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Smoothness

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation d(f )(x) : v 7→ d(f )(x)(v) of f near x .

f ∈ C∞(R,R)

d(f )(0)

A co-inductive definition

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.
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Differentiating proofs

I Differentiation was in the air since the study of Analytic
functors by Girard :

d̄(x) :
∑

fn 7→ f1(x)

I DiLL was developed after a study of vectorial models of LL
inspired by coherent spaces : Finiteness spaces (Ehrhard
2005), Köthe spaces (Ehrhard 2002).

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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The computational content of differentiation

Historically, resource sensitive syntax and semantics:

I Quantitative semantics : f =
∑

n fn
I Resource λ-calculus, Taylor formulas, probabilities and

algebraic syntax (Ehrhard, Pagani, Tasson, Vaux ...) :
M =

∑
n Mn

Differentiation in Physics and Mathematics takes part in the study
of continuous systems :

I Differential Geometry and
functional analysis

I Ordinary and Partial
Differential Equations
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Differential Linear Logic

The rules of DiLL are those of MALL + promotion + :

Syntax

` Γ w` Γ, ?A
` Γ, ?A, ?A

c` Γ, ?A

` Γ,A
d` Γ, ?A

`
w̄` !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ,A
d̄` Γ, !A
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What’s not working

A space of (non necessarily linear) functions between finite
dimensional spaces is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails
(Girard’s Coherent Banach spaces).

I We want to use power series.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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Topological vector spaces

We work with Hausdorff topological vector spaces : real or
complex vector spaces endowed with a Hausdorff topology making
addition and scalar multiplication continuous.

Two layers: algebraic and topological constructions

I The topology on E determines the dual E ′ as a vector space.

I The topology on E ′ determines whether E ' E ′′.

I Many topologies on the tensor E ⊗ F which may or may not
lead to a monoidal closed category, depending of the spaces
(Grothendieck ”problèmes des topologies”).

We work within the category TopVect of topological vector
spaces and continuous linear functions between them.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

X Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness.

X Interpreting the involutive linear negation (E⊥)⊥ ' E .
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

X Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness.

× Interpreting the involutive linear negation (E⊥)⊥ ' E .

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010) New: reflexive with the Mackey dual

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

× Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness.

X Interpreting the involutive linear negation (E⊥)⊥ ' E .

Weak topologies for Linear Logic, K. LMCS 2015.
Involves a topology which is an internal Chu construction.



Proofs and smooth objects ` = ε Duality and completion Smooth functions and new topologies

Challenges

We encounter several difficulties in the context of topological
vector spaces :

X Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness.

X Interpreting the involutive linear negation (E⊥)⊥ ' E .

I A model of LL with Schwartz’ epsilon product, Dabrowski and K.,
Preprint.

I A logical account for PDEs, K., LICS18
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` = ε
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A good ` is a glueing `

A⊥ ` B ≡ A ( B

(!A)⊥ ` B ≡ A⇒ B

When proofs are interpreted by Smooth functions :

C∞(E ,R)εF ' C∞(E ,F )
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The ε product

Only one good `
EεF := Lε(E ′

c ,F )

No surprises algebraically speaking, but the choice of topologies is
important.

C∞(E ,F ) ' C∞(E ,R)εF when E and F are complete.

A monoidal category by Schwartz

The ε is associative and commutative on quasi-complete spaces.

Théorie des Distributions à valeurs vectorielles, I Schwartz, (1957)

Negatives are interpreted by (quasi, k-, Mackey) complete spaces.
And ˆ is the completion.
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A minimal condition for associativity

Reading back Schwartz’s proof : to prove associativity, Schwartz
only needs the fact that the absolutely convex closure of a
compact is still compact.

Definition

We call k-quasi-complete the topological vector spaces verifying
this property : (K-Compl, ε,K) is a symmetric monoidal category.

What should we care about that ? Because this weaker
completeness condition makes it possible for duality to preserve

completeness.
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Duality and completions
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Duality in topological vector spaces

A subcategory of TopVect is ?-autonomous iff its objects are
reflexive E ' E ′′.

It’s a mess.

