Linear PDE as exponentials

(日)

June 2017, ITU, Copenhagen

Towards a Type Theory for Linear Partial Differential Equations

Marie Kerjean

IRIF, Université Paris Diderot kerjean@irif.fr

June 16, 2017

A model with Distributions

Linear PDE as exponentials 0000000 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Linear Logic

A decomposition of the implication

 $A \Rightarrow B \simeq !A \multimap B$

Denotational semantic

We interpret formulas as sets and proofs as functions between these sets.

Denotational semantic of LL

We have a cohabitation between linear functions and non-linear functions.

A model with Distributions

Linear PDE as exponentials 0000000 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Logic

Classical logic $\neg A = A \Rightarrow \bot$ and $\neg \neg A \simeq A$.

Linear Logic features an involutive linear negation :

$$egin{array}{c} A^{\perp}\simeq A \multimap 1 \ & \ A^{\perp\perp}\simeq A \end{array}$$

A model with Distributions

Linear PDE as exponentials

Smoothness

Differentiation

Differentiating a function $f : \mathbb{R}^n \to \mathbb{R}$ at x is finding a linear approximation $d(f)(x) : v \mapsto D(f)(x)(v)$ of f near x.

Smooth functions are functions which can be differentiated everywhere in their domain and whose differentials are smooth.

Differential Linear Logic

A modification of the exponential rules of Linear Logic in order to allow differentiation.

Semantics

For each $f : :A \multimap B \simeq \mathcal{C}^{\infty}(A, B)$ we have $Df(0) : A \multimap B$

co-dereliction

$$\bar{d}: x \mapsto f \mapsto Df(0)(x)$$

Why differential linear logic ?

Differentiation was in the air since the study of Analytic functors by Girard :

$$\bar{d}(x):\sum f_n\mapsto f_1(x)$$

 DiLL was developed after a study vectorial models of LL inspired by coherent spaces : Finiteness spaces (Ehrard 2005), Köthe spaces (Ehrhard 2002).

It leads to differential $\lambda\text{-}calculus$ and applications for probabilistic programming languages.

Normal functors, power series and λ -calculus. Girard, APAL(1988)

Linear PDE as exponentials

Smoothness of proofs

- Proofs are interpreted as graphs, relations between sets, power series on finite dimensional vector spaces, strategies between games: those are discrete objects.
- Differentiation appeals to differential geometry, manifolds, functional analysis : we want to find a denotational model of DiLL where proofs are smooth functions.

TEASING: to get to differential equations.

A model with Distributions

Linear PDE as exponentials 0000000 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Denotational semantics of LL

A model with Distributions

Linear PDE as exponentials

A model with Distributions

Linear PDE as exponentials 0000000 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Denotational semantics of classical linear logic

Linear PDE as exponentials

・ロト ・ 雪 ト ・ ヨ ト

3

Sac

Interpreting LL in vector spaces

Linear PDE as exponentials

3

Sac

Interpreting LL in vector spaces

Linear PDE as exponentials 0000000 000

Sac

Interpreting LL in vector spaces

Linear PDE as exponentials

Interpreting LL in vector spaces

Linear PDE as exponentials

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Interpreting LL in vector spaces

Linear PDE as exponentials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Interpreting LL in vector spaces

A model with Distributions

Linear PDE as exponentials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Interpreting DiLL in vector spaces

 $|E \otimes |F \simeq |(E \times F)$ allows to have a cartesian closed Co-Kleisli category

Linear PDE as exponentials

Interpreting DiLL in vector spaces

 $d \circ \bar{d} = Id_E$ expresses the fact that the differential at 0 of a linear function is the same linear function.

We want to find good spaces in which we can interpret all these constructions, and an appropriate notion of smooth functions.

A model with Distributions

Linear PDE as exponentials 0000000 000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$

Linear PDE as exponentials 0000000 000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff. (2010)
- Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.

A model with Distributions

Linear PDE as exponentials 0000000 000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$

Weak topologies for Linear Logic, K. LMCS 2015.

