(日)

Chocola, LYON, June 2017

Smooth models of Linear Logic : Towards a Type Theory for Linear Partial Differential Equations

Marie Kerjean

IRIF, Université Paris Diderot kerjean@irif.fr

Wanted

A model of Classical Linear Logic where proofs are interpreted as smooth functions.

Obtained

A Smooth Differential Linear Logic where exponentials are spaces of solutions to a Linear Partial Differential Equation.

э.

SQA

◆□▶
▲□▶

590

Proofs and smooth objects

An interpretation for ! and \neg

A model with Distributions

Linear PDE as exponentials

(日) (同) (日) (日)

Sac

Smooth models of Linear Logic

Differentiation

Differentiating a function $f : \mathbb{R}^n \to \mathbb{R}$ at x is finding a linear approximation $d(f)(x) : v \mapsto D(f)(x)(v)$ of f near x.

Smooth functions are functions which can be differentiated everywhere in their domain and whose differentials are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Smooth models of Linear Logic

We work through denotational models of Linear Logic. Specifically:

Computation	Logic	Category
Term	Proof	Morphism
Туре	Formula	Object
Evaluation	Normalization	Equality

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Smooth models of Linear Logic

We work through denotational models of Linear Logic. Specifically:

Computation	Logic	Vector spaces
Term	Proof	Function
Туре	Formula	Top. vector space
Evaluation	Normalization	Equality

Smooth models of Linear Logic

$$A,B:=A\otimes B|1|A\, \mathfrak{P}\,B|ot|A\oplus B|0|A imes B| ot|!A|$$
? A

A decomposition of the implication

$$A \Rightarrow B \simeq !A \multimap B$$

A decomposition of function spaces

 $\mathcal{C}^\infty(E,F)\simeq \mathcal{L}(!E,F)$

The dual of the exponential : smooth scalar functions

 $\mathcal{C}^{\infty}(E,\mathbb{R})\simeq \mathcal{L}(!E,\mathbb{R})\simeq !E'$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Smooth models of Classical Linear Logic

A Classical logic $\neg A = A \Rightarrow \bot$ and $\neg \neg A \simeq A$.

Linear Logic features an involutive linear negation :

$$egin{array}{ll} A^{\perp}\simeq A \multimap 1 \ A^{\perp\perp}\simeq A \ E''\simeq E \end{array}$$

The exponential is the dual of the space of smooth scalar functions

$$!E\simeq (!E)''\simeq \mathcal{C}^\infty(E,\mathbb{R})'$$

Smooth models of Differential Linear Logic

Semantics

For each $f :: A \multimap B \simeq C^{\infty}(A, B)$ we have $Df(0) : A \multimap B$

The rules of DiLL are those of MALL and :

co-dereliction

$$\bar{d}: x \mapsto f \mapsto Df(0)(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Why differential linear logic ?

Differentiation was in the air since the study of Analytic functors by Girard :

$$\bar{d}(x):\sum f_n\mapsto f_1(x)$$

 DiLL was developed after a study of vectorial models of LL inspired by coherent spaces : Finiteness spaces (Ehrard 2005), Köthe spaces (Ehrhard 2002).

Smoothness of proofs

 Traditionally proofs are interpreted as graphs, relations between sets, power series on finite dimensional vector spaces, strategies between games: those are discrete objects.

 Differentiation appeals to differential geometry, manifolds, functional analysis : we want to find a denotational model of DiLL where proofs are general smooth functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mathematical challenges : interpreting ! and A^{\perp}

SQA

A categorical model

Every connective of Linear Logic is interpreted as a (bi)functor within the chosen category : transforming sets into sets, vector spaces into vector spaces, complete spaces into complete spaces.

Linearity and Smoothness

We work with vector spaces with some notion of continuity on them : for example, normed spaces, or complete normed spaces (Banach spaces).

・ロト ・ 四ト ・ ヨト ・ ヨト

э.

990

Interpreting LL in vector spaces

・ロト ・ 雪 ト ・ ヨ ト

э.

590

Interpreting LL in vector spaces

A D > A P > A B > A B >

Э

Interpreting LL in vector spaces

Interpreting LL in vector spaces

¹Work with Y. Dabrowski

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$

Challenges

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- *Convenient differential category* Blute, Ehrhard Tasson Cah. Geom. Diff. (2010)
 - Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- Weak topologies for Linear Logic, K. LMCS 2015.

