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Curry-Howard for semantics

The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear LogicResources λ-calculus

Distribution theoryDifferentiable Programming
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Differentiable programming

A new area triggered by the advances of deep learning algorithms on
neural networks, it tries to attach two very old domains:

I Automatic Differentiation.

I λ-calculus.

Goal: Exploring modular way to express reverse differentiation in
functional programming languages:

I Abadi & Plotkin, POPL20. (traces and big-step semantics)

I Brunel & Mazza & Pagani, POPL20. More on that latter

I Elliot, ICFP18, (compositional differentiation)

I Wang and al., ICFP 19, (delimited continuations)

I Interactions with probabilistic programming...
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Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

E.g. : z = y + cos(x2)
x1 = x2

0 x′1 = 2x0x
′
0

x2 = cos(x1) x′2 = −x′0sin(x0)
z = y + x2 z′ = y′ + 2x2x

′
2

The computation of the final results requires the computation of the
derivative of all partial computation. But in which order ?

Forward Mode differentiation [Wengert, 1964]
(x1, x

′
1)→ (x2, x

′
2)→ (z, z′).

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]
x1 → x2 → z → z′ → x′2 → x′1 while keeping formal the unknown
derivative.
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AD from a higher-order functional point of view

Du(f ◦ g) = Dg(u)f ◦Du(f)

I Forward Mode differentiation :
g(u)→ Dug → f(g(u))→ Dg(u)f → Dg(u)f ◦Du(f).

I Reverse Mode differentiation:
g(u)→ f(g(u))→ Dg(u)f → Dug → Dg(u)f ◦Du(f)

The choice of an algorithm is due to complexity considerations:

I Forward mode for f : R→ Rn.

I Reverse mode for f : Rn → R

 Differentiation is about linearizing a function/program. Some people

have a very specific idea of what a linear program or a linear type should be.
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1. Reverse-Mode Differentation as a Logical transformation

2. Calculus and differentiation typed by Linear Logic
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Linear logic : the type of function

Linear decomposition of the implication

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

Usual implication

Linear implication

A proof is linear when it uses only once its hypothesis A.

A linear negation

From ¬A = A⇒ ⊥ to A⊥ = A( ⊥: an involutive linear negation
interpreted by linear forms.

JA⊥K = L(JAK,R)
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Mazza and Pagani [POPL2020]

Key Idea

Reverse derivatives are typed by linear negation.

Consider f : Rn → R a function variable.

←−
D(f) :

{
Rn × R⊥ →∈ R× Rn⊥

(a, x) 7→ (f(a), (v 7→ x · (Daf · v))

This leads to a compositional reverse derivative transformation
over the linear substitution calculus, and proven complexity results.

A,B,C ::= R | A×B | A→ B|R⊥d

t, u := x | x! | λx.t | (t)u | t[x()! := u] |< t, u >| t+ u...
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The real inventor of deep learning

(I’m joking)
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A Dialectica Transformation

I Gödel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to a finite type extension of primitive
recursive arithmetic.

A ∃u : W(A),∀x : C(A), AD[u, x]

I DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and λ-calculus (terms).

I Pedrot [2014] A computational Dialectica translation preserving
β-equivalence, via the introduction of an ”abstract multiset
constructor” on types on the target.
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Pédrot’s Dialectica Transformation

MA is endowed with a sum (~, ∅) and a monadic structure ({ },
>>=).

Types:
W(α) := αW C(α) := αC
W(A⇒ B) := (W(A)⇒W(B))× (W(A)⇒ C(B)⇒MC(A))
C(A⇒ B) := W(A)× C(B)

Terms:
xx := λπ. {π} x• := x

xy := λπ.∅ if x 6= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u•, π))~ ((t•.2)u• π >>=uy)
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Flashback: Differential λ-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of
sequences, it introduces a differentiation of λ-terms.

D(λx.t) is the linearization of λx.t, it substitute x linearly, and then
it remains a term t′ where x is free.