Linear PDE as exponentials 0000000 000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- ▶ Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- A model of LL with Schwartz' epsilon product, K. and Dabrowski, In preparation.
- Distributions and Smooth Differential Linear Logic, K., In preparation

Linear PDE as exponentials 0000000 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The categorical semantics of an involutive linear negation

Linear Logic features an involutive linear negation :

*-autonomous categories are monoidal closed categories with a distinguished object 1 such that $E \simeq (E \multimap 1) \multimap 1$ through d_A .

$$d_A: \begin{cases} E \to (E \multimap 1) \multimap 1 \\ x \mapsto ev_x : f \mapsto f(x) \end{cases}$$

Linear PDE as exponentials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

*-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous category: \bot neutral for \mathfrak{P} , thus $\bot \simeq \mathbb{R}$, $A \multimap 1$ is $A' = \mathcal{L}(A, \mathbb{R})$.

$$d_A: \left\{ egin{array}{ll} E
ightarrow E'' \ x \mapsto ev_x: f \mapsto f(x) \end{array}
ight.$$

should be an isomophism.

Exclamation

Well, this is a just a category of reflexive vector space.

Linear PDE as exponentials

*-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous category: \bot neutral for \mathfrak{N} , thus $\bot \simeq \mathbb{R}$, $A \multimap 1$ is $A' = \mathcal{L}(A, \mathbb{R})$.

$$d_A: \left\{ egin{array}{ll} E
ightarrow E'' \ x \mapsto ev_x: f \mapsto f(x) \end{array}
ight.$$

should be an isomophism.

Exclamation

Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not closed (eg: Hilbert spaces).

A model with Distributions

Linear PDE as exponentials 0000000 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A model with Distributions

Linear PDE as exponentials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Topological vector spaces

We work with Hausdorff topological vector spaces : real or complex vector spaces endowed with a Haussdorf topology making addition and scalar multiplication continuous.

- ► The topology on *E* determines *E*′.
- The topology on E' determines whether $E \simeq E''$.

We work within the category ${\rm TOPVECT}$ of topological vector spaces and continuous linear functions between them.

A model with Distributions •000000 Linear PDE as exponentials 0000000 000

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.

A model with Distributions

Linear PDE as exponentials 0000000 000

▲□> < @> < E> < E> < E

990

Polarized models of LL

Linear PDE as exponentials

Fréchet and DF spaces

- Fréchet : metrizable complete spaces.
- (DF)-spaces : such that the dual of a Fréchet is (DF) and the dual of a (DF) is Fréchet.

Linear PDE as exponentials 0000000 000

Nuclear spaces

Nuclear spaces are spaces in which for which you can identify the two canonical topologies on tensor products :

 $\forall F, E \otimes_{\pi} F = E \otimes_{\epsilon} F$

A model with Distributions

Linear PDE as exponentials

Nuclear spaces

A polarized ***-autonomous category

A Nuclear space which is also Fréchet or (DF) is reflexive.

Linear PDE as exponentials 0000000 000

Nuclear spaces

We get a polarized model of MALL : involutive negation (_)^_, \otimes , $\Im,$ $\oplus,$ $\times.$

Linear PDE as exponentials 0000000 000

Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes :

 $\mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R})$, $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n},\mathbb{R})$, $\mathcal{H}(\mathbb{C},\mathbb{C})$, ...

Typical Nucléar Fréchet spaces are distributions spaces Schwartz' generalized functions :

 $\mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R})'$, $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n},\mathbb{R})'$, $\mathcal{H}'(\mathbb{C},\mathbb{C})$, ...

The Kernel Theorems $\mathcal{C}^{\infty}_{c}(E,\mathbb{R})'\otimes\mathcal{C}^{\infty}_{c}(F,\mathbb{R})'\simeq\mathcal{C}^{\infty}_{c}(E\times F,\mathbb{R})'$

Linear PDE as exponentials

Distributions and the Kernel theorems Examples of Nuclear Fréchet spaces includes :

 $\mathcal{C}^{\infty}(\mathbb{R}^n,\mathbb{R})$, $\mathcal{C}^{\infty}_c(\mathbb{R}^n,\mathbb{R})$, $\mathcal{H}(\mathbb{C},\mathbb{C})$, ...

Typical Nucléar Fréchet spaces are distributions spaces Schwartz' generalized functions :

 $\mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R})'$, $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n},\mathbb{R})'$, $\mathcal{H}'(\mathbb{C},\mathbb{C})$, ...

