▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Trends in Linear Logic and Applications & Linearity July 2018

Smooth denotational models of Linear Logic based on Schwart'z ε product

Yoann Dabrowski, Marie Kerjean

Institut Camille Jordan, Université Lyon 1 IRIF, Université Paris Diderot $^{2}8 = \varepsilon$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proofs and smooth objects

 $^{2}\!\!\gamma = \varepsilon$

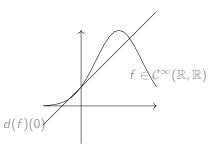
Duality and completion

Smooth functions and new topologies

Smoothness

Differentiation

Differentiating a function $f : \mathbb{R}^n \to \mathbb{R}$ at x is finding a linear approximation $d(f)(x) : v \mapsto d(f)(x)(v)$ of f near x.



A co-inductive definition

Smooth functions are functions which can be differentiated everywhere in their domain and whose differentials are smooth.

Differentiating proofs

Differentiation was in the air since the study of Analytic functors by Girard :

$$\bar{d}(x):\sum f_n\mapsto f_1(x)$$

 DiLL was developed after a study of vectorial models of LL inspired by coherent spaces : Finiteness spaces (Ehrhard 2005), Köthe spaces (Ehrhard 2002).

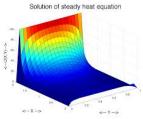
The computational content of differentiation

Historically, resource sensitive syntax and semantics:

- Quantitative semantics : $f = \sum_n f_n$
- ► Resource λ -calculus, Taylor formulas, probabilities and algebraic syntax (Ehrhard, Pagani, Tasson, Vaux ...) : $M = \sum_{n} M_{n}$

Differentiation in Physics and Mathematics takes part in the study of continuous systems :

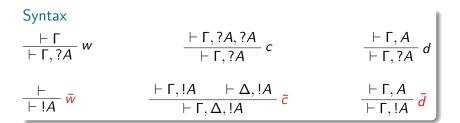
- Differential Geometry and functional analysis
- Ordinary and Partial Differential Equations



(日)

Differential Linear Logic

The rules of DiLL are those of MALL + promotion + :



What's not working

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

What's not working

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails (Girard's Coherent Banach spaces).

- We want to use power series.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

What's not working

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails (Girard's Coherent Banach spaces).

- We want to use power series.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

We can't restrict ourselves to normed spaces.

Topological vector spaces

We work with Hausdorff topological vector spaces : real or complex vector spaces endowed with a Hausdorff topology making addition and scalar multiplication continuous.

Two layers: algebraic and topological constructions

- ► The topology on *E* determines the dual *E*′ as a vector space.
- The topology on E' determines whether $E \simeq E''$.
- ► Many topologies on the tensor E ⊗ F which may or may not lead to a monoidal closed category, depending of the spaces (Grothendieck "problèmes des topologies").

We work within the category ${\rm TOPVECT}$ of topological vector spaces and continuous linear functions between them.

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of tvs and smooth functions which is Cartesian closed. Requires some completeness.
- ✓ Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$.

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of tvs and smooth functions which is Cartesian closed. Requires some completeness.
- × Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$.
- Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff. (2010) New: reflexive with the Mackey dual
- Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We encounter several difficulties in the context of topological vector spaces :

- × Finding a category of tvs and smooth functions which is Cartesian closed. Requires some completeness.
- ✓ Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$.

Weak topologies for Linear Logic, K. LMCS 2015. Involves a topology which is an internal Chu construction.

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of tvs and smooth functions which is Cartesian closed. Requires some completeness.
- ✓ Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$.
- A model of LL with Schwartz' epsilon product, Dabrowski and K., Preprint.
- ► A logical account for PDEs, K., LICS18

 $^{2}\!8 = \varepsilon$

Smooth functions and new topologies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Smooth functions and new topologies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A good \mathfrak{P} is a glueing \mathfrak{P}

$A^{\perp} \mathfrak{N} B \equiv A \multimap B$

$$(!A)^{\perp} \mathfrak{N} B \equiv A \Rightarrow B$$

When proofs are interpreted by Smooth functions :

$$\mathcal{C}^{\infty}(E,\mathbb{R})\varepsilon F\simeq \mathcal{C}^{\infty}(E,F)$$

The ε product

Only one good ${\mathscr D}$

$$E\varepsilon F := \mathcal{L}_{\varepsilon}(E'_{c}, F)$$

No surprises algebraically speaking, but the choice of topologies is important.

 $\mathcal{C}^{\infty}(E,F) \simeq \mathcal{C}^{\infty}(E,\mathbb{R})\varepsilon F$ when E and F are complete.

A monoidal category by Schwartz

The ε is associative and commutative on quasi-complete spaces.

Théorie des Distributions à valeurs vectorielles, I Schwartz, (1957)
Negatives are interpreted by (quasi, k-, Mackey) complete spaces.
And ↑ is the completion.

< □ > < 同 > < E > < E > E < のQ @</p>

A minimal condition for associativity

Reading back Schwartz's proof : to prove associativity, Schwartz only needs the fact that the absolutely convex closure of a compact is still compact.

Definition

We call **k-quasi-complete** the topological vector spaces verifying this property : (K-COMPL, ε , \mathbb{K}) is a symmetric monoidal category.

What should we care about that ? Because this *weaker* completeness condition makes it possible for duality to preserve completeness.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Duality and completions

Duality in topological vector spaces

A subcategory of TOPVECT is \star -autonomous iff its objects are reflexive $E \simeq E''$.

