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Smoothness

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation d(f )(x) : v 7→ d(f )(x)(v) of f near x .

f ∈ C∞(R,R)

d(f )(0)

A coinductive definition

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.
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Linear Logic

A decomposition of the implication

A⇒ B '!A( B

Denotational semantic

We interpret formulas as sets and proofs as functions between
these sets.

Denotational semantic of LL

We have a cohabitation between linear functions and non-linear
functions.
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Differentiating proofs

I Differentiation was in the air since the study of Analytic
functors by Girard :

d̄(x) :
∑

fn 7→ f1(x)

I DiLL was developed after a study of vectorial models of LL
inspired by coherent spaces : Finiteness spaces (Ehrhard
2005), Köthe spaces (Ehrhard 2002).

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic: Semantics

DiLL is a modification of the exponential rules of Linear Logic in
order to allow differentiation.

Differentiation

For each f :!A( B ' C∞(A,B), we have an interpretation for its
differential at 0:

D0f : A( B

Exponential connectives

?E ' C∞(E ′,R)

!E ' C∞(E ,R)′

A typical inhabitant of !E is evx : f ∈ C∞(E ,K) 7→ f (x).
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(Differential) Linear Logic is classical

In Linear Logic, negation is linear :

A⊥ := A( ⊥.

Linear Logic and Differential Linear Logic are classical :

A⊥⊥ ' A

This classicality must translates into semantics. When formulas
are interpreted by vector spaces it implies :

JA⊥K := L(JAK,R) = JAK′

JAK′′ ' JAK

evx 7→ x

We want a model of reflexive vector spaces.
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Differential Linear Logic : Syntax

A,B := A⊗ B|1|A` B|⊥|A⊕ B|0|A× B|>|!A|?A

Proofs

` Γ, ?A, ?A
c` Γ, ?A

` Γ w` Γ, ?A
` Γ,A

d` Γ, ?A

` Γ, !A, ` ∆, !A
c̄` Γ,∆, !A

`
w̄` !A

` Γ,A
d̄` Γ, !A

Interactions between linearity and non linearity

d̄ :

{
E → !E

x 7→ (f 7→ D0(f )(x))
d :

{
!E → E

ψ 7→ ψE ′ ∈ E ′′'E
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Differential Linear Logic : Syntax

A,B := A⊗ B|1|A` B|⊥|A⊕ B|0|A× B|>|!A|?A

Proofs

` Γ, ?A, ?A
c` Γ, ?A
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` Γ, !A, ` ∆, !A
c̄` Γ,∆, !A

`
w̄` !A

` Γ,A
d̄` Γ, !A

Interactions between linearity and non linearity

d̄ :

{
E ′′ → C∞(E ,R)′

evx 7→ (f 7→ evx(D0(f ))
d :

{
C∞(E ,R)′ → E

ψ 7→ ψE ′ ∈ E ′′'E
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The computational content of differentiation
Historically, resource sensitive syntax and discrete semantics

I Quantitative semantics : f =
∑

n fn
I Resource λ-calculus and Taylor formulas : M =

∑
n Mn

Nowadays, differentiation in computer science is motivated by the
study of continuous data:

I Differential Geometry and functional analysis
I Ordinary and Partial Differential Equations
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The computational content of differentiation

Historically, resource sensitive syntax and discrete semantics

I Quantitative semantics : f =
∑

n fn
I Resource λ-calculus and Taylor formulas : M =

∑
n Mn

Nowadays, differentiation in computer science is motivated by the
study of continuous data:

I Differential Geometry and functional analysis

I Ordinary and Partial Differential Equations

Can we match the requirement of models of LL with the
intuitions of physics ?

(YES, we can.)
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Smooth and classical models
of Differential Linear Logic
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Topological vector spaces

We work with Hausdorff topological vector spaces : real or
complex vector spaces endowed with a Hausdorff topology making
addition and scalar multiplication continuous.

Two layers: algebraic and topological constructions

I The topology on E determines E ′ as a vector space.

I The topology on E ′ determines whether E ' E ′′.

I Many topologies on E ⊗ F which may or may not make it
associative.

We work within the category TopVect of topological vector
spaces and continuous linear functions between them.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of lcs and smooth functions which is
Cartesian closed. Requires some completeness

I Interpreting the involutive linear negation (E⊥)⊥ ' E The
topology should not be too fine so as to not allow too many
linear continuous scalar forms
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of lcs and smooth functions which is
Cartesian closed. Requires some completeness

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010) New: reflexive with the Mackey dual

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.



Differential Linear Logic Smooth classical models Distributions LPDEs

Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E The
topology should not be too fine so as to not allow too many
linear continuous scalar forms

Weak topologies for Linear Logic, K. LMCS 2015.
Involves a topology which is an internal Chu construction.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of lcs and smooth functions which is
Cartesian closed. Requires some completeness

I Interpreting the involutive linear negation (E⊥)⊥ ' E The
topology should not be too fine so as to not allow too many
linear continuous scalar forms

I A model of LL with Schwartz’ epsilon product, Dabrowski and K.,
Preprint.