The Kernel Theorems $\mathcal{C}^{\infty}(E,\mathbb{R})' \otimes \mathcal{C}^{\infty}(F,\mathbb{R})' \simeq \mathcal{C}^{\infty}(E \times F,\mathbb{R})'$

We define $\mathbb{R}^n = \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})'$. Thanks to the Kernel theorems, ! verifies all the rules of Differential Linear Logic. However, \mathbb{R}^n is not a finite dimensional vector space.

A model with Distributions 0000000

Linear PDE as exponentials

A Smooth differential Linear Logic

 $\mathbb{R}^{n} = \mathcal{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R})' \in \text{NUCL}$ $\mathbb{R}^{n} \otimes \mathbb{R}^{m} \simeq \mathbb{R}^{(n+m)}$

A model with Distributions 000000

Linear PDE as exponentials 0000000 000

Smooth DiLL

A new graded syntax

Finitary formulas : $A, B := X | A \otimes B | A \Im B | A \oplus B | A \times B$. General formulas : $U, V := A | !A | ?A | U \otimes V | U \Im V | U \oplus V | U \times V$

For the old rules

$\vdash \Gamma, A$	<u> </u>	$\vdash \Gamma, ?A, ?A$
$\overline{\vdash \Gamma, ?A}^{a}$	⊢ Γ, ? <i>Α</i>	⊢Γ,?A ^с
$\vdash \Gamma, !A, !A$	<u>⊢ Г</u> ⊮	$\vdash \Gamma, A_{\overline{7}}$
$\vdash \Gamma, !A$	$\vdash \Gamma, !A$	$\vdash \Gamma, !A^{a}$

We have obtained a smooth classical model of DiLL, to the price of Higher Order and Digging $!A \multimap !!A$.

A model with Distributions

Linear PDE as exponentials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Partial Differential Equations as Exponentials

Linear PDE as exponentials ••••••••

Differential Linear Logic

Is a modification of the exponential rules of Linear Logic in order to allow differentiation.

Semantics

For each $f :: A \multimap B \simeq C^{\infty}(A, B)$ we have $Df(0) : A \multimap B$

Syntax

⊢ Г ,,,,	$\vdash \Gamma, ?A, ?A$	$\vdash \Gamma, A$
<u>⊢Γ,?</u> Α ″	$- + \Gamma, ?A$	$\overline{\vdash \Gamma, ?A} d$
$\vdash \Gamma, !A, !A$	<u> </u>	$\vdash \Gamma, A_{-\tau}$
$-\vdash \Gamma, !A$	$\vdash \Gamma, !A$	$\overline{\vdash \Gamma, !A} d$

Semantic of the dereliction

d:E
ightarrow ?E=(!E') expresses the fact that $E\multimap 1\subset !E\multimap 1$, ie :

 $\mathcal{L}(E,\mathbb{R})\subset\mathcal{C}^{\infty}(E,\mathbb{R})$

Linear PDE as exponentials

Spaces of solutions to a differential equations

A differential operator on $\mathcal{C}^{\infty}(\mathbb{R}^n, R)$

$$\mathbf{D} = \sum_{|\alpha| \le n} \frac{\partial^{|\alpha|}}{\partial^{\alpha_1} x_1 \cdot \partial^{\alpha_n} x_n}$$

For example :
$$D(f) = \frac{\partial^n f}{\partial x_1 \cdot \partial x_n}$$
.

Theorem(Schwartz)

Under some considerations on D, the space $S_D(E, \mathbb{R})'$ of distributions solutions to D(f) = f is a Nuclear Fréchet space of functions.

Thus $S_{\mathrm{D}}(E,\mathbb{R})'$ is an exponential.

A model with Distributions

Linear PDE as exponentials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

```
A new exponential
```

Spaces of Smooth functions	Exponentials
$\mathcal{C}^\infty(E,\mathbb{R})$	$\mathcal{C}^{\infty'}(E,\mathbb{R})$
$S_{\mathrm{D}}(E,\mathbb{R})$	$S_{\mathrm{D}}'(E,\mathbb{R})$
${\sf E}'\simeq {\cal L}({\sf E},{\Bbb R})$	$E'' \simeq E$

Linear functions are exactly those in $C^{\infty}(E, \mathbb{R})$ such that for all x : f(x) = D(f)(0)(x).

