Thomas Ehrhard’s 60 birthday

0 is for Dialectica

Marie Kerjean

CNRS & LIPN, Université Sorbonne Paris Nord

Work in collaboration with Pierre-Marie Pédrot

1/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

2/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

2/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

2/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

Il

J

e
T

2/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

4= o=
= =0

a duydv o
P o)

1

\
/

Bls Bl B Bl B

Ele Bls 8]s

2/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

1

\
/

2/38

Thank you Thomas

... For the opportunity to finally understand differentiation.

What’s differentiation ?

Il

/

~~

/
\\\\\\:::#;é//)<:/
ey

That’s differentiation !

O(Az.t)
ox

St (DO) - (2)

2/38

What’s this talk is about

Joining Dialectica and Differential \-calculus
through
Reverse Differentiation

3/38

What’s this talk is about

Joining Dialectica and Differential Linear Logic
through
Reverse Differentiation

3/38

What’s this talk is about

Joining Dialectica and Differential Categories
through
Reverse Differentiation

3/38

What’s this talk is about

Joining Dialectica and Differential \-calculus
through
Reverse Differentiation

3/38

Godel’s Dialectica Transformation

LA GY =@y @) [A @ %2 A R0,).

. (F 2 G = @3VZ) (yw) [A [y, Z(yw), 5) > BV (@), w, u)].

C(CVFY =@Z) () A (1 Z (), 3. Standpunktes. Dialectica.

1

2. (FV G =@yol) @) [{=0N\A @ 22)V-I=1\B(@»wu)]. @ Kurt Godel (1958). Uber eine
3. [F) =@Y) (9 A(Y (), 2 7). bisher noch nicht beniitzte

;, [@9)T]) = @Asy) DAY, 2 2). Erweiterung des finiten

6.

» Validates semi-classical axioms:
» Markov’s principle : ——3JdxA — JxA when A is decidable.

» Numerous applications :

» Soudness results
» Proof mining: applying Dialectica to theorems in analysis extract
quantitative information.
”There are infinitely many prime numbers.”

I

”For any m there exists some m < p < [e™77] such that p is prime.

4/38

And now for something completely different :
Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

x = xd @) = 2z,
Eg : 2=y+cos(z?) z2=cos(z1) b= —xfsin(z)
z2=y+ 1 2=y + 2x91)

Derivative of a sequence of instruction

I

sequence of instruction x sequence of derivatives

Forward Mode differentiation [Wengert, 1964]

(x1,2)) = (x2,2h) — (2,2').

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]

T1 = xo — 2 — 2/ = xh —) while keeping formal the unknown derivative.

5/38

I hate graphs

Du(f 09) = Dg(u)f o Du(g)

» Forward Mode differentiation :

g(u) = Dug — f(g(u)) = Dg(u)f — Dg(u)f o Dy(g)-
> Reverse Mode differentiation:

g(“’) — f(g(u)) — Dg(u)f — Du(g) — D,q(u)f © Du(g)

The choice of an algorithm is due to complexity considerations:
» Forward mode for fog: R — R™.
» Reverse mode for fog:R"” - R

~ Differentiable programming is a new research area triggered by the advances of
deep learning algorithms on neural networks, it tries to attach two very old domains:
lambda-calculus and automatic differentiation, with correctness and modularity goals
in mind.

6/38

Functorial Forward AD

Du(fog) = Dq(u)f ODu(g)

Non-functorial !!!

How to make differentiation functorial ? Make it act on pairs !

Forward Mode differentiation :

g:E=>F~Dg:E=FE —F.

Functorial forward differentiation :

ExFE—FxF
Do) { (0,2) = (F(@), (Daf - 2))

7/38

Reverse functorial differentiation

Linear implication
At=A -1 =LAR) =A

8/38

Reverse functorial differentiation

Linear implication
At=A—-1=L(AR)=A

» Reverse Mode differentiation:
g(“) — f(g(u)) — Dz](u)f — Dg(u)f © Du(g)

Dy(g): F' - E';{+ (o D,g

g:E=F ~ Dg:E= FL o EL
[Mazza, Pagani, POPL2020]

8/38

Reverse functorial differentiation

Linear implication
At=A—-1=L(AR)=A

» Reverse Mode differentiation:
g(“) — f(g(u)) — Dz](u)f — Dg(u)f © Du(g)

Dy(g): F' - E';{+ (o D,g

g:E=F ~ Dg:E= FL o EL
[Mazza, Pagani, POPL2020]

» Reverse functorial differentiation :

(£, D(f): (BE= F) x (B = F* — E*)

8/38

Outline of the talk

Reverse differentiation and differentiable programming.