Syntax:

Λd : S, T, U, V ::= 0 | s | s+T
Λs : s, t, u, v ::= x | λx.s | sT | Ds·t

Operational Semantics:

(λx.s)T →β s[T/x]
D(λx.s) · t→βD

λx. ∂s∂x · t

where ∂s
∂x · t is the linear substitution of x by t in s.
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The linear substitution ...

... which is not exactly a substitution

∂y

∂x
· T = { T if x = y

0 otherwise

∂

∂x
(sU) · T = (

∂s

∂x
· T )U + (Ds · (∂U

∂x
· T ))U

∂

∂x
(λy.s) · T = λy.

∂s

∂x
· T ∂

∂x
(Ds · u) · T = D(

∂s

∂x
· T ) · u+ Ds · (∂u

∂x
· T )

∂0

∂x
· T = 0

∂

∂x
(s+ U) · T =

∂s

∂x
· T +

∂U

∂x
· T

∂s
∂x · t represents s where x is linearly (i.e. one time) substituted by t.
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Tracking differentiation in Dialectica

Soundness [Ped14]

If Γ ` t : A in the source then we have in the target

I W(Γ) ` t• : W(A)

I W(Γ) ` tx : C(A)⇒MC(X) provided x : X ∈ Γ.

xx := λπ. {π} x• := x

xy := λπ.∅ if x 6= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u•, π))~ ((t•.2)u• π>>=uy)



Linearity Differentiable Dialectica ΛAD

Tracking differentiation in Dialectica

Soundness [Ped14]

If Γ ` t : A in the source then we have in the target

I W(Γ) ` t• : W(A)

I W(Γ) ` tx : C(A)⇒MC(X) provided x : X ∈ Γ.

5 years ago : ”That’s Differential λ-calculus”

xx := λπ. {π} x• := x

xy := λπ.∅ if x 6= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u•, π))~ ((t•.2)u• π>>=uy)
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Tracking differentiation in Dialectica

Soundness [Ped14]

If Γ ` t : A in the source then we have in the target

I W(Γ) ` t• : W(A)

I W(Γ) ` tx : C(A)⇒MC(X) provided x : X ∈ Γ.

5 years ago : ”That’s Differential λ-calculus”

xx := λπ. ∂x
∂x
· π x• := x

xy := λπ. ∂x
∂y
· π if x 6= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := ≡ (λx. (tx)•) u•

(t u)y := λπ. (ty (u•, π))~ ((t•.2)u• π>>=uy)
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Tracking differentiation in Dialectica

5 years ago : ”That’s Differential λ-calculus”

xx := λπ. ∂x
∂x
· π x• := x

xy := λπ. ∂x
∂y
· π if x 6= y (λx. t)• := (λx. t•, λxπ. λπ. ∂t

∂x
· π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• ≡ (λx. (tx)•) u•

Theorem
I ( )•.2 obeys the chain rule.

I tx is contravariant in x.

Dialectica :

I Higher-Order and fine-grained reverse differential transformation.

I Agrees with a call-by-name point of view on execution of programs.

I Which operates on function variables and a few operations.
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Differential categories are Dialectica categories

[De Paiva & Hyland [87,89]]

Consider a category C with finite product. Dial(C) is a new
category:

I Objects: relations α ⊆ U ×X, β ⊆ V × Y .

I Maps from α to β: (f : U → V, F : U × Y → X) such that if
uαF (u, y) then f(u)βy. tangent spaces

I Composition: That’s the chain law!
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Consider C a ∗-autonomous differential category. One has a functor
from C to Dial(C)

I A 7→ (A,A⊥)

I f 7→ (f, (u, `) 7→ ` ◦Duf)

This should be an equivalence

This relates to several other results, e.g : ”Gödel’s functional
interpretation and the concept of learning” T. Powell, Lics 2017
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Automatic Differentiation
as a choice of reduction strategy

Refining λ-calculus with operations from distribution theory.
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Juste a glimpse at Differential Linear Logic
Differentiation in the proofs

A ` B
linear proof

Linear Logic !A ` B
non-linear proof

Differential Linear Logic

` : A ` B
` : !A ` B

f : !A ` B
D0(f) : A ` B

linear ↪→ non-linear. non-linear ↪→ linear

 A specific point of view on differentiation induced by duality:

A⊥⊥ ' A

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Smooth models

Historically: discrete models and quantitative semantics.

