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Linear Logic, two implications

Grammar : A,B ::= 1|⊥|>|0|A ` B|A⊗ B|A⊕ B|A & B|!A|?A

U

!

Monoidal Closed Category :
Linear Functions
A ( B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕
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Linear Logic, a linear negation

A model of Linear Logic must also be a *-autonomous category.

It is a monoidal closed category with a distinguished object ⊥,
where the morphism

dA : A→ (A ( ⊥) ( ⊥

is an isomorphism.

dA is the transpose of

evalA : A⊗ (A ( ⊥)→ ⊥.
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What do we want

I want to explain to my applied math colleague what is a
*-autonomous category:

dA : x 7→ (δx : f 7→ f (x))

should be an isomophism.

Exclamation
Well, this is a just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not
closed.
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Weak topologies

Theorem
The category of spaces endowed with their weak topology is a
model of Linear Logic

If the dual E ′ of a topological vector space E is endowed
with its weak* topology, then E ′′ is isomorphic to E .

The reversible connectives are exactly those preserving
the weak topology .
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A topology on the algebraic constructions

U

!
Weak (The product topology)

Weak (The coproduct topology)

Weak (A tensor product topology)

Linear Continuous Functions
A(B, ⊗, `

Power Series
!A ( B, &, ⊕
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A choice for the tensor product

There are three canonical topologies on the tensor product of two
topological vector spaces E and F .

E ⊗i F ,E ⊗π F ,E ⊗ε F
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A choice for the tensor product

There are three canonical topologies on the tensor product of two
topological vector spaces E and F .

E ⊗i F ,E⊗πF ,E⊗εF

• Identifying ⊗π and ⊗ε defines Nuclear spaces.

• Fréchet spaces are the complete metrizable spaces. In such a
space, ⊗π and ⊗i correspond.
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Nuclear Fréchet spaces are Reflexive spaces

Theorem
A Nuclear space which is also Fréchet or (DF) is reflexive.

The category of Nuclear Fréchet or (DF) is monoidal
closed.

Nuclear Fréchet or (DF) spaces preserve the cartesian
product and coproduct.

Theorem
Nuclear Fréchet (or (DF)) spaces form a model of Polarized
Multiplicative Additive Linear Logic.
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closed.
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A smooth Exponential ?

Examples of Nuclear Fréchet or (DF) space :

C∞c (U), D′(U), C∞(V ), H(V ).

where U is an open subset of Rn and V is a smooth or analytical
manifold.

They verify :
F ′(V )⊗̂F ′(U) = F ′(U × V )
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Thank you.
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