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Differentiable programming

A new area triggered by the advances of deep learning algorithms on
neural networks, it tries to attach two very old domains:

> Algorithmic Differentiation.
> A-calculus.

Goal: Exploring modular way to express (algorithmic) differentiation in
functional programming languages:

» Abadi & Plotkin, POPL20. (traces and big-step semantics)
» Brunel & Mazza & Pagani, POPL20, POPL21.

» Elliot, ICFP18, (compositional differentiation)

» Wang and al., ICFP 19, (delimited continuations)

» Interactions with probabilistic programming...
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The real inventor of deep learning
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Outline of the talk

. Reverse differentiation and differentiable programming.

. Dialectica acting on formulas.

. Dialectica acting on A-terms.

. Factorizing Dialectica through differential linear logic.

. Applications and related work.
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Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

x1 = x¢ x| = 2xpx}
Eg : z=y+cos(x?) x =cos(x1) x3=—x4sin(x)
/

zZ=y+x Z' =y + 2x0x}

The computation of the final results requires the computation of the
derivative of all partial computation. But in which order ?

Forward Mode differentiation [Wengert, 1964]

(x1,x1) = (x2,%4) = (z,2').

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]
X1 x> z—272 = xh—x]
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| hate graphs

Du(fog) = Dg(u)f (e} Du(g)

» Forward Mode differentiation :
g(u) = Dug — f(g(u)) = Dg(u)f — Dg(u)f © Du(g)-

» Reverse Mode differentiation:
g(u) — f(g(u)) = Dg(uyf — Dug — Dg(uyf o Du(g)

The choice of an algorithm is due to complexity considerations:
» Forward mode for fo g : R — R".
» Reverse mode for fog :R" — R

~ Differentiation is about linearizing a function/program. Some people have a
very specific idea of what a linear program or a linear type should be.

6/37



Idea: Reverse Differentials are contravariant

» Forward Mode differentiation :

h:A= B~ Dh: A= A—o B,

> Reverse Mode differentiation:
h:A= B~ Dh: A= BL —o AL,
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AD from a functorial point of view

How to make differentiation functorial ? Make it act on pairs !

f:E=F
forward:
B(f) ExXE—FxF
’ (a,x) = (f(a), (D.f - x))
backward:

- ExF —FxE
o) { (a.6) = (£(a), (Lo Da))
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Brunel, Mazza and Pagani [POPL2020]

Key Idea J

Reverse derivatives are typed by linear negation.

Consider f : R" — R™ a function variable.

B(f).{R”xR"’l%R’"xR"L
. (a,x) = (f(a), (v = x - (Daf - v))

This leads to a compositional reverse derivative transformation over
the linear substitution calculus, and proven complexity results.

AB,C:=R|AxB|A— B|R

tou=x| x| dxt] ()| t[x0" =] |< t,u>|t+u.
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A Dialectica Transformation

» Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to a finite type extension of primitive
recursive arithmetic.

A ~ Ju s W(A),Vx : C(A), AP[u, x]

» De Paiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

» Pedrot [2014] A computational Dialectica translation preserving
(B-equivalence, via the introduction of an "abstract multiset
constructor” on types on the target.
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Godel’s Dialectica

1. (FAGY =QAyv) (zw) [A (3, z, x) A\ B (v, w, u)].

2. (F\V G)Y =@yv) (zw) [t=0N\A (g, 2z, 2)-\V-t=1 A B (v, w, u)].
3. [(5)FI' = @Y) (s5) A (Y (), 5 7).

4. [As)FI' =A3sy) @Ay, z, ).

5. (Fo2 G) = SEIVZ) (yw) [A (_y, Z (yw), =) D B {(V(y), w, u)].

6. (TF)' =Q@Z) (@) 1Ay Z(y), »).

@ Kurt Godel (1958). Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunktes. Dialectica.
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Godel's Dialectica

» Validates semi-classical axioms:

» Markov's principle : =—3xA — 3IxA when A is decidable.
» Independant of premises : (A — 3xB) — (3x.(A — B))

» Numerous applications :

» Soudness results
> Proof mining

A further distinguishing feature of the D-interpretation is its nice behavior with
respect to modus ponens. In contrast to cut-elimination, which entails a global (and
computationally infeasible) transformation of proofs, the D-interpretation extracts
constructive information through a purely local procedure: when proofs of ¢ and
@ — 1 are combined to yield a proof of ¢, witnessing terms for the antecedents of
this last inference are combined to yield a witnessing term for the conclusion. As
a result of this modularity, the interpretation of a theorem can be readily obtained
from the interpretations of the lemmata used in its proof.

