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Wanted

A model of Classical Linear Logic where proofs are interpreted as
smooth functions.

Obtained

A Smooth Differential Linear Logic where exponentials are spaces
of solutions to a Linear Partial Differential Equation.
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Smooth models of Linear Logic

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation d(f )(x) : v 7→ D(f )(x)(v) of f near x .

f ∈ C∞(R,R)

d(f )(0)

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.
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Smooth models of Linear Logic

We work through denotational models of Linear Logic. Specifically:

Computation

Term

Type

Evaluation

Logic

Proof

Formula

Normalization

Category

Morphism

Object

Equality
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Smooth models of Linear Logic

We work through denotational models of Linear Logic. Specifically:
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Smooth models of Linear Logic

A,B := A⊗ B|1|A` B|⊥|A⊕ B|0|A× B|>|!A|?A

A decomposition of the implication

A⇒ B '!A ( B

A decomposition of function spaces

C∞(E ,F ) ' L(!E ,F )

The dual of the exponential : smooth scalar functions

C∞(E ,R) ' L(!E ,R) '!E ′
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Smooth models of Classical Linear Logic

A Classical logic

¬A = A⇒ ⊥ and ¬¬A ' A.

Linear Logic features an involutive linear negation :

A⊥ ' A ( 1

A⊥⊥ ' A

E ′′ ' E

The exponential is the dual of the space of smooth scalar
functions

!E ' (!E )′′ ' C∞(E ,R)′



Proofs and smooth objects An interpretation for ! and ¬ A model with Distributions Linear PDE as exponentials

Smooth models of Differential Linear Logic

Semantics

For each f :!A ( B ' C∞(A,B) we have Df (0) : A ( B

The rules of DiLL are those of MALL and :

co-dereliction

d̄ : x 7→ f 7→ Df (0)(x)

Syntax

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

` Γ, !A, !A
c̄` Γ, !A

` Γ
w̄` Γ, !A

` Γ,A
d̄` Γ, !A
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Why differential linear logic ?

I Differentiation was in the air since the study of Analytic
functors by Girard :

d̄(x) :
∑

fn 7→ f1(x)

I DiLL was developed after a study of vectorial models of LL
inspired by coherent spaces : Finiteness spaces (Ehrard 2005),
Köthe spaces (Ehrhard 2002).

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Smoothness of proofs

I Traditionally proofs are interpreted as graphs, relations
between sets, power series on finite dimensional vector spaces,
strategies between games: those are discrete objects.

I Differentiation appeals to differential geometry, manifolds,
functional analysis : we want to find a denotational model of
DiLL where proofs are general smooth functions.
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Mathematical challenges : interpreting ! and A⊥
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A categorical model

Every connective of Linear Logic is interpreted as a (bi)functor
within the chosen category : transforming sets into sets, vector
spaces into vector spaces, complete spaces into complete spaces.

Linearity and Smoothness

We work with vector spaces with some notion of continuity on
them : for example, normed spaces, or complete normed spaces
(Banach spaces).
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Interpreting LL in vector spaces

Linear Functions
A(B, ⊗, `Non-linear functions

!A ( B, &, ⊕

!

U
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Interpreting LL in vector spaces

The product

Linear Functions
A(B, ⊗, `Non-linear functions

!A ( B, &, ⊕

!

U
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Interpreting LL in vector spaces

The product

The coproduct

Linear Functions
A(B, ⊗, `Non-linear functions

!A ( B, &, ⊕

!

U



Proofs and smooth objects An interpretation for ! and ¬ A model with Distributions Linear PDE as exponentials

Interpreting LL in vector spaces

The product

The coproduct

The tensor product

The epsilon product 1

Linear Functions
A(B, ⊗, `Non-linear functions

!A ( B, &, ⊕

!

U

1Work with Y. Dabrowski
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Weak topologies for Linear Logic, K. LMCS 2015.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a good topological tensor product.

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

I A model of LL with Schwartz’ epsilon product, K. and Dabrowski, In
preparation.

I Distributions and Smooth Differential Linear Logic, K., In preparation
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The categorical semantics of an involutive linear negation

Linear Logic features an involutive linear negation :

A⊥ ' A ( 1

A⊥⊥ ' A

*-autonomous categories are monoidal closed categories with a
distinguished object 1 such that E ' (E ( ⊥) ( ⊥ through dA.

dA :

{
E → (E ( ⊥) ( ⊥
x 7→ evx : f 7→ f (x)
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∗-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous
category: ⊥ neutral for `, thus ⊥ ' R, A ( ⊥ is A′ = L(A,R).

dA :

{
E → E ′′

x 7→ evx : f 7→ f (x)

should be an isomorphism.

