LoVe team seminar

Typing Differentiable Programming

Marie Kerjean
CNRS & LIPN, Université Paris 13

February 2021

Work in Progress with Pierre-Marie Pédrot.

Linearity
00000

Curry-Howard for semantics

The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality
[Differentiable Programming Jv: S { Distribution theory]

A ~
| ~

[Resourcesl)\—calculus J [Differential Linear Logic }\
\—/ /ﬂ[Vectorial Models J

[Linear Logic [Gir87] J

(Normal i

Linearity
0e0000

Differentiable programming

A new area triggered by the advances of deep learning algorithms on
neural networks, it tries to attach two very old domains:

» Automatic Differentiation.

> \-calculus.

Goal: Exploring modular way to express reverse differentiation in
functional programming languages:

» Abadi & Plotkin, POPL20. (traces and big-step semantics)
» Brunel & Mazza & Pagani, POPL20. More on that latter
» Elliot, ICFP18, (compositional differentiation)

» Wang and al., ICFP 19, (delimited continuations)

>

Interactions with probabilistic programming...

Linearity
00e000

Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

T =] x} = 2zox|)
E.g : z=y+cos(2?) my=cos(z1) b= —z{sin(xg)
z2=1y+ w9 2 =y + 2z97,

The computation of the final results requires the computation of the
derivative of all partial computation. But in which order ?

Forward Mode differentiation [Wengert, 1964]

(x1,2)) = (22, 2h) — (2,2").

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]
1 =Ty —z— 2 > ah o)

Linearity
000e00

AD from a higher-order functional point of view

Dy(fog) = Dy f o Du(f)

» Forward Mode differentiation :

9(u) = Dug = f(9(w)) = Dy(u)f — Dy(u)f o Du(f).
> Reverse Mode differentiation:

g(u) = f(g(u)) = Dycuyf = Dug — Dyeuyf © Du(f)

The choice of an algorithm is due to complexity considerations:
» Forward mode for f: R — R”™.
> Reverse mode for f: R™ — R

~ Differentiation is about linearizing a function/program. Some people
have a very specific idea of what a linear program or a linear type should be.

Linearity
0000e0

Differentiable Dialectica
000000000

AaD
000000

1. Reverse-Mode Differentation as a Logical transformation

2. Calculus and differentiation typed by Linear Logic

Linearity
O0000e

Differentiable Dialectica
000000000

AaD
Linear logic : the type of function
Usual implication

inear implication
Linear decomposition of the implication
A= B=!A-—-B
C®(A, B) ~ L(1A, B)

A proof is linear when it uses only once its hypothesis A.
A linear negation

From -A = A= 1 to A* = A — L: an involutive linear negation
interpreted by linear forms.

[A*] = L([A],R)

Differentiable Dialectica
®00000000

Mazza and Pagani [POPL2020]

Key Idea

Reverse derivatives are typed by linear negation.

Consider f : R™ — R a function variable.
5(/) - R" x R* € Rx R™*
' (a,2) = (f(a), (v =z (Daf-v))

This leads to a compositional reverse derivative transformation
over the linear substitution calculus, and proven complexity results.

A,B,C:=R|AxB|A— B[R
tu=x |2 | At | Ou| tfz0' =] |[< t,u>]t+ u...

Differentiable Dialectica
0O@0000000

The real inventor of deep learning

(I'm joking)

Differentiable Dialectica
0O0@000000

A Dialectica Transformation

» Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to a finite type extension of primitive
recursive arithmetic.

A~ Fu: W(A), YV : C(A), AP[u, z]

> DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

» Pedrot [2014] A computational Dialectica translation preserving
(B-equivalence, via the introduction of an ”abstract multiset
constructor” on types on the target.

Differentiable Dialectica
O00@00000

Pédrot’s Dialectica Transformation

M A is endowed with a sum (®,) and a monadic structure ({_},
>>=).

Types:
W(a) = awy C(a) :== a¢
WA= B) = (WA =WB)) x (WA =C(B)=MC(A))
C(A=B) = W(A) xC(B)

Terms:
Xy = Ar. {7} x® = =z
Ty = g ifx#y Az.t)* = (Az.t* dam.t, m)
(Az.t), = Am (Az.ty) 7172 (t u)® = (t*1) u®

(tu)y = Am. (ty (u®, 7)) ® ((t°.2) u® T >=uy,)

Differentiable Dialectica
0O000@0000

Flashback: Differential A-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of
sequences, it introduces a differentiation of A-terms.

