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Introduction

Motivation : A model of LL whose objects are intuitive (general
vector spaces) but were not constructed specifically for Linear
Logic.

• A strong link between Linear Logic and Functional Analysis.

• A mathematical interpretation of connectives according to
their polarities.
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Spoilers

We have a model of propositional Linear Logic:

• The formulas are interpreted by the separated and locally
convex topological vector spaces, endowed with their weak
topology.

• Linear proofs are interpreted by the continuous linear maps.

• Non-linear proofs are interpreted by sequences of monomials.
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Plan

• Duality in LL : How to interpret the involutive linear negation
? Orthogonalities and weak topologies.

• Polarities : the enforcement of the weak topology as a shift
from positive connectives to negative connectives.
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How can duality be interpreted?

Let us write [A] for the semantic interpretation of a formula A of
Linear Logic.

You want to have reflexive objects: [¬¬A] = [A].

• In Rel : [¬A] = [A].

• In Coherent spaces, Finiteness spaces, Köthe spaces ... :
[¬A] = [A]⊥

where [A]⊥ is the orthogonal of the coherent space [A].
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Orthogonality relations

Definition
⊥ ⊂ Ω1 × Ω2 is a symmetric relation. If X ⊂ Ω1, then
X⊥ = {y ∈ Ω2 | ∀x ∈ X , (x , y) ∈ ⊥}.

Example

If A is a coherent space, if a, b ⊂ A, then a⊥b iff |a ∩ b| ≤ 1.

A set is bi-orthogonally closed if (X⊥)⊥ = X . If A is a coherent
space, and C(A) the set of its cliques, then C(A)⊥⊥ = C(A).
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Duality and orthogonality

Double orthogonality completion

X⊥ is always reflexive: X⊥⊥⊥ = X⊥.

When an object is not reflexive, we can make it reflexive !

Example

If A and B are two coherent spaces

C(A⊗ B) = {a⊗ b | a ∈ C(A), b ∈ C(B)}⊥⊥

where a⊗ b = {(x , y) | x ∈ a, y ∈ b}
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How can duality be interpreted?

You want to have reflexive objects : [¬¬A] = [A].

Let us write [A] from the semantical interpretation of a formula [A]

• In Rel : [¬A] = [A].

• In Coherent spaces, Finiteness spaces, Köthe spaces ...:
[¬A] = [A]⊥. You restrict to spaces where a definition by
orthogonality is possible.

• In K-vector spaces, [¬A] = [A]∗ = L([A],K) the algebraic
dual of E .

The last point is intuitive: A⊥ = A⊥ `⊥ = A ( ⊥.
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Duality in vector spaces

If [A] is a vector space, [A]∗ = L([A],K) is its dual.

No reflexivity completion

If E is a vector space, E ∗ is not reflexive in general.

Definition
A topological vector space E is a vector space endowed with a
topology making the addition and multiplication by a scalar
continuous. E ′ is the topological dual of E .
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Duality in topological vector spaces

Definition
A topological vector space E is a vector space endowed with a
topology making the addition and multiplication by a scalar
continuous. E ′ is the topological dual of E .

No reflexivity completion

If E is a topological vector space, E ′ is not reflexive in general.

We are going to work with locally convex and separated
topological vector spaces : E , F .
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The weak topology on E ′

A weak topology induced by E

We endow E ′ with the weak topology induced by E , that is the
coarsest topology making all evx : E ′ → K continuous.

Vector spaces Topological vector spaces

E

E ′

E ′

11/26



Introduction Duality Polarity Conclusion

The weak topology on E ′

Vector spaces Topological vector spaces

E
E ′

E ′

E ′′ = E

Fundamental property

When E ′ is endowed with the weak topology induced by E , then
E ′′ and E are the same vector spaces.

12/26



Introduction Duality Polarity Conclusion

The weak topology on E

A weak topology induced by E

We endow E with the weak topology induced by E ′, that is the
coarsest topology making all l ∈ E continuous. Ew is the vector
space E endowed with its weak topology.

Topological vector spaces

Weak spaces

E
E ′

Ew

E ′ is already a weak space: the weak topologies induced by E or
E ′′ corresponds.
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The weak topology on E

A weak topology induced by E

We endow E with the weak topology induced by E ′, that is the
coarsest topology making all l ∈ E continuous. Ew is the vector
space E endowed with its weak topology.