Exclamation

Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not
closed (eg: Hilbert spaces).



Proofs and smooth objects An interpretation for ! and ¬ A model with Distributions Linear PDE as exponentials

∗-autonomous categories of vector spaces
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category: ⊥ neutral for `, thus ⊥ ' R, A ( ⊥ is A′ = L(A,R).
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E → E ′′

x 7→ evx : f 7→ f (x)

should be an isomorphism.
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Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not
closed (eg: Hilbert spaces).
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Internal completeness

A way to resolve this is to work with pairs of vector spaces : the
Chu Construction (used for coherent Banach spaces), or its
internalization through topology (Weak or Mackey spaces).

The Chu construction
I Objects : (E1,E2).

I Morphisms : (f1 : E1 → F1, f2 : F2 → E2) : (E1,E2)→ (F1,F2)

I Duality : (E1,E2)⊥ = (E2,E1)⊥.

These model are disapointing, even as ?-autonomous categories :
any vector space can be turned into an object of this category.

We want reflexivity to be an internal property of our objects
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An exponential for smooth functions

A space of (non necessarily linear) functions between finite
dimensional spaces is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

Girard’s tentative to have a normed space of analytic functions
fails.

I We want to use functions.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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Curryfication for linear and smooth functions

In a model of LL, you have

I Monoidal closed : L(E ⊗ F ,G ) ' L(,L(F ,G )) .

I Cartesian closed : C∞(E × F ,G ) ' C∞(E , C∞(F ,G )).

Once you have monoidal closedeness, this sums up to a rule on
exponentials :

Seely’s formula

!E⊗!F '!(E × F )

Thus, in a category of reflexive real vector spaces,

C∞(E ,R)′ ⊗ C∞(F ,R)′ ' C∞(E × F ,R)′.



Proofs and smooth objects An interpretation for ! and ¬ A model with Distributions Linear PDE as exponentials

An exponential for differentiation

I The codereliction d̄E : E →!E = C∞(E ,R)′ encodes the
possibility to differentiate.

I In a ?-autonomous category dE : E →?E encode the fact that
linear functions are smooth.

dE :

{
!E = C∞(E ,R)′ → E ′′ ' E

φ ∈ C∞(E ,R)′ 7→ φL(E ,R)

Differentiation’s slogan

”A linear function is its own differential”

dE ◦ d̄E = IdE
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A model with Distributions
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Topological vector spaces

We work with Hausdorff topological vector spaces : real or
complex vector spaces endowed with a Hausdorff topology making
addition and scalar multiplication continuous.

I The topology on E determines E ′.

I The topology on E ′ determines whether E ' E ′′.

We work within the category TopVect of topological vector
spaces and continuous linear functions between them.
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Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.
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Polarized models of LL

Negative Positive
M,N P,Q

X⊥X

P ⊗ QM ` N
!N

?P
( )⊥

( )⊥
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Fréchet and DF spaces

I Fréchet : metrizable complete spaces.

I (DF)-spaces : such that the dual of a Fréchet is (DF) and the
dual of a (DF) is Fréchet.

Fréchet-spaces DF-spaces

Rn EE ′

P ⊗ QM ` N

( )′

( )′
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Fréchet and DF spaces

Fréchet-spaces DF-spaces

Rn EE ′

P ⊗ QMεN

( )′

( )′

These spaces are in general not reflexive.
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The ε product

EεF = (E ′c ⊗βe F ′c)′ with the topology of uniform convergence on
products of equicontinuous sets in E ′,F ′.

The ε-product is designed to glue spaces of scalar continuous
functions to a codomain :

C(X ,R)cεF ' C(X ,F )c .

Theorem (Dabrowski)

The ε product is associative in the ?-autonomous category of
Mackey Mackey-complete Schwartz tvs.
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Nuclear spaces
Nuclear spaces are spaces in which one can identify the two
canonical topologies on tensor products :

∀F ,E ⊗π F = E ⊗ε F

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

A polarized ?-autonomous category

A Nuclear space which is also Fréchet or dual of a Fréchet is
reflexive.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

We get a polarized model of MALL : involutive negation ( )⊥, ⊗,
`, ⊕, ×.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes :

C∞(Rn,R), C∞c (Rn,R), H(C,C), ..