D(\z.t) is the linearization of A\x.t, it substitute x linearly, and then
it remains a term t' where x is free.

Syntax:

A ST UV =0 s|s+T
A® s tu,vn=x | Ax.s | T | Ds-t

Operational Semantics:

(A\z. s)T —3 s[T/x]
D(Az.s) -t M. 95

qD o

where % -t is the linear substitution of x by ¢ in s.

Differentiable Dialectica
O0000e000

The linear substitution ...

.. which is not exactly a substitution

dy [Tifz=y 0 _,0s ou
%.T_{ 0 otherwise ﬁ(SU).T_ (%~T)U+(Ds-(% Y
0 Js 1o} 0s ou
%(Ay.s)-T_)\y.%-T %(Ds-u)-T_D(a—w~T)-u+Ds~(8—w~T)
a0 o} Jds oU

% -t represents s where x is linearly (i.e. one time) substituted by .

Linearity Differentiable Dialectica, Aap
000000 O00000e00 000000

Tracking differentiation in Dialectica

Soundness [Ped14]

If ' ¢: A in the source then we have in the target
> W() F¢*: W(A)
> W) k¢, : C(A) = MC(X) provided z : X €T.

T = Ar.{r} x*® = =z
Ty = M@ ifx#y Az.t)* = (Az.t*, Azm.ty m)
Az.t)y = Ir.(Az.ty) w172 (t w)® = (1)

(tuw)y = Am. (ty (u®, 7)) ® ((t*.2) u® T >=1uy)

Linearity Differentiable Dialectica, Aap
000000 O00000e00 000000

Tracking differentiation in Dialectica

Soundness [Ped14]

IfT'F¢: A in the source then we have in the target
> W(T) - ¢*: W(A)
> W) Ft, : C(A) = MC(X) provided z : X €T

5 years ago : ”That’s Differential A-calculus”
T = Am.{n} x® = =z
Ty = g ifx#y (Az.t)®

(Az.t)y

(Az.t*, Aem. ty)

A (Az.ty) w1 7.2 (t w)®

(t*.1) u®

(t w)y == Am. (ty (u®,m)) ® ((t°.2) u® 7 >=1u,)

Linearity Differentiable Dialectica, Aap
000000 O00000e00 000000

Tracking differentiation in Dialectica

Soundness [Ped14]

If ' ¢: A in the source then we have in the target
> W) Ft*: W(A)
> W) F ¢, : C(A) = MC(X) provided z : X €T

5 years ago : ”That’s Differential A-calculus”

Tp = AT, % - z* = x
zy — AT %{; o ifx#y (Az.t)* = (Az.t®, Aam. ty)
Az.t)y = Am (A\z.ty) 7172 (t u)® == (Az. (tx)®) u®

(tu)y = Am. (ty (u®,m)) ® ((t°.2) u® T >=1uy)

Linearity
000000

Differentiable Dialectica

O00000e00

Tracking differentiation in Dialectica

5 years ago : ”That’s Differential A-calculus”

Tq =
Ty =

(Az.t)y =

Theorem

ox
AT ZE e

)\ﬂ.%z'ﬂ ifx#y

A (Az.ty) 7.1 w2

> (_)°.2 obeys the chain rule.

» t, is contravariant in x.

T
(Az.t°, Ao, .
(Az. (tz)®) u®

Dialectica :

» Higher-Order and fine-grained reverse differential transformation.

> Agrees with a call-by-name point of view on execution of programs.

» Which operates on function variables and a few operations.

AaD

000000
ot *
or T

Linearity Differentiable Dialectica, Aap
000000 000000080 000000

Differential categories are Dialectica categories

[De Paiva & Hyland [87,89]]

Consider a category C with finite product. Dial(C) is a new
category:
» Objects: relations a CU x X, B CV x Y.

