Models based on ε 0000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Seminar LCR, October 2017

Smooth models of Linear Logic

Marie Kerjean

IRIF, Université Paris Diderot kerjean@irif.fr

Models based on ε

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proofs and smooth objects

Distributions and LPDE

Nuclear and Fréchet spaces Linear PDE's as exponentials

Models based on ε

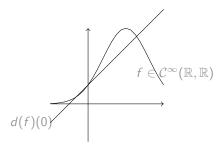
work with Y. Dabrowski

Models based on ε 0000000000

Smoothness

Differentiation

Differentiating a function $f : \mathbb{R}^n \to \mathbb{R}$ at x is finding a linear approximation $d(f)(x) : v \mapsto d(f)(x)(v)$ of f near x.



Smooth functions are functions which can be differentiated everywhere in their domain and whose differentials are smooth.

Models based on ε 0000000000

< □ > < 同 > < E > < E > E < のQ @</p>

Differentiating proofs

Differentiation was in the air since the study of Analytic functors by Girard :

$$\bar{d}(x):\sum f_n\mapsto f_1(x)$$

 DiLL was developed after a study of vectorial models of LL inspired by coherent spaces : Finiteness spaces (Ehrhard 2005), Köthe spaces (Ehrhard 2002).

Normal functors, power series and λ -calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)

Models based on ε 0000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Differential Linear Logic

The rules of DiLL are those of MALL and :

co-dereliction

$$\overline{d}: x \mapsto f \mapsto df(0)(x)$$

Syntax

$$\frac{\vdash \Gamma}{\vdash \Gamma, ?A} w \qquad \qquad \frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} c \qquad \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} d$$

$$\frac{\vdash}{\vdash !A} \bar{w} \qquad \qquad \frac{\vdash \Gamma, !A \vdash \Delta, !A}{\vdash \Gamma, \Delta, !A} \bar{c} \qquad \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, !A} \bar{d}$$

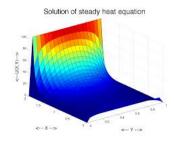
< □ > < 同 > < E > < E > E < のQ @</p>

The computational content of differentiation Historically, resource sensitive syntax and semantics

- Quantitative semantics : $f = \sum_n f_n$
- Resource λ -calculus and Taylor formulas : $M = \sum_n M_n$

Differentiation is inspired by the study of continuous systems :

- Differential Geometry and functional analysis
- Ordinary and Partial Differential Equations



Models based on ε 0000000000

< □ > < 同 > < E > < E > E < のQ @</p>

Smoothness of proofs

- Traditionally proofs are interpreted as graphs, relations between sets, power series on finite dimensional vector spaces, strategies between games.
- Differentiation appeals to differential geometry, manifolds, functional analysis : we want to find a denotational model of DiLL where proofs are smooth functions, and see what computational or categorical meaning it may have.

Models based on ε 0000000000

Smooth models of Linear Logic

 $A, B := A \otimes B|1|A \ \mathfrak{B} \ B|\bot|A \oplus B|0|A \times B|\top|!A|?A$

A decomposition of the implication

 $A \Rightarrow B \simeq !A \multimap B$

A decomposition of function spaces

 $\mathcal{C}^{\infty}(E,F)\simeq \mathcal{L}(!E,F)$

The dual of the exponential : smooth scalar functions

 $\mathcal{C}^{\infty}(E,\mathbb{R})\simeq \mathcal{L}(!E,\mathbb{R})\simeq !E'$

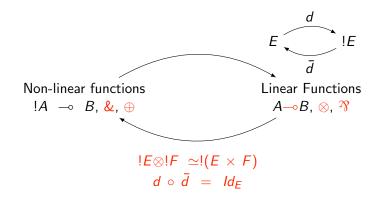
A typical inhabitant of !E is $ev_x : f \mapsto f(x)$.

・ロト・(四ト・(ヨト・(日下・))の(の)

Models based on ε 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

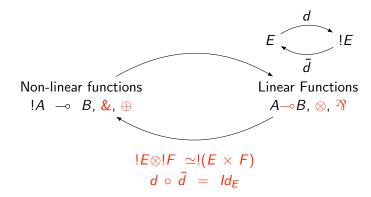
Interpreting DiLL in vector spaces



 $|E \otimes |F \simeq |(E \times F)$ allows to have a cartesian closed Co-Kleisli category

Models based on ε 0000000000

Interpreting DiLL in vector spaces

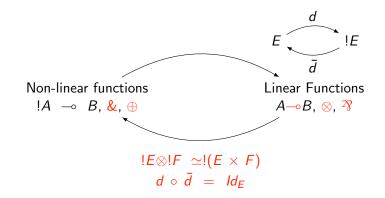


 $d \circ \overline{d} = Id_E$: the differential at 0 of a linear function is the same linear function.

 \bar{c} and \bar{w} : an algebraic structure on |A| traditionally inherited from convolution.

Models based on ε 0000000000

Interpreting DiLL in vector spaces



We want to find good spaces in which we can interpret all these constructions, and an appropriate notion of smooth functions.

Models based on ε 00000000000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of general tvs and smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$

Models based on ε 00000000000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of general tvs and smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- *Convenient differential category* Blute, Ehrhard Tasson Cah. Geom. Diff. (2010)
 - Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.

