
`, ⊕, ×.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′



Denotational semantics of LL A model with Distributions Linear PDE as exponentials

Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes :

C∞(Rn,R), C∞c (Rn,R), H(C,C), ..

Typical Nucléar Fréchet spaces are distributions spaces Schwartz’
generalized functions :

C∞(Rn,R)′, C∞c (Rn,R)′, H′(C,C), ..

The Kernel Theorems

C∞c (E ,R)′ ⊗ C∞c (F ,R)′ ' C∞c (E × F ,R)′
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Distributions and the Kernel theorems
Examples of Nuclear Fréchet spaces includes :

C∞(Rn,R), C∞c (Rn,R), H(C,C), ..

Typical Nucléar Fréchet spaces are distributions spaces Schwartz’
generalized functions :

C∞(Rn,R)′, C∞c (Rn,R)′, H′(C,C), ..

The Kernel Theorems

C∞(E ,R)′ ⊗ C∞(F ,R)′ ' C∞(E × F ,R)′

We define !Rn = C∞(Rn,R)′. Thanks to the Kernel theorems, !
verifies all the rules of Differential Linear Logic. However, !Rn is
not a finite dimensional vector space.
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A Smooth differential Linear Logic

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)

Nuclear spaces

Rn

!Rn = C∞(Rn,R)′ ∈ Nucl

!Rn⊗!Rm '!(Rn+m)
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Smooth DiLL

A new graded syntax

Finitary formulas : A,B := X |A⊗ B|A` B|A⊕ B|A× B.
General formulas : U,V := A|!A|?A|U ⊗ V |U ` V |U ⊕ V |U × V

For the old rules

` Γ,A
d` Γ, ?A

` Γ w` Γ, ?A
` Γ, ?A, ?A

c` Γ, ?A
` Γ, !A, !A

c̄` Γ, !A
` Γ

w̄` Γ, !A
` Γ,A

d̄` Γ, !A

We have obtained a smooth classical model of DiLL, to the price
of Higher Order and Digging !A (!!A.
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Linear Partial Differential Equations as Exponentials
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Differential Linear Logic
Is a modification of the exponential rules of Linear Logic in order
to allow differentiation.

Semantics

For each f :!A ( B ' C∞(A,B) we have Df (0) : A ( B

Syntax

` Γ w` Γ, ?A
` Γ, ?A, ?A

c` Γ, ?A

` Γ,A
d` Γ, ?A

` Γ, !A, !A
c̄` Γ, !A

` Γ
w̄` Γ, !A

` Γ,A
d̄` Γ, !A

Semantic of the dereliction

d : E →?E = (!E ′) expresses the fact that E ( 1 ⊂!E ( 1, ie :

L(E ,R) ⊂ C∞(E ,R)

.
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Spaces of solutions to a differential equations

A differential operator on C∞(Rn,R)

D =
∑
|α|≤n

∂|α|

∂α1x1 · ∂αnxn

For example : D(f ) = ∂nf
∂x1·∂xn .

Theorem(Schwartz)

Under some considerations on D, the space SD(E ,R)′ of
distributions solutions to D(f ) = f is a Nuclear Fréchet space of
functions.

Thus SD(E ,R)′ is an exponential.
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A new exponential

Spaces of Smooth functions Exponentials

C∞(E ,R) C∞′
(E ,R)

SD(E ,R) S ′D(E ,R)
E ′ ' L(E ,R) E ′′ ' E

Linear functions are exactly those in C∞(E ,R) such that for all x :
f (x) = D(f )(0)(x).

∀x , evx(f ) = evx(d̄)(f ).
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Dereliction and co-dereliction for D

For linear functions

d̄ : E → C∞(E ,R)′, x 7→ (f 7→ D(f )(x)).

d : C∞(E ,R)′ → S ′(E ,R), φ 7→ φL(E ,R)

For solutions of Df = f

d̄D : E → C∞(E ,R)′, x 7→ (f 7→ D(f )(x)).

dD : C∞(E ,R)′ → S ′(E ,R), φ 7→ φSD(E ,R)

The map d̄D represents the equation to solve, wile dD represents
the fact that we are for looking solutions in C∞(E ,R).
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Exponentials and invariants

Spaces of Smooth functions Exponentials Equations

C∞(E ,R) C∞(E ,R)

SD(E ,R) S ′D(E ,R)

E ′ ' L(E ,R) E ′′ ' E d ◦ d̄ = Id
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Exponentials and invariants

Spaces of Smooth functions Exponentials PDE

C∞(E ,R) C∞(E ,R)′

SD(E ,R) S ′D(E ,R)

E

S ′(E ,R)

!E
d̄D

dDevE

E ′ ' L(E ,R) E ′′ ' E

E

E ′′

!E
d̄

devE
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The logic of linears PDE’s

Rules

` Γ, !E
d

` Γ,E⊥⊥
` Γ,A

d̄` Γ, !A
` Γ, !E

dD` Γ, S ′(E ,R)

` Γ,A
d̄D` Γ, !A

Cut elimination

E

S ′(E ,R)

!E
d̄D

dDevE

E

E ′′

!E
d̄

devE

Solutions of a linear PDE also verify w and w̄ . If verifying a Kernel
isomorphisms they would also verify c and c̄ .
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An example

Scalar solutions defined on Rn of

∂n

∂x1...∂xn
f = f

are the z 7→ λex1+...+xn .

S ′(Rn)⊗ S ′(RM) ' S ′(Rn+m).

λex1+...+xnµey1+...+ym = λµex1+...+xn+y1+...+ym .

S(R,R)′ verifies w , w̄ (which corresponds to the initial condition of
the differential equation) and c̄ , c .
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Conclusion

The space of solutions to a linear partial differential
equation form an exponential in Linear Logic
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Conclusion

What you get :

I An interpretation of the linear involutive negation of LL in
term of reflexive topological spaces.

I An interpretation of the exponential in terms of distributions.

I An interpretation of ` in term of the Schwartz epsilon
product.

I A generalization of DiLL to linear PDE .

What you could see :

I A constructive Type Theory for differential equations.

I An interpretation of the exponential in terms of Fourier’s
transformation.
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Thank you.
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