!A :=
∑
nA
⊗n

Exponentials as distributions [K., LICS18]

A smooth and classical model of Differential Linear Logic where:

!A = C∞(A,R)′.

 Insight: a language typed by linear logic, u : !A is a primitive
object representing a program transformation.

Consider t : A⇒ B ≡ !A→ B:
D0t · a ' t(D0 · a : !A)
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Exponentials are distributions

J?AK := C∞(JAK′,R)’ J!AK := C∞(JAK,R)′

functions distributions

A typical distribution is the dirac operator:

δ :

{
E → C∞(E,R)′

x 7→ (φ 7→ φ(x))

Exponential rules of DiLL0

` Γ, f : ?A, g : ?A
c

` Γ, f.g : ?A
` Γ w

` Γ, cst0 : ?A
` Γ, ` : A

d` Γ, ` : ?A

` Γ, φ : !A, ` ∆, ψ : !A
c̄` Γ,∆, φ ∗ ψ : !A

w̄` δ0 : !A
` Γ, v : A

d̄` Γ, D0( )(v) : !A

` ?Γ, v : A
p

` ?Γ, δv : !A
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What can we get from Seely’s isomorphisms

(Co)-weakenings and (co)-contractions are interpreted from the
presence of a biproduct and seely’s isomorphisms.

!A
w̄←− !{0} w−→ !A

!A
c̄←− !(A �A) ' !A⊗ !A

c−→ !A

Seely’s isomorphism = kernel theorems, ie surjectivity of:

C∞(A,R)⊗ C∞(B,R) ↪→ C∞(A×B)

?(A⊥) ` ?(B⊥) ↪→ ?(A⊥ ×B⊥)

Yes, the ` is a tensor, completed, just with a different topology. Yes, & and ⊕ are

the same, on different objects though

Thus: contraction is multiplication (s.calar),
co-contraction is sum (convolution).
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Higher-order addition and Higher-order multiplication

Additions are done on the domain, through convolution (ie higher
order addition).

φ ∗ ψ := f 7→ φ(x 7→ ψ(y 7→ f(x+ y))
δu ∗ δv → δu∗v

Multiplications are done one the codomain, through contractions (ie
higher order multiplication).

f · g := x 7→ f(x) · g(x)
(λy.t) · (λz.s)→ λx.(t[x/y]) · (s[x/z])
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A few operations typed by DiLL

The composition of linear functions:

Γ ` f : A( B ∆ ` g : B( C
cut

Γ,∆ ` g ◦ f : A( C

The composition of non-linear functions:

Γ ` f : !A( B
p

∆ ` (x 7→ δf(x)) : !A( !B ∆ ` g : !B( C
cut

Γ,∆ ` g ◦ f = (x 7→ δf(x)g) : !A( C

The Differentiation of non-linear functions:

Γ ` f : !A( B

` ∆, v : A
d̄` Γ, D0( )(v) : !A
cut

Γ,∆ ` D0(f)(v) : B

Let’s translate this into a term language typed by DiLL.
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A few operations typed by DiLL

The chain rule is encoded in the interaction of diracs δx with
differential arguments Dut.

Γ ` f : !A( B
p

Γ ` (x 7→ δf(x)) : !A( !B ∆ ` g : !B ( C
cut

Γ,∆ ` g ◦ δf : !A( C

` ∆′, v : A
d̄` ∆′, D0( )(v) : !A
cut

Γ,∆,∆′ ` D0(g ◦ f)(v) : c

 

` g : !B ( C

...
d̄; f ; cut

` D0(f)(v) : B
d̄` D0( )(D0f(v)) : !B

w̄` δ0 : !A ` f : !A( B
cut

` f(0) : B
p

` δf(0) : !B
c̄

` Df(0)( )(D0f(v)) : !B
cut

` Df(0)g(D0f(v)) : c

Let’s translate this into a term language typed by DiLL.
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From two reductions to two arguments

A minimal language allowing to express automatic differentiation,
with two class of terms:

u, v := x | t⊥ | u ∗ v | ∅ | u⊗ v | 1 | δu | Du(t) | ´t
t, s := u⊥ | t · s | w1 : N | λx.t | dx.t | ˆu

A function λx.t can be matched with two kind of arguments: diracs
δu or differential operators Dut.