Dialectica acting on formulas.

e Dialectica acting on A-terms.

Factorizing Dialectica through differential linear logic.

Applications and related work.

9/38

A Dialectica Transformation

» Godel Dialectica transformation [1958] : a translation from intuitionistic
arithmetic to a finite type extension of primitive recursive arithmetic.

A~ Fu: W(A),Va : C(A), AP[u, x]

> De Paiva [1991]: the linearized Dialectica translation operates on Linear
Logic (types) and A-calculus (terms).

> Pedrot [2014] A computational Dialectica translation preserving
[B-equivalence, via the introduction of an ”abstract multiset constructor”
on types on the target.

10 /38

Godel’s Dialectica

. (F A G)’ = (ayv) (zw) [A (y’ 2, .'L') A B (I), 1, ll)]

.(FV G =@y () [t=0NA®Y, z,2)-\/i=1AB(,wu).
[FY =@AY) (s2) A (Y (s), z, x).

4. [As)F]" =Q@Asy) (@ Ay, z, x).

5 (F> G = SEIVZ) (yw) [A (_y, Z (yw),) D B (V (), w, u)].

6. ('F)Y =QZ)(y) Ay Zy),).

W N =

@ Kurt Godel (1958). Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunktes. Dialectica.

11/38

Godel’s Dialectica

» Validates semi-classical axioms:

» Markov’s principle : =—3xA — JxA when A is decidable.
» Independant of premises : (A — 3zB) — (Iz.(A — B))

» Numerous applications :

> Soudness results
» Proof mining

A further distinguishing feature of the D-interpretation is its nice behavior with
respect to modus ponens. In contrast to cut-elimination, which entails a global (and
computationally infeasible) transformation of proofs, the D-interpretation extracts
constructive information through a purely local procedure: when proofs of ¢ and
© — 1 are combined to yield a proof of ¢, witnessing terms for the antecedents of
this last inference are combined to yield a witnessing term for the conclusion. As
a result of this modularity, the interpretation of a theorem can be readily obtained
from the interpretations of the lemmata used in its proof.

@ Jeremy Avigad and Solomon Feferman (1999). Gédel’s functional (”Dialectica”)
interpretation

12/38

A peek into Dialectica interpretation of functions

(A— B)p = 3fg¥zy(Ap(z, gzry) — Bp(fz,y))

Usual explanation : least unconstructive prenexation.
» Start from 3z, Vu, Apz,u] — Jy, Vv, Bply,v].
» Obvious prenexation : V& (Yu, Ap[z,u] — 3y, Vv, Bply,v])
> Weak form of IP : Vax3y (Vu, Ap[z,u] — Vv, Bply,v])
» Prenexation : Vz3y, Vv, V=—3u (Ap|z,u] — Bply,v]).
» Markov : Va,3y, Vv, Ju(Aplz,u] — Bply,v])
> Axiom of choice : 3f,3g, Vu, Vv, (Ap(u, guv) — Bp|[fu,v]).

Dynamic behaviour : agrees to a chain rule.

Mathematical meaning : it’s some kind of approximation.

13/38

Dialectica verifies the chain rules

(A= B)plo1;¢1,ur;v1]:= Ap(ur,th1 us v1) = Bp(P1 u1,v1)
(B = C)plpa; o, uz; v2] := Bp(uz, 2 uz v2) = Cp(pa uz, va)
(A= C)plos; s, ug; vs):= Ap(us, Y3 uz vs) = Cp(¢sus,v3)

The Dialectica interpretation amounts to the following equations:

Uz = Uy Y3 uz v = 1 Uy v1
VU3 = U2 P2 Uz = D1 U1
Uz = ¢1U1 Vg = ¢1 U1 V1

which can be simplified to:

o3(uz) = qbg (6’)1 uz) composition of functions

s * (ugvs) = o (01 us) (11 us vs) composition of their differentials

14/ 38

Types !
Programs and variable are typed
by logical formulas which describe their behavior
witness
——
A~ Jz: W(A),Vu:C(A), Aplz, u]

———
opponent

Witness and counter types :