$$\forall x, ev_x(f) = ev_x(\bar{d})(f).$$

Linear PDE as exponentials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Dereliction and co-dereliction for D

For linear functions

$$ar{d}: E o \mathcal{C}^{\infty}(E, \mathbb{R})', x \mapsto (f \mapsto D(f)(x)).$$

 $d: \mathcal{C}^{\infty}(E, \mathbb{R})' o S'(E, \mathbb{R}), \phi \mapsto \phi_{\mathcal{L}(E, \mathbb{R})}$

For solutions of Df = f

$$\begin{split} \bar{d}_{\mathrm{D}} &: E \to \mathcal{C}^{\infty}(E, \mathbb{R})', x \mapsto (f \mapsto \mathrm{D}(f)(x)). \\ d_{\mathrm{D}} &: \mathcal{C}^{\infty}(E, \mathbb{R})' \to S'(E, \mathbb{R}), \phi \mapsto \phi_{S_{\mathrm{D}}(E, \mathbb{R})} \end{split}$$

The map \overline{d}_D represents the equation to solve, wile d_D represents the fact that we are for looking solutions in $\mathcal{C}^{\infty}(E, \mathbb{R})$.

A model with Distributions

Linear PDE as exponentials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exponentials and invariants

Spaces of Smooth functions	Exponentials	Equations
$\mathcal{C}^\infty(E,\mathbb{R})$	$\mathcal{C}^\infty(E,\mathbb{R})$	
$S_{\mathrm{D}}(E,\mathbb{R})$	$S_{\mathrm{D}}'(E,\mathbb{R})$	
${\mathcal E}'\simeq {\mathcal L}({\mathcal E},{\mathbb R})$	$E'' \simeq E$	$d \circ \bar{d} = Id$

Linear PDE as exponentials

Exponentials and invariants

Spaces of Smooth functions	Exponentials	PDE
$\mathcal{C}^\infty(E,\mathbb{R})$	$\mathcal{C}^\infty(E,\mathbb{R})'$	
$\mathcal{S}_{\mathrm{D}}(\mathcal{E},\mathbb{R})$	$\mathcal{S}_{\mathrm{D}}^{\prime}(\mathcal{E},\mathbb{R})$	$E \xrightarrow{\overline{d}_{\mathrm{D}}} !E$ $ev_{E} \xrightarrow{\downarrow d_{\mathrm{D}}} S'(E,\mathbb{R})$
${\sf E}'\simeq {\cal L}({\sf E},{\Bbb R})$	$E'' \simeq E$	$E \xrightarrow{\bar{d}} !E$ $ev_E \xrightarrow{\downarrow d}$ E''

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A model with Distributions

Linear PDE as exponentials ○○○○●○ ○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The logic of linears PDE's

Solutions of a linear PDE also verify w and \bar{w} . If verifying a Kernel isomorphisms they would also verify c and \bar{c} .

A model with Distributions

Linear PDE as exponentials

An example

Scalar solutions defined on \mathbb{R}^n of

$$\frac{\partial^n}{\partial x_1 \dots \partial x_n} f = f$$

are the $z \mapsto \lambda e^{x_1 + \dots + x_n}$.

$$S'(\mathbb{R}^n) \otimes S'(\mathbb{R}^M) \simeq S'(\mathbb{R}^{n+m}).$$

 $\lambda e^{x_1 + \dots + x_n} \mu e^{y_1 + \dots + y_m} = \lambda \mu e^{x_1 + \dots + x_n + y_1 + \dots + y_m}.$

 $S(\mathbb{R}^{\mathbb{R}})'$ verifies w, \overline{w} (which corresponds to the initial condition of the differential equation) and \overline{c}, c .

A model with Distributions

Linear PDE as exponentials

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Conclusion

The space of solutions to a linear partial differential equation form an exponential in Linear Logic

Conclusion

What you get :

- An interpretation of the linear involutive negation of LL in term of reflexive topological spaces.
- > An interpretation of the exponential in terms of distributions.
- ► An interpretation of 𝔅 in term of the Schwartz epsilon product.
- A generalization of DiLL to linear *PDE*.

What you could see :

- A constructive Type Theory for differential equations.
- An interpretation of the exponential in terms of Fourier's transformation.

A model with Distributions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you.