Challenges

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- ▶ Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- A model of LL with Schwartz' epsilon product, K. and Dabrowski, In preparation.
- Distributions and Smooth Differential Linear Logic, K., In preparation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The categorical semantics of an involutive linear negation

Linear Logic features an involutive linear negation :

*-autonomous categories are monoidal closed categories with a distinguished object 1 such that $E \simeq (E \multimap \bot) \multimap \bot$ through d_A .

$$d_A: \begin{cases} E \to (E \multimap \bot) \multimap \bot \\ x \mapsto ev_x: f \mapsto f(x) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

*-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous category: \bot neutral for \mathfrak{N} , thus $\bot \simeq \mathbb{R}$, $A \multimap \bot$ is $A' = \mathcal{L}(A, \mathbb{R})$.

$$d_A: \begin{cases} E \to E'' \\ x \mapsto ev_x : f \mapsto f(x) \end{cases}$$

should be an isomorphism.

Exclamation

Well, this is a just a category of reflexive vector space.

*-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous category: \bot neutral for \mathfrak{N} , thus $\bot \simeq \mathbb{R}$, $A \multimap \bot$ is $A' = \mathcal{L}(A, \mathbb{R})$.

$$d_A: \left\{ egin{array}{ll} E
ightarrow E'' \ x\mapsto ev_x: f\mapsto f(x) \end{array}
ight.$$

should be an isomorphism.

Exclamation

Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not closed (eg: Hilbert spaces).

Internal completeness

A way to resolve this is to work with pairs of vector spaces : the Chu Construction (used for coherent Banach spaces), or its internalization through topology (Weak or Mackey spaces).

The Chu construction

- ▶ Objects : (*E*₁, *E*₂).
- ▶ Morphisms : $(f_1 : E_1 \rightarrow F_1, f_2 : F_2 \rightarrow E_2) : (E_1, E_2) \rightarrow (F_1, F_2)$
- Duality : $(E_1, E_2)^{\perp} = (E_2, E_1)^{\perp}$.

These model are disapointing, even as *-autonomous categories : any vector space can be turned into an object of this category.

We want reflexivity to be an internal property of our objects

An exponential for smooth functions

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty$.

An exponential for smooth functions

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

An exponential for smooth functions

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

Girard's tentative to have a normed space of analytic functions fails.

- We want to use functions.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

An exponential for smooth functions

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

Girard's tentative to have a normed space of analytic functions fails.

- We want to use functions.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

We can't restrict ourselves to normed spaces.

Curryfication for linear and smooth functions

In a model of LL, you have

- Monoidal closed : $\mathcal{L}(E \otimes F, G) \simeq \mathcal{L}(, \mathcal{L}(F, G))$.
- Cartesian closed : $\mathcal{C}^{\infty}(E \times F, G) \simeq \mathcal{C}^{\infty}(E, \mathcal{C}^{\infty}(F, G)).$

Once you have monoidal closedeness, this sums up to a rule on exponentials :

Seely's formula $|E \otimes |F \simeq |(E \times F)$

Thus, in a category of reflexive real vector spaces,

$$\mathcal{C}^{\infty}(E,\mathbb{R})'\otimes\mathcal{C}^{\infty}(F,\mathbb{R})'\simeq\mathcal{C}^{\infty}(E\times F,\mathbb{R})'.$$

A D > A P > A B > A B >

э

Sac

An exponential for differentiation

- The codereliction d
 _E: E →!E = C[∞](E, ℝ)' encodes the possibility to differentiate.
- In a ★-autonomous category d_E : E →?E encode the fact that linear functions are smooth.

$$d_{E}: \left\{ \begin{array}{l} !E = \mathcal{C}^{\infty}(E,R)' \to E'' \simeq E\\ \phi \in \mathcal{C}^{\infty}(E,R)' \mapsto \phi_{\mathcal{L}(E,\mathbb{R})} \end{array} \right.$$

Differentiation's slogan

"A linear function is its own differential"

$$d_E \circ \bar{d}_E = Id_E$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A model with Distributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Topological vector spaces

We work with Hausdorff topological vector spaces : real or complex vector spaces endowed with a Hausdorff topology making addition and scalar multiplication continuous.

- The topology on E determines E'.
- The topology on E' determines whether $E \simeq E''$.

We work within the category ${\rm TOPVECT}$ of topological vector spaces and continuous linear functions between them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.

・ロン ・雪と ・雨と

æ

990

Polarized models of LL

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

590

Fréchet and DF spaces

- Fréchet : metrizable complete spaces.
- (DF)-spaces : such that the dual of a Fréchet is (DF) and the dual of a (DF) is Fréchet.