C(A = B) = C(A) x C(B)

W(A = B) =(W(A) = W(B)) x (W(A) = C(B) = C(A))

15 /38

Types !
Programs and variable are typed
by logical formulas which describe their behavior

global witness

A~3F z:WA) ¥V u:C(A) ,Aplz,u]
——
local opponent

Witness and counter for implication types :

C(A = B) = W(A) x C(B)

function
W(A = B) = (W(A) = W(B)) x | W(A) = C(B) = C(4)

reverse derivative

Reverse Mode differentiation:

Functorial : (h, 5h (A= B) x (A= Bt — A})

However:

» Having the same type does not mean you’re the same program

» We (linear logicians) know what program differentiation is

15 /38

The computational Dialectica : a reverse Differential A-calculus

16/38

A computational Dialectica

Making Dialectica act on A-terms instead of formulas:

An abstract multiset 9t (—)
I'Emp:9MA I'Emy:MA

T'Fo:MA T'Emi@®msg:MA
T'Ht: A T'Em:MA r-f:A=MB

LH{t}:MA FEm>=f:MB
WA= B) = (WA =W(B))

C(A = B)

i
=
=
X
Q
&

17/38

Pédrot’s Dialectica Transformation

Soundness [Ped14]

If ' ¢ : A in the source then we have in the target
> W() ¢ : W(A)
> W) k¢, : C(A) = MC(X) provided z : X €T

A global and a local transformation

P = E Az.t)* = (Az.t®, A\ma.t, m)
x, = Mw.{m} (Az.t), = Ar.(Az.t,) 7172
z, = M@ifx#y (tu)* = (t*1) u®

(t u)y == M. (t, (u, 7)) ® ((t°.2) mu® >=u,)

18/38

Flashback: Differential A-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of sequences,
it introduces a differentiation of A-terms.

D(\x.t) is the linearization of \x.t, it substitute x linearly, and then it
remains a term t' where T 1is free.

Syntax:
A ST, UV 2=0]|s|s+T
A® s tu, v n=x | Ax.s | sT | Ds-t
Operational Semantics:

(Az.s)T —p s[T/x]
D(\z.s) -t =g,)\1% -t

where % -t is the linear substitution of = by ¢ in s.

19/38

The linear substitution ...

.. which is not exactly a substitution

aU _ tifx=y o o ot) ou 1
a0 1 0 otherwise a(tu)"s - (a "s)““'(Dt'(% -s))u
9 8 9 Os u
00 o 9s ou

oz 170 Go(stw) t=22 4 o0t

% -t represents s where x is linearly (i.e. one time) substituted by t.

20/38

The linear substitution ...

The computational Dialectica

dy

ox

={ tife=y
0 otherwise

—{ Tifx=y
b () otherwise

3()\y.s) t=Ay.—

88
Ox

0 ot ou
a(tu) 5= (a -s)u+ (Dt - (az s))u

(tw)y = Am. (ty (u®,m)) ® ((t°.2) Tu® >=uy)

DBS

9 ou
%(D&u)qﬁ_ (%%)'U—I—D&(%.t)
0 0s ou
%(S—i_u). oz t+8x ot

20/38

Tracking differentiation in Dialectica

Soundness [Ped14]

IfT' ¢ : A in the source then we have in the target
> W(T) - t*: W(A)
> W) k¢, : C(A) = MC(X) provided z : X €T

21/38

Tracking differentiation in Dialectica

Soundness [Ped14]

If T'F¢: A in the source then we have in the target
> W(T) F¢t*: W(A)
> W)kt : C(A) = MC(X) provided z : X €T.

That’s reverse differentiation

> (_)°.2 obeys the chain rule, (-)°® is the functorial differentiation.

» t,. is contravariant in x, representing a reverse linear substitution.

21/38

Tracking differentiation in Dialectica

Soundness [Ped14]

IfT'F¢: A in the source then we have in the target
> W()F¢*: W(A)
> W)kt : C(A) = MC(X) provided = : X €T.

That’s reverse differentiation

> (_)°.2 obeys the chain rule, (_)° is the functorial differentiation.

