SD2014, Vienna

Weak topologies, duality and polarities

Marie Kerjean

PPS Laboratory
Paris 7 University

July 12, 2014

Introduction

Motivation : A model of $L L$ whose objects are intuitive (general vector spaces) but were not constructed specifically for Linear Logic.

- A strong link between Linear Logic and Functional Analysis.
- A mathematical interpretation of connectives according to their polarities.

Spoilers

We have a model of propositional Linear Logic:

- The formulas are interpreted by the separated and locally convex topological vector spaces, endowed with their weak topology.
- Linear proofs are interpreted by the continuous linear maps.
- Non-linear proofs are interpreted by sequences of monomials.

Plan

- Duality in LL: How to interpret the involutive linear negation ? Orthogonalities and weak topologies.
- Polarities : the enforcement of the weak topology as a shift from positive connectives to negative connectives.

How can duality be interpreted?

Let us write $[A]$ for the semantic interpretation of a formula A of Linear Logic.

You want to have reflexive objects: $[\neg \neg A]=[A]$.

- In Rel : $[\neg A]=[A]$.
- In Coherent spaces, Finiteness spaces, Köthe spaces ... : $[\neg A]=[A]^{\perp}$
where $[A]^{\perp}$ is the orthogonal of the coherent space $[A]$.

Orthogonality relations

Definition

$\perp \subset \Omega_{1} \times \Omega_{2}$ is a symmetric relation. If $X \subset \Omega_{1}$, then $X^{\perp}=\left\{y \in \Omega_{2} \mid \forall x \in X,(x, y) \in \perp\right\}$.

Example
If A is a coherent space, if $a, b \subset A$, then $a \perp b$ iff $|a \cap b| \leq 1$.

A set is bi-orthogonally closed if $\left(X^{\perp}\right)^{\perp}=X$. If A is a coherent space, and $\mathcal{C}(A)$ the set of its cliques, then $\mathcal{C}(A)^{\perp \perp}=\mathcal{C}(A)$.

Duality and orthogonality

Double orthogonality completion
X^{\perp} is always reflexive: $X^{\perp \perp \perp}=X^{\perp}$.

When an object is not reflexive, we can make it reflexive !
Example
If A and B are two coherent spaces

$$
\mathcal{C}(A \otimes B)=\{a \otimes b \mid a \in \mathcal{C}(A), b \in \mathcal{C}(B)\}^{\perp \perp}
$$

where $a \otimes b=\{(x, y) \mid x \in a, y \in b\}$

How can duality be interpreted?

You want to have reflexive objects : $[\neg \neg A]=[A]$.
Let us write $[A]$ from the semantical interpretation of a formula $[A]$

- In Rel : $[\neg A]=[A]$.
- In Coherent spaces, Finiteness spaces, Köthe spaces ...:
$[\neg A]=[A]^{\perp}$. You restrict to spaces where a definition by orthogonality is possible.
- In \mathbb{K}-vector spaces, $[\neg A]=[A]^{*}=L([A], \mathbb{K})$ the algebraic dual of E.

The last point is intuitive: $A^{\perp}=A^{\perp \mathcal{P}} \perp=A \multimap \perp$.

Duality in vector spaces

If $[A]$ is a vector space, $[A]^{*}=L([A], \mathbb{K})$ is its dual.

No reflexivity completion
If E is a vector space, E^{*} is not reflexive in general.

Definition
A topological vector space E is a vector space endowed with a topology making the addition and multiplication by a scalar continuous. E^{\prime} is the topological dual of E.

Duality in topological vector spaces

Definition

A topological vector space E is a vector space endowed with a topology making the addition and multiplication by a scalar continuous. E^{\prime} is the topological dual of E.

No reflexivity completion
If E is a topological vector space, E^{\prime} is not reflexive in general.

We are going to work with locally convex and separated topological vector spaces: E, F.

The weak topology on E^{\prime}

A weak topology induced by E
We endow E^{\prime} with the weak topology induced by E, that is the coarsest topology making all evve $: E^{\prime} \rightarrow \mathbb{K}$ continuous.

The weak topology on E^{\prime}

Fundamental property
When E^{\prime} is endowed with the weak topology induced by E, then $E^{\prime \prime}$ and E are the same vector spaces.

The weak topology on E

A weak topology induced by E
We endow E with the weak topology induced by E^{\prime}, that is the coarsest topology making all $I \in E$ continuous. E_{w} is the vector space E endowed with its weak topology.

E^{\prime} is already a weak space: the weak topologies induced by E or $E^{\prime \prime}$ corresponds.

The weak topology on E

A weak topology induced by E
We endow E with the weak topology induced by E^{\prime}, that is the coarsest topology making all $I \in E$ continuous. E_{w} is the vector space E endowed with its weak topology.

$E^{\prime \prime}$ and E_{w} are the same topological vector spaces.

A model of LL

- \otimes is interpreted by the inductive tensor product.
- We have a monoidal closed category, thanks to the chosen topology and the fact that $\mathcal{L}_{s}\left(E, F_{w}\right)^{\prime}=E \otimes F^{\prime}$.
- X is its dual. $E \not \subset F$ is the space of separately continuous bilinear forms on $E \times F$.
- \oplus is the topological co-product, \times is the topological product.