(λx.t)δu → t[u/x]
(λx.t)Dwu→ · · ·

Ideas:

I Differentiation, as an argument, propagates according to
reduction strategies.

I Algebraic operations are constructed through specific type rules.
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Inductively defined linear substitution

u, v := x | t⊥ | u ∗ v | ∅ | u⊗ v | 1 | δu | Du(t) | ´t
t, s := u⊥ | t · s | w1 : N | λx.t | dx.t | ˆu

An inductively defined differentiation:

(λx.t)Dwu→ · · ·

The differentiation λx.t of must be inductively defined on t:

(λx.(t)u)Dws→ ˆ(´((λx.t)Dws)u ∗ ´(t((λx.u)Dws)))

Differentiating an application (t)u is symmetric in t and u.

(λx.ˆδt)Dus→ (λz.ˆ(Dz((λx.t)Dus)))((λx.t)(u)))

The abstraction λx.ˆδt will be composed with another abstraction and

differentiation must take that into account.
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Forward / Backward Differentiation as CBV/CBN

Du((λy.s) ◦ (λx.t))r?

(λx.((λy.s)δt))Dur → (λx.(λy.s))Dur)δt ∗ ((λy.s)((λx.δt)Dur)))

→∗ ∅ ∗ (λy.s)((λx.δt)Dur)))as x is free in s

→∗ (λy.s)((λx.δt)Dur))

→ (λy.s)(λz.(Dz((λx.t)Dur)))((λx.t)(u)))

→ ((λy.s)(λz.(Dz((λx.t)Dur))))((t[w/x]))as u = δw

→∗ (λy.s)Dv((λx.t)Dur) if (t[w/x]→∗ δv)

I The value of t[w/x] is computed first-hand.

I CBN : ((λx.t)Dur) or CBV : ((λy.s)Dv((λx.t)Dur))
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And complexity?

Du(` ◦ f)(v) = (` ◦Duf)(v) = (Du` ◦Duf)(v)

Our differentiation takes into account the linearity of higher-order
operations :

Du((λy.s) ◦ (λx.t))r?

when λy.s is linear.

D0((λy.s) ◦ (λx.t))r ≡ (D0(λy.s) ◦D0(λx.t))r?

when λy.s is linear.

work in progress
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Conclusion

Logic acts as a bridge between programming languages and
analysis.

Take-away message:

I Constructs new types (safety).

I Constructs new terms (modularity).

Perspectives:

I (Basic) computer algebra algorithms arising unexpectedly in
logical transformation.
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And Dialectica ??
Make a monad of the exponential (WIP).

L(αW) := α L(αC) := ˆα⊥
L(MA) := ˆ!L(A) L(A×B) := L(A)× L(B)

L(A⇒ B) := ´L(A)⇒ L(B) [MA] := ![A]

[x] := x

[λx.t] := λx.[t] [(t, u)] := ([t], [u])

[∅] := ˆ∅ [{t}] := (D∅t)

[u~ v] := [u] ∗ [v] [m>>= f ] := (dx.[f ]x)[m]

A translation on top of Dialectica

If Γ ` t : A in the target of Dialectica, then L(Γ) ` [t] : L(A) and if
t ≡ u in the target of Dialectica then [t] ≡ [u] in our calculus.
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More on Dialectica

Monadic laws

{t}>>= f ≡ f t t>>=(λx. {x}) ≡ t

(t>>= f)>>= g ≡ t>>=(λx. f x>>= g)

Monoidal laws

t~ u ≡ u~ t ∅~ t ≡ t~∅ ≡ t

(t~ u)~ v ≡ t~ (u~ v)

Distributivity laws

∅>>= f ≡ ∅ t>>=λx.∅ ≡ ∅

(t~ u)>>= f ≡ (t>>= f)~ (u>>= f)

t>>=λx. (f x~ g x) ≡ (t>>= f)~ (t>>= g)
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