@ Jeremy Avigad and Solomon Feferman (1999). Gédel's functional (" Dialectica™)
interpretation
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A peek into Dialectica interpretation of functions

(A — B)p = IgVxy(Ap(x, gxy) = Bp(fx,y))

Usual explanation : least unconstructive prenexation.

>

vV VvVyVvyVvYyy

Start from 3x,Vu, Ap[x, u] — 3y, Vv, Bply, v].

Obvious prenexation : Vx (Yu, Ap[x, u] — 3y, Vv, Bply, v])
Weak form of IP : Vx3y (Vu, Ap[x, u] — Vv, Bply, v])
Prenexation : Vx3y,Vv,V-—3u (Ap[x, u] — Bply, v]).
Markov : Vx, 3y, Vv, Ju(Ap[x, u] — Bply, v])

Axiom of choice : 3f,3g,Vu,Vv, (Ap(u, guv) — Bp[fu, v]).

Dynamic behaviour : agrees to a chain rule.

Mathematical meaning : it’s some kind of approximation.
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Dialectica verifies the chain rules

(A= B)plo1; 11, ur; vi]:= Ap(u1, 91 uy vi) = Bp(¢1 ur, v1)
(B = C)ploa; V2, uz; va] := Bp(u2, 12 th v2) = Cp(¢p2 u2, v2)
(A= C)plos; 3, us; v3]:= Ap(us, V3 u3 v3) = Cp(¢3 u3, v3)

The Dialectica interpretation amounts to the following equations:

uz = Uy YUz vz =P u vy
Vi =V Q22 = P11
U = @1 Uy Vo=@ v

which can be simplified to:

@3 uz = ¢2 (1 u3) composition of functions
3 u3 v3 = 1y (¢ us) (W1 U3 v3) composition of their differentials
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Types !

witness
A~ Ix: W(A),Vu: C(A),Ap[x, u]
——

opponent

Witness and counter types :

C(A= B) =C(A) x C(B)

W(A = B) = (W(A) = W(B)) x (W(A) = C(B) = C(A))
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Types !

lobal witness
gz—’a
A~ 3 x:W(A),V u:C(A) ,Ap[x,u]
—_——
local opponent
Witness and counter types :
C(A= B) = C(A) x C(B)

function

—_——
W(A = B) = (W(A) = W(B)) x [ W(a) = C(B) = C(A)
—_————

reverse derivative
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Let's say x, u, f, g are \-terms.

A reverse Differential \-calculus

" Behind every successful proof there is a program”, Gédel's wife
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A computational Dialectica

Making Dialectica act on A-terms instead of formulas:

An abstract multiset 27 (—)
rleimA I'I—mgzimA
Fr-o:MA FrEm®my:MA
NM-t:A FrM=m:MA r-f:A=mMm~B
M- {t}: MA [ m>>=f:MB
WA= B) = (W(A)=W(B))

x(C(B) = W(A) = MC(A))
W(A) x C(B)

C(A= B)
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Pédrot’s Dialectica Transformation

Soundness [Ped14]

If [+t : Ain the source then we have in the target
> W(r)Ft*: W(A)
> W(I) F t : C(A) = MC(X) provided x : X € T.

A global and a local transformation

x* = X (M. 1) = (Ax.t* Amx.t, )
X = Am{n} (Ax.t), = AIr.(Mx.t,)milm2
x, = MQifx#y (tu)® = (t*.1) u®

(t u)y, == Am.(t, (u*, 7)) ® ((t*.2) mu® >=u,)
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Flashback: Differential A-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of
sequences, it introduces a differentiation of A-terms.

D(Ax.t) is the linearization of Ax.t, it substitute x linearly, and then it
remains a term t' where x is free.

Syntax:

A S T,UV:=0]|s|s+T
N s tyuvi=x|Mxs|sT | Dst

Operational Semantics:

(Ax.s)T =5 s[T/x]
D(Ax.s) -t =g, Ax. 95 -t

where - t is the linear substitution of x by t in s.
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Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
AFAVB AFAAA
A AX. Fxx AX AL fxx

Usual Implication
A call-by-name tra@n
A=B=1A —-B
C>*(A,B) ~ L('A, B)
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Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
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Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
AFAVB AFAAA
A AX. Fxx AX AL fxx

Usual implication Linear implication
A call-by-name translatign

ALB=1A B
cw(A,B):/ﬁ(!A B)

Exponential Smooth Semantics
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The linear substitution ...

which is not exactly a substitution
dy _, Tifx= 0 _,0s ou
ox =1 0 otherw:se &(SU)' T_(&' T)U+(DS'(5 Y
Os 0 0s ou
—()\ys) T= /\y8 - T a(D&u)-TfD(&-T)-UwLD& aT)
00 0 _0Os ou -
9s . t represents s where x is linearly (i.e. one time) substituted by ¢
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Xx
Xy