・ロト ・ 一下・ ・ モト・ ・ モト・

æ

990

Fréchet and DF spaces

These spaces are in general not reflexive.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

SQA

The ε product

 $E \varepsilon F = (E'_c \otimes_{\beta e} F'_c)'$ with the topology of uniform convergence on products of equicontinuous sets in E', F'.

The ε -product is designed to glue spaces of scalar continuous functions to a codomain :

$$\mathcal{C}(X,\mathbb{R})_c \varepsilon F \simeq \mathcal{C}(X,F)_c.$$

Theorem (Dabrowski)

The ε product is associative in the *-autonomous category of Mackey Mackey-complete Schwartz tvs.

Nuclear spaces

Nuclear spaces are spaces in which one can identify the two canonical topologies on tensor products :

 $\forall F, E \otimes_{\pi} F = E \otimes_{\epsilon} F$

Nuclear spaces

A polarized *-autonomous category

A Nuclear space which is also Fréchet or dual of a Fréchet is reflexive.

・ロト ・聞ト ・ヨト ・ヨト

э.

590

Nuclear spaces

We get a polarized model of MALL : involutive negation (_)^ , \otimes , $\Im,$ $\oplus,$ $\times.$

Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes :

```
\mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R}), \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n},\mathbb{R}), \mathcal{H}(\mathbb{C},\mathbb{C}), ...
```

Typical Nuclear DF spaces are distributions spaces Schwartz' generalized functions :

 $\mathcal{C}^{\infty}(\mathbb{R}^n,\mathbb{R})'$, $\mathcal{C}^{\infty}_{c}(\mathbb{R}^n,\mathbb{R})'$, $\mathcal{H}'(\mathbb{C},\mathbb{C})$, ...

The Kernel Theorems $\mathcal{C}^{\infty}_{c}(E,\mathbb{R})'\otimes\mathcal{C}^{\infty}_{c}(F,\mathbb{R})'\simeq\mathcal{C}^{\infty}_{c}(E\times F,\mathbb{R})'$

Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes :

 $\mathcal{C}^{\infty}(\mathbb{R}^n,\mathbb{R}),\ \mathcal{C}^{\infty}_c(\mathbb{R}^n,\mathbb{R}),\ \mathcal{H}(\mathbb{C},\mathbb{C}),\ ..$

Typical Nuclear DF spaces are distributions spaces Schwartz' generalized functions :

 $\mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R})'$, $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n},\mathbb{R})'$, $\mathcal{H}'(\mathbb{C},\mathbb{C})$, ...

The Kernel Theorems $\mathcal{C}^{\infty}(E,\mathbb{R})' \otimes \mathcal{C}^{\infty}(F,\mathbb{R})' \simeq \mathcal{C}^{\infty}(E \times F,\mathbb{R})'$

 $!\mathbb{R}^{n}=\mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R})'.$

・ロト ・四ト ・ヨト ・ヨト

3

990

A model of Smooth differential Linear Logic

SQA

A Smooth differential Linear Logic

A graded semantic

Finite dimensional vector spaces:

$$R^{n}, R^{m} := \mathbb{R}|R^{n} \otimes R^{m}|R^{n} \Im R^{m}|R^{n} \oplus R^{m}|R^{n} \times R^{m}.$$

Nuclear spaces :

 $U, V := R^{n} |!R^{n}|?R^{n}|U \otimes V|U \Re V|U \oplus V|U \times V.$

$$\mathbb{R}^{n} = \mathcal{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R})' \in \text{NUCL}$$
$$\mathbb{R}^{n} \otimes \mathbb{R}^{m} \simeq \mathbb{R}^{(n+m)}$$

We have obtained a smooth classical model of DiLL, to the price of Higher Order and Digging $!A - \circ !!A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Smooth DiLL

A new graded syntax

Finitary formulas : $A, B := X | A \otimes B | A \Im B | A \oplus B | A \times B$. General formulas : $U, V := A | !A | ?A | U \otimes V | U \Im V | U \oplus V | U \times V$

For the old rules

$\frac{\vdash \Gamma}{\vdash \Gamma, ?A} w$	$\frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} d$	$\frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} c$
$\frac{\vdash \Gamma}{\vdash \Gamma, !A} \bar{w}$	$\frac{\vdash \Gamma, !A, !A}{\vdash \Gamma, !A} \bar{c}$	$\frac{\vdash \Gamma, A}{\vdash \Gamma, !A} \bar{d}$

The categorical semantic of smooth DiLL is the one of LL, but where ! is a monoidal functor and d and \overline{d} are to be defined independently.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Linear Partial Differential Equations as Exponentials Work in progress

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Intermediate ranks in the syntax

Finitary formulas : $A, B := X | A \otimes B$... and linear maps.