» Maps from a to 3: (f: U = V,F:U xY — X) such that if
uaF(u, y) then f(u)ﬁy tangent spaces

» Composition: That’s the chain law!

show that DC is a category. Given two maps (f,F):a—p and (g,G):p—Y their composition
(g,G)o(f,F) is gf:U—W in the first coordinate and GoF:UxZ—X given by:

UxZ 523 Uxuwz 2% guvxz 28 uxy— X

Differentiable Dialectica
0O0000000e

Consider C a x-autonomous differential category. One has a functor
from C to Dial(C)

> A (4,40
> [(f,(u,0) = LoDy f)

This should be an equivalence

This relates to several other results, e.g : ”Godel’s functional
interpretation and the concept of learning” T. Powell, Lics 2017

Linearity Differentiable Dialectica AaDp
000000 000000000 €00000

Automatic Differentiation
as a choice of reduction strategy

Refining A-calculus with operations from distribution theory.

Linearity
000000

Differentiable Dialectica

AaD
000000000

O®0000

Juste a glimpse at Differential Linear Logic
Differentiation in the proofs

- ~o

linear proof - -~ non-linear proof

~

Linear Logic (1AF B

-
~ -

Differential Linear Logic

{: A+ B f:1A-B
{: 1A+ B Do(f): AF B
linear — non-linear. non-linear — linear

~ A specific point of view on differentiation induced by duality:

At~ A

@ Normal functors, power series and A-calculus. Girard, APAL(1988)

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)

Linearity Differentiable Dialectica
000000 000000000

Smooth models

Historically: discrete models and quantitative semantics.

!fl::: E:'!I,Iq@c.’Z

Exponentials as distributions [K., LICS18|

A smooth and classical model of Differential Linear Logic where:

IA = C®(A,R).

~ Insight: a language typed by linear logic, v : | A is a primitive
object representing a program transformation.

Considert: A= B=!A— B:
Dot-a ~t(Dg--a:1A)

AaD
00®000

Linearity Differentiable Dialectica
000000 000000000

Exponentials are distributions

[7A] :=C>=([A]",R) ['A] := C>=([A],R)

Sfunctions

A typical distribution is the dirac operator:

(B c*(E,R)
z = (¢ = @(x))

Exponential rules of DiLLy

FT,f:74,9:7A FT w
FT, fg:7A ¢ FT,csto: 74

D0 A, FAWIA
FT.A 0014 ¢ Fd:la
FMo: A

T, 1A L

distributions

FIT,0: A

FT. 074 ¢

FT,v:A

FT,Do(-)(v): 1A d

AAD
000e00

What can we get from Seely’s isomorphisms

(Co)-weakenings and (co)-contractions are interpreted from the
presence of a biproduct and seely’s isomorphisms.

1A <& 1{0} 214
A (Ao A) ~1ARIA S 1A
Seely’s isomorphism = kernel theorems, ie surjectivity of:
C*(AR)®C*(B,R) = C™(A x B)
2(AY) 3 2(Bt) — ?2(A+ x BY)

Yes, the %% is a tensor, completed, just with a different topology. Yes, & and @ are

the same, on different objects though

Thus: contraction is multiplication (s.calar),
co-contraction is sum (convolution).

Aap

0e0

AaD
00000e

Higher-order addition and Higher-order multiplication

Additions are done on the domain, through convolution (ie higher
order addition).

¢x = fr> plz= Py = fz+y))

O * 0y = Oy

Multiplications are done one the codomain, through contractions (ie
higher order multiplication).

frg=2 f(z) g(x)
(Ay.t) - (Az.8) = Ax.(t[z/y]) - (s[z/z])

AaDp
000

A few operations typed by DILL

The composition of linear functions:

'-f:A—-B AFg:B—C
INAbFgof:A—C

cut

The composition of non-linear functions:
'f:1A— B b
AF (2 0p,)):'A— B AtFg:!1B—C
IAFgof=(xmdpq9):!A—C

cut

The Differentiation of non-linear functions:
FAv: A _
THf:lA—B FT,Do()(0): 14 ¢
T.AF Do(f)(v): B cut

Let’s translate this into a term language typed by DILL.

AaDp
000

A few operations typed by DILL

The chain rule is encoded in the interaction of diracs 6, with
differential arguments D,t.