» ¢, is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]

[u>=1t,[+ 77]]] =g, Az ([u] ((Oz.t][7))z))

21/38

A Linear Logic Refinement

22/38

Differential Linear Logic

Fl:A—~B Ff:'A—B p

F¢:1A— B FDyf:A—B

A linear proof From a non-linear proof

is in particular non-linear. we can extract a linear proof
faC™(R,R)

'{ (0)

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)

23 /38

Exponential rules of Differential Linear Logic

FT FT,f:7A4,9:7A FT,0: A
FT,cesty : 7A FT,fg:7A FT,0:7A
FT & FT,¢:1A I—A,w:!Aé FT,z: A d
FT,d0: 1A FD,Apx¢: 1A FT,Do()(x): 1A
MEx: A D
MEo, 1A

24 /38

Dialectica factorizes through Linear Logic

The call by name arrow
A=B:=!A—-B:=(1A)'®B

w(AL) = C(A) C(AY) = W(A)
W(A®B) = W(A)+W(B) C(A®B) = C(A)xC(B)
W(IA) = W(A) C(1A) = W(A) = C(A)

W(A®B) = W(A) x W(B)

C(A®@B) := (W(A)=C(B))x (W(B)=C(A4)

“V LL
\‘:
A X W At X

ﬁ Valeria de Paiva, 1989, A dialectica-like model of linear logic.

25 /38

Dialectica factorizes through Differential Linear Logic

Witnesses are functorial reverse derivative
W(A = B) =(W(A) = W(B)) x (W(A) = C(B) = C(4)) J

W(A) = 1W(A)
W(A® B)
C(A® B)

W(A — B)
C(A — B)

IfTF Ain LL, then W(T') F W(A) in classical DILL. J

ax

FA Al "
caas 4 Teaaar W
F7A, A IAL © Tr7a
TF74.4

cut

26 /38

Dialectica factorizes through Differential Linear Logic

The economical translation

[A= B].:=!A—B
[Ax B].:=A&B
[A+B].:=Ae B

L —> © » IDiLL

[[_]]ET l

+,X +,X
’ —> ’
A W C A

IDILL : Intuitionnistic Differential Linear Logic ? Oh no ...

27 /38

Dialectica is differentiation in categories

28 /38

What’s categorical differentiation 7

To cook a good differential category, one needs :
> A category of regular/continuous/non-linear functions
C(A,B)=!A—-B.
> A category of linear functions, in which differentiation embeds
Z(A,B)=A — B.
» Something which linearizes :
d: A=A
» A notion of duality, if one wants to encode reverse. differentiation.

~ Basically, one wants a categorical model of DILL.

29 /38

Dialectica categories

Categories representing specific relations

Consider a category C. Dial(C) is constructed as follows:
» Objects : relations « CU x X, B CV x Y.
» Maps from « to (3 :

(fU—=SV,F:UxY = X)

» Composition : the chain rule !

Consider
(fLF): aC(AX) —» BC(BY)
and (9,G): BC(BY) — vC(C,2)

two arrows of the Dialectica category. Then their composition is defined as

(9,G) o (f, F) := (9o f,(a,2) = G(f(a), F(a, 2))).

30/38

Dialectica categories through Differential Categories
In a x-autonomous differential category : from f :!A — B one constructs :

D(f) e L0A® BE, AL).

Dialectica categories factorize through differential categories
If £ is a model of DILL such that £, has finite limits:

El — @(ﬁ!)
A — AxAt
o= (1D

We have an obvious forgetful functor:

@(fl) — fg
U:{ aCAxX — A
(f. F) = f

which is left adjoint to R, forming a reflection on % ..
To be declined in reverse/cartesian differential categories...

31/38

Recap

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

32 /38

Recap

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

{ Linear Logic [Gir87]

Vectorial Models

A-calculus Normal functors

32 /38

Recap

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

[Linear Logic [Gir87]

Vectorial Models

[Dialectica [G6d58])

Min. Logic

Automatic
Differentiation [80s]

Normal functors

32 /38

Recap

Programs Logic Semantics

fun (x:A)-> (£:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

[Differentiable Programming]
X
Differential W, (Differential Linear
A-calculus [Ehr04] L Logic [Ehrhard06]

Vectorial Models

[Linear Logic [Gir87]

Automatic - : T
Differentiation [80s] ‘ [Dialectica [God58])

A good point for logicians : Gédel invented Dialectica 40 years before reverse
differentiation was put to light

Normal functors J

32/38

Recap

Programs Logic Semantics

fun (x:A)-> (¢:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differentiable Programming]

\

Differential W (Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

Vectorial Models

[Linear Logic [Gir87]

Automatic
Differentiation [80s]

A-calculus Normal functors]

32/38

Dialectica [G6d58]

Conclusion and applications

33/38

Take home message:
Dialectica is functorial reverse differentiation,

extracting intensienal local content from proofs.