(Ax. t)y

Tracking differentiation in Dialectica

7 years ago : "That's Differential A-calculus”

= Ar. {7} x*® = x
= Mg ifx#y (Ax. 1) = (Axt*, Axm.te )
= Am.(Ax.ty) 7.1 72 (t u)* = (t*.1) u®

(t u)y :=Am. (8, (v, 7)) ® ((t*.2) u® T >=u,)
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Tracking differentiation in Dialectica

7 years ago : "That's Differential A-calculus”

Xy = AT % T x* = X
Xy = AT g—; - ifx#y (Ax.t)* = (Ax. t®, Axm. t, ™)
(Ax.t)y = Ar.(Mx.t) 7.1 w2 (t u)® == (Ax.(tx)*) u®

(t u)y :==Am. (8 (u®, 7)) ® ((t°.2) u® 7 >=uy)

3 years ago : That's reverse differentiation
> (_)°.2 obeys the chain rule, (1)® is the functorial differentiation.

» t. is contravariant in x.

22/37



Tracking differentiation in Dialectica

7 years ago : "That's Differential A-calculus”

X = AT g—i T x* = X
Xy = AT g—; o ifx#y (Ax.t)® = (Ax.t%, A7t )
(Ax.t)y = Am(Mx.ty) w1 w2 (t u)*® =  (Ax(x)°) u®

3 years ago : That's reverse differentiation

> (_)°.2 obeys the chain rule, (1)® is the functorial differentiation.
» t, is contravariant in x.

— — ot
[u>=t] = Az. ([u] (£ 2))
up to the linearity of [u], IRL we make use of two logical relations
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Dialectica is reverse differential \-calculus

where the linearity of counter terms is not enforced.

Two logical relations : the arrow case

teasg T = Yur~p U (t.l u) ~B (T U)
A (t.2 u)<ip (Az. (DT - z) U)
txix g T = Vur~aU. Amt(u,m)<g (Az. T z V)
Theorem

If I+ t: Ais a simply-typed A-term, then
> forall Fror R, t°{T « 7} ~a t{I < R},
» and for all erﬁandx:Xer,

t T « 7} <X Az <% -z){l' +~ R}.
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A Linear Logic Refinement
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Differential Linear Logic
F¢-A—-oB Ff:1A—oB -

(1A <B ¢ FDof A <B ¢
A linear proof From a non-linear proof
is in particular non-linear. we can extract a linear proof
f aC>(R,R)

e

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Exponential rules of Differential Linear Logic

res MIA A B rAFB
FIAF B AFB TIAF B
i rE1A  ARIA | reA S
F1A TAFIA 1A
TEA
A P
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Dialectica factorizes through Linear Logic

W(AL) = C(A) C(AY) = W(A)
W(A®B) = W(A)+W(B) CA®B) = C(A)xC(B)
W(1A) = W(A) C(1A) = W(A) = C(A)
W(A®B) = W(A)x W(B)
C(A®B) = (W(A)= C(B))x (W(B)= C(A))

WLL .
Je \Z

>\+7>< - )\+7><
W C

ﬁ Valeria de Paiva, 1989, A dialectica-like model of linear logic.
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Dialectica factorizes through Differential Linear Logic

WA) = IW(A)  CUA) = IW(A) — C(A)
WA®B) = W(A)® W(B)
C(A@B) = (W(A) — C(B)) @ (W(B) — C(A))
W(A — B) = (W(A) — W(B)) & (C(B) — C(A))
C(A—B) = W(A)®C(B)
If [+ Ain LL, then W(I') - W(A) in classical DILL. |
HA AL ai( «
caal 9 Traal o -
- 74 A AL ¢ Tr2A

74 A cut
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Dialectica factorizes through Differential Linear Logic

The economical translation

[A= B].:='A—-B
[AxB]e:=A&B
[A+B]..=A®B

ILL — € 4 IDiLL

1] |-

+,X +,X
X s
A W C A

IDILL : Intuitionnistic Differential Linear Logic ? Oh no ...
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Dialectica categories through Differential Categories

Categories representing specific relations
Consider a category C. Dial(C) is constructed as follows:
» Objects : relationsa C U x X, BC V x Y.
» Maps from o to 3 :

(F UV, F:UxY = X)

» Composition : the chain rule !