General formulas : $U, V := A | !A | U \otimes V | ...$ and smooth maps.

. . .

Intermediate ranks in the syntax

Finitary formulas : $A, B := X | A \otimes B \dots$ and linear maps.

 $U, V := A|S(A)'|U \otimes V|...$ and solutions to a differential equation.

. . .

General formulas : $U, V := A |!A| U \otimes V |...$ and smooth maps.

. . .

Differential Linear Logic

Semantic of the co-dereliction

$$\bar{d}: x \mapsto f \mapsto Df(0)(x)$$

Semantic of the dereliction

$$d: E \to ?E = (!E')'$$
$$E \multimap 1 \subset !E \multimap 1$$
$$\mathcal{L}(E, \mathbb{R}) \subset \mathcal{C}^{\infty}(E, \mathbb{R})$$

500

Spaces of solutions to a differential equations

A linear partial differential operator on $\mathcal{C}^\infty(\mathbb{R}^n,\mathbb{R})$ with constant coefficient

$$\mathbf{D} = \sum_{|\alpha| \le n} \mathbf{a}_{\alpha} \frac{\partial^{|\alpha|}}{\partial^{\alpha_1} x_1 \cdot \partial^{\alpha_n} x_n}$$

For example :
$$D(f) = \frac{\partial^n f}{\partial x_1 \dots \partial x_n}$$
.

Theorem(Schwartz)

Under some considerations on D, the space $S_D(E, \mathbb{R})'$ of functions solution to D(f) = f is a Nuclear Fréchet space of functions.

Thus $S_{\mathrm{D}}(E,\mathbb{R})'$ is an exponential.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A new exponential

Spaces of Smooth functions	Exponentials
$\mathcal{C}^\infty(E,\mathbb{R})$	$\mathcal{C}^{\infty'}(E,\mathbb{R})$
$S_{\mathrm{D}}(E,\mathbb{R})$	$S_{\mathrm{D}}'(E,\mathbb{R})$
${\sf E}'\simeq {\cal L}({\sf E},{\Bbb R})$	$E'' \simeq E$

Linear functions are exactly those in $C^{\infty}(E, \mathbb{R})$ such that for all x : f(x) = D(f)(0)(x).

$$\forall x, ev_x(f) = ev_x(\bar{d})(f).$$

Dereliction and co-dereliction adapt to LPDE

For linear functions

$$\bar{d}: E \xrightarrow{\text{linear}} \mathcal{C}^{\infty}(E, \mathbb{R})', x \mapsto (f \mapsto D(f)(x)).$$
$$d: \mathcal{C}^{\infty}(E, \mathbb{R})' \to S'(E, \mathbb{R}), \phi \mapsto \phi_{|\mathcal{L}(E, \mathbb{R})}$$

For solutions of Df = f

$$ar{d}_{\mathrm{D}}: E \xrightarrow{\mathrm{smooth}} \mathcal{C}^{\infty}(E,\mathbb{R})', x \mapsto (f \mapsto \mathrm{D}(f)(x)).$$

 $d_{\mathrm{D}}: \mathcal{C}^{\infty}(E,\mathbb{R})' \to S'(E,\mathbb{R}), \phi \mapsto \phi_{|S_{\mathrm{D}}(E,\mathbb{R})}$

The map \overline{d}_D represents the equation to solve, while d_D represents the fact that we are for looking solutions in $\mathcal{C}^{\infty}(E, \mathbb{R})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exponentials and invariants

Spaces of Smooth functions	Exponentials	Equations
$\mathcal{C}^\infty(E,\mathbb{R})$	$\mathcal{C}^{\infty}(E,\mathbb{R})$	
$S_{\mathrm{D}}(E,\mathbb{R})$	$S_{\mathrm{D}}'(E,\mathbb{R})$	
$E'\simeq \mathcal{L}(E,\mathbb{R})$	$E'' \simeq E$	$d \circ \bar{d} = Id$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exponentials and invariants

Spaces of Smooth functions	Exponentials	PDE
$\mathcal{C}^\infty(E,\mathbb{R})$	$\mathcal{C}^{\infty}(E,\mathbb{R})'$	
		$S'(E,\mathbb{R}) \xrightarrow{\bar{d}_{\mathrm{D}}} !E$
$\mathcal{S}_{\mathrm{D}}(E,\mathbb{R})$	$\mathcal{S}_{\mathrm{D}}'(E,\mathbb{R})$	$S'(E,\mathbb{R})$
$E'\simeq\mathcal{L}(E,\mathbb{R})$	<i>E″ ≃ E</i>	$E \xrightarrow{\overline{d}} !E$ $ev_E \xrightarrow{\downarrow d}$ E''