Topological vector spaces

Weak spaces

E
E ′

Ew ' E ′′

E ′′ and Ew are the same topological vector spaces.
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A model of LL

• ⊗ is interpreted by the inductive tensor product.
• We have a monoidal closed category, thanks to the chosen

topology and the fact that Ls(E ,Fw )′ = E ⊗ F ′.

• ` is its dual. E ` F is the space of separately continuous
bilinear forms on E × F .

• ⊕ is the topological co-product, × is the topological
product.

Quantitative semantics helps us finding a good exponential.

... and then we consider these spaces endowed with their weak
topology.
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Polarities

Topological vector spaces

Weak spaces ILL

LL
E

Ew

(.)w
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A positive connective

Topological vector spaces

Weak spaces ILL

LL
E

Ew

(.)w

Fw

Ew ⊗ Fw

Positive connectives don’t preserve the weak topology.
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A positive connective

Topological vector spaces

Weak spaces ILL

LL
E

Ew

(.)w

Fw

Ew ⊗ Fw

(Ew ⊗ Fw )w

Positive connectives don’t preserve the weak topology.
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A negative connective

Topological vector spaces

Weak spaces ILL

LL
E

Ew

(.)w

Fw

Ew ` Fw

Negative connectives preserve the weak topology.
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Polarities and weak topologies

If we write ˆE for Ew , when E is a locally convex and separated
topological vector space :

• ˆ(E ⊗ F ) 6= ˆE ⊗ ˆF and ˆ(E ⊗ F ) = ˆ(ˆE ⊗ ˆF ).

• ˆ(E ` F ) = ˆE ` ˆF = E ` F .

• ˆ⊕i∈N Ei 6= ⊕i∈NˆEi but ˆ⊕i∈N Ei 6= ˆ⊕i∈N Ei .

• ˆ &i∈N Ei = &iˆEi∈N but &iˆEi∈N 6= &i∈NEi .

• ˆ!E 6=!ˆE .

• ˆ?E =?ˆE .
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Shift and weak topologies

(.) = ˆ
Negatives connectives are exactly those which preserve the weak
topology.

A loss of information

• E → Ew is always continuous but Ew → E is not. Ew has less
open sets than E .

• The construction of the interpretation of a positive connective
is a non-reversible operation.
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An adjunction

Proposition

If E and F are tvs, L(E ,Fw ) ' L(Ew ,Fw ). ˆ is left adjoint to U .

Topological vector spaces

Weak spaces ILL

LL
ˆ

U

(Discussion with T. Ehrhard).
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Polarities and Orthogonalities
When using orthogonalities to interpret the involutive linear
negation of LL, there is also a distinctive use of polarities.

Negative connectives in Coherent spaces

• If we write C(X )⊗ C(Y ) = {x ⊗ y |x ∈ C(X ), y ∈ C(Y )} with
x ⊗ y = {(a, b) | a ∈ x , b ∈ y}, then

C(X ⊗ Y ) = (C(X )⊗ C(Y ))⊥⊥.

• If we write !C(X ) = {u ⊂ Cfin(x) |
⋃
u ∈ Cfin(X )} then

C(!X ) = (!C(X ))⊥⊥.

Positive connectives
If we write C(X ) ` C(Y ) = (C(X )⊗ C(Y ))⊥, then
C(X ` Y ) = C(X ) ` C(Y ). Idem for ⊕ and ?.

21/26



Introduction Duality Polarity Conclusion

For which orthogonality could we have:

(.)w = (.)⊥⊥ ?

22/26



Introduction Duality Polarity Conclusion

Perspectives

• Barr’s work: a similar model with the Mackey topology ?

• An interpretation of focused proof ? The downward shift could
be interpreted by the enforcement of the weak* topology.

• Models with richer topological vector spaces ?
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Thank you.
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The exponential

Definition
!E '

⊕
n∈NHn(E ,K)′ and if f ∈ L(Ew ,Fw ) we define

!f :


!Ew → !Fw

φ 7→ ((gn) ∈
∏

n

Hn(F ,K) 7→ φ((gn ◦ f )n)
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The exponential

εE

{
!Ew → Ew

φ 7→ φ1 ∈ E ′′ ' E

δE


!Ew → !!Ew '

(∏
n

Hn([
∏
m

Hm(E ,K)]′,K)

)′

φ 7→

(gn)n 7→ φ(

x ∈ E 7→
∑
k|p

gk [(fm)m 7→ fp|k (x)]


p

)
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