'kf:1A—B b
TF (2 0p0):!1A—1B Abg:1B—<C FA WA
T AFgod; 1A —=C b A Do) 1A ¢
[,AA'F Do(go f)(v) : ¢ cut
A
_ Foo: 1A © Ff:lA B
Do) B — £(0) :g cut
F Do(-)(Dof(v)) : 1B Fofo): !B
Fg:lB—C Do ODef@) 1B ‘

F Dy0yg(Dof(v)) : c

Let’s translate this into a term language typed by DILL.

AaDp
000

From two reductions to two arguments

A minimal language allowing to express automatic differentiation,
with two class of terms:

wvi=z|tt |uxv |0 |u®v|1]d, | D.(t)]
tysi=ut|t-s|wy: N | vt |dot]|Tu

A function Az.t can be matched with two kind of arguments: diracs
0, or differential operators D,,t.

(A\x.t)d,, — t{u/x]
(Ax.t)Dypu — -
Ideas:

» Differentiation, as an argument, propagates according to
reduction strategies.

» Algebraic operations are constructed through specific type rules.

Inductively defined linear substitution

wv = | tt uxv |0 |u®v|1|d, | Du(t) |4
tysi=ul |t-s|wy: N | Aot |det]|Tu

An inductively defined differentiation:
(Ax.t)Dypu — -
The differentiation A\z.t of must be inductively defined on ¢:
(Az.(t)u)Dys = T(H((Az.t) Dy 8)u x L(t (A1) Dy s)))
Differentiating an application (t)u is symmetric in t and u.
(Ax16:)Dys = Az (D, ((Az.t) Dy s))) (Ax.t)(u)))

The abstraction Axz. T8¢ will be composed with another abstraction and

differentiation must take that into account.

AaD
000

AaD
000000

Forward / Backward Differentiation as CBV/CBN

D, ((\y.s) o (Ax.t))r?

(Az.((Ay.s)0¢)) Dur — (Ax.(Ay.8)) Dur)éy * (Ay.s)((Az.6¢) Dur)))
—* 0 x ()\y)(()\3;‘ 5t)D T)))as x is free in s
=" (Ay.s)((Az.0¢) Dyr))
= (Ay.s)(Az.(Dz((Az.t) Dur)))((Az.t)(u)))
— (Oo8) A (D (Az.8) Do) ((H /) s w = 5
=" (Ay.s) Dy (Aa.t)Dyr) if (Hw/x] =)

» The value of t[w/z] is computed first-hand.
> CBN : ((Az.t)Dyr) or CBV : ((Ay.s)D,((Ax.t)D,r))

AaD
000

And complexity?

Du(to f)(v) = (0 Dy f)(v) = (Dulo Dy f)(v)

Our differentiation takes into account the linearity of higher-order

operations :
D, ((M\y.s) o (Az.t))r?

when \y.s is linear.

Do((Ay.s) o (Az.t))r = (Do(Ay.s) o Do(Ax.t))r?

when Ay.s is linear.

work in progress

Conclusion

Logic acts as a bridge between programming languages and
analysis.

Take-away message:

» Constructs new types (safety).

» Constructs new terms (modularity).
Perspectives:

> (Basic) computer algebra algorithms arising unexpectedly in
logical transformation.

@00

(o] lo}

And Dialectica 77
Make a monad of the exponential (WIP).

Liaw) ==« L(ac) := Ta™t
LM A) :=TL(A) L(A x B) :=L(A) x L(B)
L(A= B):=IL(A4) = L(B) [0t A] :=1[A]
[2] ==
[Az.t] := Ax.[t] [(t,w)] == ([t], [u])
[0] := 10 [{t}] == (Dyt)
[u@® v] := [u] * [v] [m>= f] := (dz.[f]x)[m)]

A translation on top of Dialectica

IfT'F¢: A in the target of Dialectica, then IL(T") - [¢] : L(A) and if
t = v in the target of Dialectica then [¢] = [u] in our calculus.

ooe

More on Dialectica

Monadic laws
{t}>=f=ft t>=Ax.{z})=t
(t>=f)>=g=t>=0\z. f 2>=y)
Monoidal laws
t®u=u®t TR I=t®I=T
te®u)@®v=t® (udV)
Distributivity laws
I>=f=0 t>= . 0=0
teu)y>=f=@t>=f)® @u>=/f)
t>=Xr.(fz®gx)=({E>=f)® (t>=g)

	Linearity
	Differentiable Dialectica
	AD
	