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

The logic of linears PDE's

The logic of linears PDE's

$$?_{\mathrm{D}}E = S_{\mathrm{D}}(E',\mathbb{R}) \text{ and } \bar{d}_{\mathrm{D}}: f \mapsto x \mapsto \mathrm{D}(x)(f)$$

Cut elimination (work in progress)

▲ロト ▲掃 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん(や)

The analogy is not perfect

$$\bar{d}_{\mathrm{D}}: \phi \in !E \mapsto (\mathrm{D}\phi: f \in \mathcal{C}^{\infty}(E, \mathbb{R}) \mapsto \phi(\mathrm{D}f))$$

Cut elimination

$$!_{D}E \xrightarrow{d_{D}} !E$$

$$\downarrow \bar{d}_{D} \qquad \downarrow \bar{d}_{D}$$

$$D(!E) \simeq !E$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Coweakening and co-contraction

	$S_D(E,\mathbb{R})'$	$\mathcal{C}^\infty(\mathcal{E},\mathbb{R})'$
С	If Kernel Theorem	Due to Seely isomorphism
Ē	convolution $A \otimes P_D A \to P_D A$	convolution
W	?	$\phi\mapsto \phi_{ \mathbb{R}}$
		1
\bar{W}	?	$1\mapsto \delta_0$

э.

SQA

An example

Scalar solutions defined on \mathbb{R}^n of

$$\frac{\partial^n}{\partial x_1 \dots \partial x_n} f = f$$

are the $z \mapsto \lambda e^{x_1 + \ldots + x_n}$.

$$S'(\mathbb{R}^n) \otimes S'(\mathbb{R}^M) \simeq S'(\mathbb{R}^{n+m}).$$
$$\lambda e^{x_1 + \dots + x_n} \mu e^{y_1 + \dots + y_m} = \lambda \mu e^{x_1 + \dots + x_n + y_1 + \dots + y_m}.$$

 $S(\mathbb{R}^{\mathbb{R}})'$ verifies w, \overline{w} (which corresponds to the initial condition of the differential equation) and \overline{c}, c .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ \0<</p>\0

The space of solutions to a linear partial differential equation form an exponential in Linear Logic

Conclusion

What we have :

- An interpretation of the linear involutive negation of LL in term of reflexive TVS.
- > An interpretation of the exponential in terms of distributions.
- ► An interpretation of 𝔅 in term of the Schwartz epsilon product.
- ► The beginning of a generalization of DiLL to linear *PDE*'s.

What we could get :

- A constructive Type Theory for differential equations.
- Logical interpretations of fundamental solutions, specific spaces of distributions, or operation on distributions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The Chu construction

A construction invented by a student of Barr, in 1979. It modelises duality in Coherent Banach spaces.

The Chu construction for topological vector spaces

We consider the category CHU of pairs of vector spaces (E_1, E_2) and pairs of maps

$$(f_1: E_1 \rightarrow F_1, f_2: F_2 \rightarrow E_2): (E_1, E_2) \rightarrow (F_1, F_2).$$
 Let us define :

•
$$(E_1, E_2)^{\perp} = (E_2, E_1)$$

$$\blacktriangleright (E_1, E_2) \otimes (F_1, F_2) = (E_1 \otimes F_1, \mathcal{L}(E_2, F_1))$$

• $(E_1, E_2) \multimap (F_1, F_2) = (L(E_1, F_1), E_1 \otimes F_2)$

CHU is then a *-autonomous category.

Weak and Mackey, two adjoint functors to Chu

There is an functor from the category of topological vector spaces and continuous linear map to the category $\rm CHU$:

 $E\mapsto (E,E'), f\mapsto (f,f^t).$

It has two adjoints :

- ➤ W maps (E₁, E₂) to E endowed with the coarsiest topology such that E' = E₂.
- M maps (E₁, E₂) to E endowed with the finest topology such that E' = E₂.

 $\mathcal{L}(E,\mathcal{W}(F,F'))\simeq \mathrm{CHU}((E,E'),(F,F'))\simeq \mathcal{L}(\mathcal{M}(E,E'),F)$

The categories of weak spaces and Mackey spaces both form models of Differential Linear Logic, with formal power series as non-linear functions.