I A logical account for PDEs, K., LICS18
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What’s not working

A space of (non necessarily linear) functions between finite
dimensional spaces is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails
(Girard’s Coherent Banach spaces).

I We want to use power series.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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Duality in topological vector spaces

A subcategory of TopVect is ?-autonomous iff its objects are
reflexive E ' E ′′.

It’s a mess.

I It depends of the topology E ′
β , E ′

c , E ′
w , E ′

µ on the dual.

I It is typically not preserved by ⊗.

I It is in the canonical case not an orthogonality E ′
β is not reflexive.
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Smooth maps à la Frölicher,Kriegl and Michor

A smooth curve c : R→ E is a curve infinitely many times
differentiable.

c f (c)

f

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated

derivatives exists and are continuous).
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A model with higher order smooth functions

A smooth curve c : R→ E is a curve infinitely many times
differentiable.

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

A model of IDiLL

This definition leads to a cartesian closed category of
Mackey-complete bornological spaces and smooth functions, and
to a first smooth model of Intuitionist DiLL a.

aA Convenient differential category, Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)



Differential Linear Logic Smooth classical models Distributions LPDEs

Nuclear spaces and distributions
a smooth classical model

without higher order ... but it can be enhanced
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Distributions are everywhere

I Distributions with compact support are elements of
C∞(Rn,R)′, seen as generalisations of functions with compact
support :

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

I In a classical model of Differential Linear Logic :

!A( ⊥ = A⇒ ⊥

L(!E ,R) ' C∞(E ,R)
(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

In Kothe and Conv, distributions with compact support arise as a

particular case.
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Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.
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Fréchet and DF spaces

I Fréchet : metrizable complete spaces.

I (DF)-spaces : such that the dual of a Fréchet is (DF) and the
dual of a (DF) is Fréchet.

Fréchet-spaces DF-spaces

Rn EE ′

P ⊗ QM ` N

( )′

( )′

These spaces are in general not reflexive.
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Nuclear spaces
Nuclear spaces are spaces in which one can identify the two
canonical topologies on tensor products :

∀F ,E ⊗π F = E ⊗ε F

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

A polarized ?-autonomous category

A Nuclear space which is also Fréchet or dual of a Fréchet is
reflexive.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

We get a polarized model of MALL : involutive negation ( )⊥, ⊗,
`, ⊕, ×.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Distributions and the Kernel theorems
A typical Nuclear Fréchet space is the space of smooth functions
on Rn :

C∞(Rn,R).

A typical Nuclear DF spaces is Schwartz’ space of distributions
with compact support :

C∞(Rn,R)′ := {φ : f ∈ C∞(Rn,R) 7→ φ(f ) ∈ R}.

The Kernel Theorems

C∞(E ,R)′⊗̂C∞(F ,R)′ ' C∞(E × F ,R)′

!Rn = C∞(Rn,R)′.
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A model of Smooth differential Linear Logic

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces

Rn
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A Smooth differential Linear Logic

Smooth DiLL

Finitary formulas Euclidean spaces:
A,B := X |A⊗ B|A` B|A⊕ B|A× B.
Smooth formulas Nuclear F/DF spaces:

U,V := A|!A|?A|U ⊗ V |U ` V |U ⊕ V |U × V .

A polarized model of Smooth DiLL

Functions are smooth and exponential are distributions.

No higher order : we don’t have an obvious way to construct a
Nuclear DF lcs !E = C∞(E ,R)′ when E is any Nuclear Fréchet lcs.

A toy semantics to understand the computational content of
Partial Differential Equations.
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A Type Theory
for Linear Partial Differential Equations
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Linear functions as solutions to a Differential equation

f ∈ C∞(Rn,R) is linear iff ∀x , f (x) = D(f )(0)(x)
iff f = d̄(f )
iff ∃g ∈ C∞(Rn,R), f = d̄g

Another definition for d̄

A linear partial differential operator D acts on C∞(Rn,R), and is
extended on C∞(Rn,R)′ :

D(g)(x) =
∑
|α|≤n

aα(x)
∂αg

∂xα
.
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LPDE with constant coefficient

Consider D a LPDO with constant coefficients :

D =
∑

α,|α|≤n

aα
∂α

∂xα
.