Quantitative semantics helps us finding a good exponential.
... and then we consider these spaces endowed with their weak topology.

Polarities

A positive connective

Positive connectives don't preserve the weak topology.

A positive connective

Positive connectives don't preserve the weak topology.

A negative connective

Negative connectives preserve the weak topology.

Polarities and weak topologies

If we write $\uparrow E$ for E_{w}, when E is a locally convex and separated topological vector space :

- $\uparrow(E \otimes F) \neq \uparrow E \otimes \uparrow F$ and $\uparrow(E \otimes F)=\uparrow(\uparrow E \otimes \uparrow F)$.
- $\uparrow(E \times F)=\uparrow E \times 8 \uparrow F=E \times 8 F$.
- $\uparrow \oplus_{i \in \mathbb{N}} E_{i} \neq \oplus_{i \in \mathbb{N}} \uparrow E_{i}$ but $\uparrow \oplus_{i \in \mathbb{N}} E_{i} \neq \uparrow \oplus_{i \in \mathbb{N}} E_{i}$.
- $\uparrow \&_{i \in \mathbb{N}} E_{i}=\&_{i} \uparrow E_{i \in \mathbb{N}}$ but $\&_{i} \uparrow E_{i \in \mathbb{N}} \neq \&_{i \in \mathbb{N}} E_{i}$.
- $\uparrow!E \neq!\uparrow E$.
- $\uparrow ? E=? \uparrow E$.

Shift and weak topologies

(.) $=\uparrow$

Negatives connectives are exactly those which preserve the weak topology.

A loss of information

- $E \rightarrow E_{w}$ is always continuous but $E_{w} \rightarrow E$ is not. E_{w} has less open sets than E.
- The construction of the interpretation of a positive connective is a non-reversible operation.

An adjunction

Proposition

If E and F are tvs, $\mathcal{L}\left(E, F_{w}\right) \simeq \mathcal{L}\left(E_{w}, F_{w}\right)$. \uparrow is left adjoint to \mathcal{U}.

(Discussion with T. Ehrhard).

Polarities and Orthogonalities

When using orthogonalities to interpret the involutive linear negation of $L L$, there is also a distinctive use of polarities.

Negative connectives in Coherent spaces

- If we write $\mathcal{C}(X) \otimes \mathcal{C}(Y)=\{x \otimes y \mid x \in \mathcal{C}(X), y \in \mathcal{C}(Y)\}$ with $x \otimes y=\{(a, b) \mid a \in x, b \in y\}$, then

$$
\mathcal{C}(X \otimes Y)=(\mathcal{C}(X) \otimes \mathcal{C}(Y))^{\perp \perp}
$$

- If we write $!\mathcal{C}(X)=\left\{u \subset \mathcal{C}_{\text {fin }}(x) \mid \bigcup u \in \mathcal{C}_{\text {fin }}(X)\right\}$ then

$$
\mathcal{C}(!X)=(!\mathcal{C}(X))^{\perp \perp}
$$

Positive connectives
If we write $\mathcal{C}(X) \not \mathcal{\mathcal { C }}(Y)=(\mathcal{C}(X) \otimes \mathcal{C}(Y))^{\perp}$, then
$\mathcal{C}(X \ngtr Y)=\mathcal{C}(X) \ngtr \mathcal{C}(Y)$. Idem for \oplus and ?

For which orthogonality could we have:

$$
(.)_{w}=(.)^{\perp \perp} ?
$$

Perspectives

- Barr's work: a similar model with the Mackey topology ?
- An interpretation of focused proof? The downward shift could be interpreted by the enforcement of the weak* topology.
- Models with richer topological vector spaces ?

Thank you.

The exponential

Definition

$!E \simeq \bigoplus_{n \in \mathbb{N}} \mathcal{H}^{n}(E, \mathbb{K})^{\prime}$ and if $f \in \mathcal{L}\left(E_{w}, F_{w}\right)$ we define

$$
!f:\left\{\begin{aligned}
!E_{w} & \rightarrow!F_{w} \\
\quad \phi & \mapsto\left(\left(g_{n}\right) \in \prod_{n} \mathcal{H}^{n}(F, \mathbb{K}) \mapsto \phi\left(\left(g_{n} \circ f\right)_{n}\right)\right.
\end{aligned}\right.
$$

The exponential

$$
\begin{gathered}
\epsilon_{E}\left\{\begin{array}{c}
!E_{w} \rightarrow E_{w} \\
\phi \mapsto \phi_{1} \in E^{\prime \prime} \simeq E
\end{array}\right. \\
\delta_{E}\left\{\begin{array}{c}
!E_{w} \rightarrow!!E_{w} \simeq\left(\prod_{n} \mathcal{H}^{n}\left(\left[\prod_{m} \mathcal{H}^{m}(E, \mathbb{K})\right]^{\prime}, \mathbb{K}\right)\right)^{\prime} \\
\phi \mapsto\left[\left(g_{n}\right)_{n} \mapsto \phi\left(\left(x \in E \mapsto \sum_{k \mid p} g_{k}\left[\left(f_{m}\right)_{m} \mapsto f_{p \mid k}(x)\right]\right)_{p}\right)\right.
\end{array}\right.
\end{gathered}
$$