It's a mess.

< □ > < 同 > < E > < E > E < のQ @</p>

- ▶ It depends of the topology E'_{β} , E'_{c} , E'_{w} , E'_{μ} on the dual.
- It is typically not preserved by \otimes .
- For the strong (and most used) topology on the dual, E'_β is not reflexive.

A good topology on the dual

When duality is an <u>orthogonality</u>, we have a closure operation making spaces reflexive :

$$E \hookrightarrow E^{\perp \perp} \simeq E^{\perp \perp \perp \perp}$$

When choosing on E' the topology compact open, one always has :

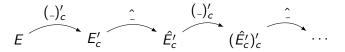
$$E_c'\simeq ((E_c')_c')_c'$$

This allows for the construction of a \star -autonomous category of spaces such that $E' \simeq (E'_c)'_c$.

A *-autonomous category of complete spaces

This allows for the construction of a \star -autonomous category of spaces such that $E' \simeq (E'_c)'_c$.

We have a completion procedure $\hat{\cdot}$ making spaces complete:



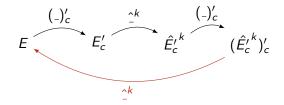
Completion makes the topology on $(\hat{E}'_c)'_c$ too fine to have $(\hat{E}'_c)'_c \simeq E$.

A *-autonomous category of complete spaces

For the *k*-quasi-completion $\hat{\cdot}^k$ we have :

Lemma

When $E \in \text{KC}$, $(\hat{E'_c}^k)'_c$ is k-quasi-complete.



Theorem

K-REFL is a model of *MALL* with complete topological vector spaces and $\mathfrak{P} = \varepsilon$.

Soc E der der der de Soc

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

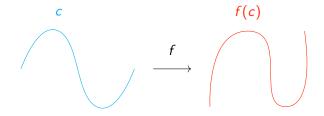
Smooth Functions and topologies inherited from them

э.

Sac

Smooth maps à la Frölicher, Kriegl and Michor

A smooth curve $c : \mathbb{R} \to E$ is a curve infinitely many times differentiable.



A smooth function $f : E \to F$ is a function sending a smooth curve on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated derivatives exists and are continuous).

A. Frölicher and A. Kriegl, Linear Spaces and differentiation Theory . 1988

< □ > < 同 > < E > < E > E < のQ @</p>

A model with higher order smooth functions

A smooth curve $c : \mathbb{R} \to E$ is a curve infinitely many times differentiable.

A smooth function $f : E \to F$ is a function sending a smooth curve on a smooth curve.

A model of IDiLL

This definition leads to a cartesian closed category of Mackey-complete bornological spaces and smooth functions, and to a first smooth model of Intuitionist DiLL.

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff. (2010)

Functions smooth on compact sets

A smooth model of LL with ϵ

We adapt the notion of smooth function to C_{co}^{∞} in order to have an exponential and a cartesian closed category.

- ► C[∞]_{co}(X, F) is the space of infinitely many times Gâteaux-differentiable functions ...
- ▶ with derivative continuous on compacts with value in the space Lⁿ⁺¹_{co}(E, F) = L_{co}(Lⁿ_{co}(E, F)) ..
- with at each stage the topology of uniform convergence on compact sets.

A cartesian closed category in $\operatorname{K-ReFL}$

If E and F are k-reflexive and G is k-quasi-complete, then

 $\mathcal{C}^{\infty}_{co}(E \times F, G) \simeq \mathcal{C}^{\infty}_{co}(E, \mathcal{C}^{\infty}_{co}(F, G)).$

20

Towards a general construction for smooth models of LL

Consider C a small cartesian category contained in k-ref.

Smooth functions with parameters in $\ensuremath{\mathcal{C}}$

 $\begin{aligned} & \mathcal{C}^{\infty}_{\mathcal{C}}(E,F) := \\ & \{f: E \to F, \forall X \in \mathcal{C}, \forall c \in \mathcal{C}^{\infty}_{co}(X,E) \Rightarrow f \circ c \in \mathcal{C}^{\infty}_{co}(X,F) \} \end{aligned}$

A new induced topology

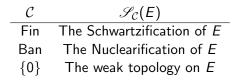
For any tvs E, the dereliction forces an injection $E \hookrightarrow C^{\infty}_{\mathcal{C}}(E'_{\mu}, \mathbb{R})$ which induces a new topology $\mathscr{S}_{\mathcal{C}}(E)$ on E.

Then when *E* is Mackey-complete :

\mathcal{C}	$\mathscr{S}_{\mathcal{C}}(E)$
Fin	The Schwartzification of <i>E</i>
Ban	The Nuclearification of <i>E</i>
{0}	The weak topology on <i>E</i>

< □ > < 同 > < E > < E > E < のQ @</p>

Towards a general construction for smooth models of LL Then when *E* is Mackey-complete :



The topology \mathscr{S}_C ensures that E is Mackey and thus reflexive.

Smooth and classical models of LL

This constructs two other models of DiLL : The Nuclear Mackey-complete spaces and the Schwartz Mackey-complete spaces.

They are also models of DiLL, but that's less pretty.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

This work:

- Argues for a theory of functional analysis with reflexive spaces as a starting point.
- Presents several smooth models of Classical Linear Logic: LL really deals with analysis.

Further work on polarized approaches:

- Between convenient spaces and this work: a classical smooth model with good differentiation.
- Partial Differential Equations: LICS on Tuesday.

 2 \otimes \approx

Smooth functions and new topologies

Thank you .