A new semantical correspondance between computations and mathematics :
intentional meaning of program is local behaviour of functions.

Program Proof Function
Quantitative Resources Linearity
Control Classical Principles | Differentiation
Intentional Local
Extentional Global

Related work and applications:
» Markov’s principle and delimited continuations on positive formulas.

» Proof mining and backpropagation.

34/38

Dialectica is differentiation ...

The codereliction of differential proof nets: In terms
of polarity in linear logic [23], the V-—-free constraint
characterizes the formulas of intuitionistic logic that can be
built only from positive connectives (&, ®, 0, 1, !) and the
why-not connective (“?”). In this framework, Markov’s prin-
ciple expresses that from such a V-—-free formula A (e.g.
7@, (PA(x)®?B(x))) where the presence of “7” indicates
that the proof possibly used weakening (efq or throw) or
contraction (catch), a linear proof of A purged from the
occurrences of its “7” connective can be extracted (meaning
for the example above a proof of @.(A(x) ® B(x))).
Interestingly, the removal of the “7”, ie. the steps from
7P to P, correspond to applying the codereliction rule of
differential proof nets [24].

... We knew it already !

Differentiation : ("P=(P —-1l)= 1)+ ((P—-l) —1)=P)

@ Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS

10 .

35 /38

Differentiation and delimited continuations

Herbelin Lics’10

Markov’s principle is proved by allowing catch and throw operations on
hereditary positive formulas.

— AXIOM
b:TrFapb:T
THROW
AXIOM b:Tr,.7 throw,b: L N
a: T Fegra:—-—-T Fa.7 Ab.throw, b: =T g
a: T Far a(Ab.throw, b) @ L .
a: =T ka7 efqa(Ab.throw,b): T E
CATCH
a: -1+ catch, efqa(Ab.throw, b) : T
t Aa.catch, efq a(Ab.throw,b): =—T — T

Figure 3. Proof of M P

36 /38

Proof Mining

Extracting quantitative information from proofs.

Effective moduli from ineffective uniqueness proofs. An unwinding of
de La Vallée Poussin’s proof for Chebycheff approximation®

Ulrich Kohlenbach
Fachbereich Mathematik, J.W. Goethe Universitiit
Robert Mayer Str. 6 10, 6000 Frankfurt am Main, FRG

Abstract
We consider uniqueness theorems in classical analysis having the form

(+) Yu € U v, wa € Vi (Glu, 1)

Glu,vn) = v = va),

where U,V are complete separable metric spaces, V, is compact in V and G U x V = Risa
constrnctive function.
If (+) is proved hy arithmetical means from analytical assumptions

(++) Vo € X3y € V¥ € Z(F(r.y.2) = 1)

only (where X,¥,Z are complete separable metric spaces, ¥, C ¥ is compact and
F X xY xZ - R constructive), then we can extract from the proof of (+4) = (+) an
effective modulus of uniqueness, i.c.

(44 +) Yu €U, vy, 02 € Vi k € IN[|G(u, 1), [Glu, v} €2 "4 o5 dy(wr,00) <2°¥)

37/38

Proof Mining

Extracting quantitative information from proofs.

Yu, v1v9, Pol(u,v1) = Pol(u, ve) — v; = vs
I
Yu, v102, Ve > 0,3 > 0, ||G(u,v1) — G(u,v2)|| < n — dy(vi,v2) <€

U
3, Vu, k, v1va, ||G(u, v1) — G(u, v2)|| < 27¢F) 5 dy (vy,v9) < 27F.

37/38

Proof Mining

Markov’s principle and the independence of premises are necessary for most of
mathematical analysis proofs :

Proof mining allows to refine these proofs by taking away these principles as
guaranteed by (some variant of) Dialectica’s transformation.

Conjecture

Does it differentiate the function (e —) in :

Y, 1102, Ve > 0,30 > 0, ||G(u,v1) — G(u,v2)|| < n — dy(vi,v2) < €

Is proof mining (based on) reverse differentiation applied to proofs?

What else can we explain by differentiation 7

38/38