Typical Nuclear DF spaces are distributions spaces Schwartz’
generalized functions :

C∞(Rn,R)′, C∞c (Rn,R)′, H′(C,C), ..

The Kernel Theorems

C∞c (E ,R)′ ⊗ C∞c (F ,R)′ ' C∞c (E × F ,R)′
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Distributions and the Kernel theorems
Examples of Nuclear Fréchet spaces includes :

C∞(Rn,R), C∞c (Rn,R), H(C,C), ..

Typical Nuclear DF spaces are distributions spaces Schwartz’
generalized functions :

C∞(Rn,R)′, C∞c (Rn,R)′, H′(C,C), ..

The Kernel Theorems

C∞(E ,R)′ ⊗ C∞(F ,R)′ ' C∞(E × F ,R)′

!Rn = C∞(Rn,R)′.
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A model of Smooth differential Linear Logic

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces

Rn
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A Smooth differential Linear Logic

A graded semantic

Finite dimensional vector spaces:

Rn,Rm := R|Rn ⊗ Rm|Rn ` Rm|Rn ⊕ Rm|Rn × Rm.

Nuclear spaces :

U,V := Rn|!Rn|?Rn|U ⊗ V |U ` V |U ⊕ V |U × V .

!Rn = C∞(Rn,R)′ ∈ Nucl

!Rn⊗!Rm '!(Rn+m)

We have obtained a smooth classical model of DiLL, to the price
of Higher Order and Digging !A (!!A.
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Smooth DiLL

A new graded syntax

Finitary formulas : A,B := X |A⊗ B|A` B|A⊕ B|A× B.
General formulas : U,V := A|!A|?A|U ⊗ V |U ` V |U ⊕ V |U × V

For the old rules

` Γ w` Γ, ?A
` Γ,A

d` Γ, ?A

` Γ, ?A, ?A
c` Γ, ?A

` Γ
w̄` Γ, !A

` Γ, !A, !A
c̄` Γ, !A

` Γ,A
d̄` Γ, !A

The categorical semantic of smooth DiLL is the one of LL, but
where ! is a monoidal functor and d and d̄ are to be defined
independently.
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Linear Partial Differential Equations as Exponentials
Work in progress
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Intermediate ranks in the syntax

Finitary formulas : A,B := X |A⊗ B... and linear maps.

...

General formulas : U,V := A|!A|U ⊗ V |... and smooth maps.
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Intermediate ranks in the syntax

Finitary formulas : A,B := X |A⊗ B... and linear maps.

...

U,V := A|S(A)′|U ⊗ V |... and solutions to a differential equation.

...

General formulas : U,V := A|!A|U ⊗ V |... and smooth maps.
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Differential Linear Logic

Syntax

` Γ w` Γ, ?A
` Γ, ?A, ?A

c` Γ, ?A

` Γ,A
d` Γ, ?A

` Γ, !A, !A
c̄` Γ, !A

` Γ
w̄` Γ, !A

` Γ,A
d̄` Γ, !A

Semantic of the co-dereliction

d̄ : x 7→ f 7→ Df (0)(x)

Semantic of the dereliction

d : E →?E = (!E ′)′

E ( 1 ⊂!E ( 1

L(E ,R) ⊂ C∞(E ,R)

.
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Spaces of solutions to a differential equations

A linear partial differential operator on C∞(Rn,R) with
constant coefficient

D =
∑
|α|≤n

aα
∂|α|

∂α1x1 · ∂αnxn

For example : D(f ) = ∂nf
∂x1...∂xn

.

Theorem(Schwartz)

Under some considerations on D, the space SD(E ,R)′ of functions
solution to D(f ) = f is a Nuclear Fréchet space of functions.

Thus SD(E ,R)′ is an exponential.
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A new exponential

Spaces of Smooth functions Exponentials

C∞(E ,R) C∞′
(E ,R)

SD(E ,R) S ′D(E ,R)

E ′ ' L(E ,R) E ′′ ' E

Linear functions are exactly those in C∞(E ,R) such that for all x :
f (x) = D(f )(0)(x).