I It depends of the topology E ′
β , E ′

c , E ′
w , E ′

µ on the dual.

I It is typically not preserved by ⊗.

I For the strong (and most used) topology on the dual, E ′
β is not

reflexive.
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A good topology on the dual

When duality is an orthogonality, we have a closure operation
making spaces reflexive :

E ↪→ E⊥⊥ ' E⊥⊥⊥⊥

When choosing on E ′ the topology compact open, one always has :

E ′
c ' ((E ′

c)′c)′c

This allows for the construction of a ?-autonomous category of
spaces such that E ′ ' (E ′

c)′c .
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A ∗-autonomous category of complete spaces

This allows for the construction of a ?-autonomous category of
spaces such that E ′ ' (E ′

c)′c .

We have a completion procedure ·̂ making spaces complete:

E E ′
c Ê ′

c (Ê ′
c)′c · · ·

( )′c ˆ ( )′c ˆ

Completion makes the topology on (Ê ′
c)′c too fine to have

(Ê ′
c)′c ' E .
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A ∗-autonomous category of complete spaces
For the k-quasi-completion ·̂k we have :

Lemma

When E ∈ Kc, (Ê ′
c
k

)′c is k-quasi-complete.

E E ′
c Ê ′

c
k

(Ê ′
c
k

)′c

( )′c ˆk ( )′c

ˆk

Theorem

K-Refl is a model of MALL with complete topological vector
spaces and ` = ε.
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Smooth Functions
and topologies inherited from them
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Smooth maps à la Frölicher,Kriegl and Michor

A smooth curve c : R→ E is a curve infinitely many times
differentiable.

c f (c)

f

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated
derivatives exists and are continuous).

A. Frölicher and A. Kriegl, Linear Spaces and differentiation Theory .
1988
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A model with higher order smooth functions

A smooth curve c : R→ E is a curve infinitely many times
differentiable.

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

A model of IDiLL

This definition leads to a cartesian closed category of
Mackey-complete bornological spaces and smooth functions, and
to a first smooth model of Intuitionist DiLL.

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.

(2010)
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Functions smooth on compact sets

A smooth model of LL with ε

We adapt the notion of smooth function to C∞co in order to have an
exponential and a cartesian closed category.

I C∞
co (X ,F ) is the space of infinitely many times

Gâteaux-differentiable functions ...

I with derivative continuous on compacts with value in the
space Ln+1

co (E ,F ) = Lco(Lnco(E ,F )) ..

I with at each stage the topology of uniform convergence on
compact sets.

A cartesian closed category in K-Refl

If E and F are k-reflexive and G is k-quasi-complete, then

C∞co (E × F ,G ) ' C∞co (E , C∞co (F ,G )).
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Towards a general construction for smooth models of LL
Consider C a small cartesian category contained in k-ref.

Smooth functions with parameters in C
C∞C (E ,F ) :=
{f : E → F ,∀X ∈ C,∀c ∈ C∞co (X ,E )⇒ f ◦ c ∈ C∞co (X ,F )}

A new induced topology

For any tvs E , the dereliction forces an injection E ↪→ C∞C (E ′
µ,R)

which induces a new topology SC(E ) on E .

Then when E is Mackey-complete :

C SC(E )

Fin The Schwartzification of E
Ban The Nuclearification of E
{0} The weak topology on E
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Towards a general construction for smooth models of LL
Then when E is Mackey-complete :

C SC(E )

Fin The Schwartzification of E
Ban The Nuclearification of E
{0} The weak topology on E

The topology SC ensures that E is Mackey and thus reflexive.

Smooth and classical models of LL

This constructs two other models of DiLL : The Nuclear
Mackey-complete spaces and the Schwartz Mackey-complete
spaces.

They are also models of DiLL, but that’s less pretty.
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Conclusion

This work:

I Argues for a theory of functional analysis with reflexive spaces
as a starting point.

I Presents several smooth models of Classical Linear Logic: LL
really deals with analysis.

Further work on polarized approaches:

I Between convenient spaces and this work: a classical smooth
model with good differentiation.

I Partial Differential Equations: LICS on Tuesday.
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Thank you .
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