The heat equation in R2

∂2u
∂x2 − ∂u

∂t = 0
u(x , y , 0) = f (x , y)

Then we know how to solve : φ = Dψ,ψ ∈ C∞(Rn,R)′ and this is
done through an algebraic structure on a specific exponential !D .
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Another exponential is possible

!DE = (D(C∞c (E ,R)))′

that is the space of linear functions acting on functions f = Dg ,
for g ∈ C∞c (E ,R), when E ⊂ Rn for some n.

d̄D :

{
!DE →!E

φ 7→ (f 7→ φ(D(f )))
dD :

{
!E → !DE

ψ 7→ ψ|D(C∞(A))

Getting back to LL when D = D0

!D0A ' L(A,R)′ ' A by reflexivity.
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Another exponential is possible

!DE = (D(C∞c (E ,R)))′

that is the space of linear functions acting on functions f = Dg ,
for g ∈ C∞c (E ,R), when E ⊂ Rn for some n.

d̄D :

{
!DE →!E

φ 7→ (f 7→ φ(D(f )))
dD :

{
!E → !DE

ψ 7→ ψ ∗ ED

Getting back to LL when D = D0

!D0A ' L(A,R)′ ' A by reflexivity.
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An algebraic structure on !DA = (D(C∞c (A,R)))′

Existence of a fundamental solution (Malgrange, Ehrhenpeis)

For such D there is ED ∈ C∞c (A)′ such that ED ◦ D = ev0.

w̄D : R→!DE , 1 7→ ED

D an LPDOcc commutes with convolution

If f ∈ D(C∞c (A)) and g ∈ C∞(A), then f ∗ g ∈ D(C∞c (A)).

c̄D :!E⊗!DE →!DE , (φ, ψ) 7→ D(φ) ∗ ψ
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Intermediates rules for D

DiLL

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

` Γ
w̄` Γ, !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ,A
d̄` Γ, !A

Syntax for !D in D − DiLL

` Γ w
` Γ, ?DA

` Γ, ?A, ?DA c
` Γ, ?DA

` Γ, ?DA
dD` Γ, ?A

` w̄D` !DA
` Γ, !A ` ∆, !DA c̄D` Γ,∆, !DA

` Γ, !DA
d̄` Γ, !A

A deterministic cut-elimination.
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Solving the LPDE
Consider ψ ∈ C∞(E ,R)′ : the distribution φ ∈ !DE such that

Dφ := φ ◦ D = ψ,

i.e. such that for any f ∈ C∞(E ,R) : φ(Df ) = ψ(f ), is

φ = ED ∗ ψ.

` Γ, ψ : !E
w̄D` ED : !DE c̄D` Γ,ED ∗ ψ : !DE

d̄D` Γ, (ED ∗ ψ) ◦ D : !E ` ∆, f : ?E⊥
cut` Γ,∆

 

` Γ, ψ : !E ` ∆, f : ?E⊥
cut` Γ,∆
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Conclusion

Take aways

I What is done in DiLL with differentiation can be done with
any Linear Partial Differential Operator with constant
coefficients.

I Differentiation in logic is linear classical and polarized.

Further work: Theorical computer science and Analysis

I Higher order with distributions : ongoing with JS Lemay. Also
Dabrowski, K.

I Curry-Howard : a deterministic PDE calculus.

I Most importantly : towards non-linear PDEs.

I Fourier transformation, Sobolev spaces, Subtyping.
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A coalgebraic structure on D

Weakening

w :!DE → R comes from t : E → {0}.

If E = Rn, define Rn′ another copy of E . Then

D(C∞(E ,R))→ D(C∞(E × E ,R))

= D(C∞(Rn × Rn′ ,R))

= D(C∞(E ,R) ` C∞(Rn′ ,R))

= D(C∞(E ,R)) ` C∞(Rn′ ,R)

Contraction

We thus have c :!DE →!E⊗!DE .
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What’s typable with D-DiLL

Consider D a Smooth Linear Partial Differential Operator : D :
C∞(E )→ C∞(E ). D acts on E × E :

D̂ = (D ⊗ IdF )C∞(E × E ,R)→ C∞(E × E ,R)

Then Green’s function is the operator Kx ,y :!E to!E such that :

Kx ,y ◦ (D̂)′ = δx−y

` Γ, ?DE
⊥, ?E⊥

cD
`?DE

⊥
` ∆, ?DE

` w̄D`!DE cD`?D∆, !DE
cut` Γ,∆
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A closer look to Kernels

A answer to a well-known issue :

I Any k ∈ (Lp(µ⊗ η))′ gives rise to a compact operator
Tk : Lp(µ)→ Lp∗(η) ' (Lp(η))′ : Tk(f )(g) = k(f .g).

I This is not a surjection : if p = p∗ = 2, for Tk = Id one
should have k = δx−y , which is not a function.

I The above morphism k 7→ Tk is an isomorphism on spaces of
distributions spaces, generalizing Lp :

Kernel theorems

L(C∞(E ,R)′, C∞(F ,R)′′) ' C∞(E ,R)′⊗̂C∞(F ,R)′

' C∞(E × F ,R)′

Tk 7→ Kx ,y
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Nuclearity
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