∀x , evx(f ) = evx(d̄)(f ).
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Dereliction and co-dereliction adapt to LPDE

For linear functions

d̄ : E
linear−−−→ C∞(E ,R)′, x 7→ (f 7→ D(f )(x)).

d : C∞(E ,R)′ → S ′(E ,R), φ 7→ φ|L(E ,R)

For solutions of Df = f

d̄D : E
smooth−−−−→ C∞(E ,R)′, x 7→ (f 7→ D(f )(x)).

dD : C∞(E ,R)′ → S ′(E ,R), φ 7→ φ|SD(E ,R)

The map d̄D represents the equation to solve, while dD represents
the fact that we are for looking solutions in C∞(E ,R).
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Exponentials and invariants

Spaces of Smooth functions Exponentials Equations

C∞(E ,R) C∞(E ,R)

SD(E ,R) S ′D(E ,R)

E ′ ' L(E ,R) E ′′ ' E d ◦ d̄ = Id
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Exponentials and invariants

Spaces of Smooth functions Exponentials PDE

C∞(E ,R) C∞(E ,R)′

SD(E ,R) S ′D(E ,R)

S ′(E ,R)

S ′(E ,R)

!E
d̄D

dD

E ′ ' L(E ,R) E ′′ ' E

E

E ′′

!E
d̄

devE
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The logic of linears PDE’s

Rules

` Γ,A
d` Γ, ?A

` Γ, ?DA
dD` Γ, ?A

` Γ,A
d̄` Γ, !A

` Γ, !DA
d̄D` Γ, !A
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The logic of linears PDE’s

Rules

` Γ,A
d` Γ, ?A

` Γ, ?DA
dD` Γ, ?A

` Γ,A
d̄` Γ, !A

` Γ, !DA
d̄D` Γ, !A

?DE = SD(E ′,R) and d̄D : f 7→ x 7→ D(x)(f )

Cut elimination (work in progress)

!E

!E

!DE
dD

d̄DevE

E

E ′′

!E
d̄

devE
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The analogy is not perfect

Rules

` Γ,A
d` Γ, ?A

` Γ, ?DA
dD` Γ, ?A

` Γ,A
d̄` Γ, !A

` Γ, !A
d̄D` Γ, !A

d̄D : φ ∈!E 7→ (Dφ : f ∈ C∞(E ,R) 7→ φ(Df ))

Cut elimination

!DE

D(!E ) '!E

!E
dD

dD d̄D

E

E ′′

!E
d̄

devE
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Coweakening and co-contraction

SD(E ,R)′ C∞(E ,R)′

c If Kernel Theorem Due to Seely isomorphism

c̄ convolution !A⊗!DA→!DA convolution

w ? φ 7→ φ|R

w̄ ? 1 7→ δ0
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An example

Scalar solutions defined on Rn of

∂n

∂x1...∂xn
f = f

are the z 7→ λex1+...+xn .

S ′(Rn)⊗ S ′(RM) ' S ′(Rn+m).

λex1+...+xnµey1+...+ym = λµex1+...+xn+y1+...+ym .

S(R,R)′ verifies w , w̄ (which corresponds to the initial condition of
the differential equation) and c̄ , c .
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Conclusion

The space of solutions to a linear partial differential
equation form an exponential in Linear Logic
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Conclusion

What we have :

I An interpretation of the linear involutive negation of LL in
term of reflexive TVS.

I An interpretation of the exponential in terms of distributions.

I An interpretation of ` in term of the Schwartz epsilon
product.

I The beginning of a generalization of DiLL to linear PDE ’s.

What we could get :

I A constructive Type Theory for differential equations.

I Logical interpretations of fundamental solutions, specific
spaces of distributions, or operation on distributions.
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The Chu construction

A construction invented by a student of Barr, in 1979. It modelises
duality in Coherent Banach spaces.

The Chu construction for topological vector spaces

We consider the category Chu of pairs of vector spaces (E1,E2)
and pairs of maps
(f1 : E1 → F1, f2 : F2 → E2) : (E1,E2)→ (F1,F2). Let us define :

I (E1,E2)⊥ = (E2,E1)

I (E1,E2)⊗ (F1,F2) = (E1 ⊗ F1,L(E2,F1))

I (E1,E2) ( (F1,F2) = (L(E1,F1),E1 ⊗ F2)

Chu is then a ∗-autonomous category.
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Weak and Mackey, two adjoint functors to Chu

There is an functor from the category of topological vector spaces and

continuous linear map to the category Chu :

E 7→ (E ,E ′), f 7→ (f , f t).

It has two adjoints :

I W maps (E1,E2) to E endowed with the coarsiest topology
such that E ′ = E2.

I M maps (E1,E2) to E endowed with the finest topology such
that E ′ = E2.

L(E ,W(F ,F ′)) ' Chu((E ,E ′), (F ,F ′)) ' L(M(E ,E ′),F )

The categories of weak spaces and Mackey spaces both form models of

Differential Linear Logic, with formal power series as non-linear functions.
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