Consider
(f,F): aC(AX) — BC(BY)
and (g,G): BC(BY) — 7<(C2)

two arrows of the Dialectica category. Then their composition is defined

(g,G)o(f,F):=(gof,(a,z)— G(f(a), F(a,z))).
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Dialectica categories through Differential Categories
In a x-autonomous differential category :

0:lda! =1

LB A CH)~L(A(B®C))
From f : 1A — B one constructs :

D(f) e L(A® BE, AL).

Dialectica categories factorize through differential categories
If £ is a model of DILL such that £, has finite limits:
E} — @(Cl)
A = AxAt
%
f = (f,D(f))

v

To be declined in reverse/cartesian differential categories...
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Conclusion and applications
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Take home message:

Dialectica is functorial reverse differentiation,
extracting intensteral local content from proofs.

Related work and applications:
» Semantics : Ehrhard’s differentiation without sums.
» Markov's principle and delimited continuations on positive formulas.

» Proof mining and backpropagation.
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Ehrhard’s differentiation without sums

Content. We base our approach on a concept of summable pair that we axiomatize as a general
categorical notion in Section 2: a summable category is a category £ with 0-morphisms! together with
a functor S : £ — L equipped with three natural transformations from SX to X: two projections and
a sum operation. The first projection also exists in the “tangent bundle” functor of a tangent category
but the two other morphisms do not. Such a summability structure induces a monad structure on S (a
similar phenomenon occurs in tangent categories). In Section 3 we consider the case where the category is
a cartesian SMC equipped with a resource comonad !_ in the sense of LL where we present differentiation
as a distributive law between the monad S and the comonad !_. This allows to extend S to a strong
monad D on the Kleisli category £y which implements differentiation of non-linear maps. In Section 4
we study the case where the functor S can be defined using a more basic structure of £ based on the
object 1 & 1 where & is the cartesian product and 1 is the unit of ®: this is actually what happens in

ﬁ Thomas Ehrhard. Coherent differentiation. 2021
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Dialectica is differentiation

... We knew it already !

The codereliction of differential proof nets: In terms
of polarity in linear logic [23], the V-—-free constraint
characterizes the formulas of intuitionistic logic that can be
built only from positive connectives (&, &, 0, 1, !) and the
why-not connective (“?”). In this framework, Markov’s prin-
ciple expresses that from such a V-—-free formula A (e.g.
? @, (7A(x)®@7B(x))) where the presence of “?” indicates
that the proof possibly used weakening (efq or throw) or
contraction (catch), a linear proof of A purged from the
occurrences of its “7”” connective can be extracted (meaning
for the example above a proof of @.(A(x) ® B(x))).
Interestingly, the removal of the “7”, i.e. the steps from
?P to P, correspond to applying the codereliction rule of
differential proof nets [24].

Differentiation : (7P =(P —-1)= 1) > ((P— 1) —-1)=P)

@ Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”,

LICS '10 .
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Differentiation and delimited continuations

Herbelin Lics'10

Markov's principle is proved by allowing catch and throw operations on
hereditary positive formulas.

— AXIOM

b:Tkrarb:T THROW
b:Tt41r throw,b: L
AXIOM —7I
a:--TFara: T Fo.r Ab.throw, b : =T g
a: =T o a(Ab.throwy,b) @ L

a:—--TFar efqa(Ab.throw,b): T
a: -1+ catch, efq a(Ab.throw,b) : T

F Aa.catch, efqa(Ab.throw, b): =—T — T

lg
CATCH
—7

Figure 3. Proof of M P
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Proof Mining
Extracting quantitative information from proofs.
Effective moduli from ineffective uniqueness proofs. An unwinding of

de La Vallée Poussin’s proof for Chebycheff approximation*

Ulrich Kohlenbach
Fachbereich Mathematik, J.W. Goethe Universitat
Robert Mayer Str. 6 10, 6000 Frankfurt am Main, FRG

Abstract
We consider uniqueness theorems in classical analysis having the form
(+) Yu € Uy, vs € Vi (Glu,v1) = 0= Glu,va2) = o0 = va),

where U,V are complete separable metric spaces, V,, is compact in V oand G : U xV > Ris a
constroctive fn
If (+) is proved

.
hy arithmetical means from analytical assumptions

(++) Yo € XAy € VaV¥z € Z(F(r,y.2) = 0)
anly (where X, Y, Z are complete separable metric spaces, Y, C Y is compact and
F: X xY x Z = IR constructive), then we can extract from the proof of (+4) = (+) an
effective modulus of nniqueness, ie.
(+++) Vu € Uvy,va € Vi k € N(|Glu, 7)), |Gl va)| €277 Sdy (0, 00) <27F)
Differentiate the function (¢ — 7)) in :
Yu,vivp,Ve > 0,37 > 0,]|G(u,v1) — G(u, v2)| <1 — dy(vi, ) < €|
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