Models based on ε 00000000000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$

Weak topologies for Linear Logic, K. LMCS 2015. Involves a topology which is an internal Chu construction.

Models based on ε 00000000000

Challenges

We encounter several difficulties in the context of topological vector spaces :

- Finding a category of general tvs and smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation $(E^{\perp})^{\perp} \simeq E$
- A model of LL with Schwartz' epsilon product, K. and Dabrowski, In preparation.
- Distributions and Smooth Differential Linear Logic, K., In preparation

Models based on ε 0000000000

(日)、(型)、(E)、(E)、(E)、(O)(()

What's not working

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

Models based on ε 0000000000

What's not working

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails (Coherent Banach spaces).

- We want to use functions.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

Models based on ε 0000000000

What's not working

A space of (non necessarily linear) functions between finite dimensional spaces is not finite dimensional.

dim $\mathcal{C}^0(\mathbb{R}^n,\mathbb{R}^m)=\infty.$

We can't restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails (Coherent Banach spaces).

- We want to use functions.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

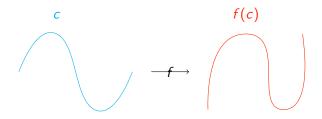
We can't restrict ourselves to normed spaces.

Models based on ε 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Smooth maps à la Frölicher, Kriegl and Michor

A smooth curve $c : \mathbb{R} \to E$ is a curve infinitely many times differentiable.



A smooth function $f : E \to F$ is a function sending a smooth curve on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated derivatives exists and are continuous).

Smooth maps à la Frölicher, Kriegl and Michor A smooth curve $c : \mathbb{R} \to E$ is a curve infinitely many times differentiable.

A smooth function $f : E \to F$ is a function sending a smooth curve on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated derivatives exists and are continuous).

A model of IDiLL

This definition leads to a cartesian closed category of Mackey-complete spaces and smooth functions, and to a first smooth model of Intuitionist DiLL a .

^aA Convenient differential category, Blute, Ehrhard Tasson Cah. Geom. Diff. (2010)

Models based on ε 0000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A model with Distributions

Distributions and LPDE • 0000000 • 000000 Models based on ε 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Topological vector spaces

We work with Hausdorff topological vector spaces : real or complex vector spaces endowed with a Hausdorff topology making addition and scalar multiplication continuous.

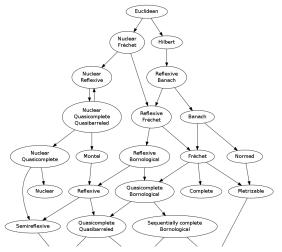
- ► The topology on *E* determines *E*′.
- The topology on E' determines whether $E \simeq E''$.

We work within the category ${\rm TOPVECT}$ of topological vector spaces and continuous linear functions between them.

Models based on ε 0000000000

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Topological models of DiLL



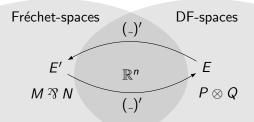
Let us take the other way around, through Nuclear Fréchet spaces.

Models based on ε 0000000000

Sac

Fréchet and DF spaces

- Fréchet : metrizable complete spaces.
- (DF)-spaces : such that the dual of a Fréchet is (DF) and the dual of a (DF) is Fréchet.



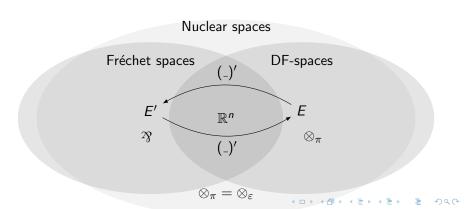
These spaces are in general not reflexive.

Models based on ε 0000000000

Nuclear spaces

Nuclear spaces are spaces in which one can identify the two canonical topologies on tensor products :

 $\forall F, E \otimes_{\pi} F = E \otimes_{\varepsilon} F$

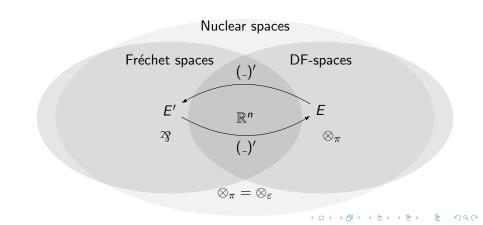


Models based on ε 0000000000

Nuclear spaces

A polarized *-autonomous category

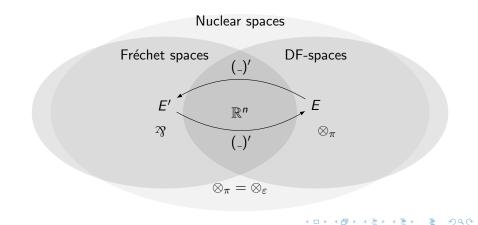
A Nuclear space which is also Fréchet or dual of a Fréchet is reflexive.



Models based on ε 0000000000

Nuclear spaces

We get a polarized model of MALL : involutive negation (_)^⊥, \otimes , $\Im, \oplus, \times.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Distributions and the Kernel theorems

A typical Nuclear Fréchet space is the space of smooth functions on \mathbb{R}^n : $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$.

A typical Nuclear DF spaces is Schwartz' space of distributions with compact support : $C^{\infty}(\mathbb{R}^n, \mathbb{R})'$.

The Kernel Theorems $\mathcal{C}^{\infty}(E,\mathbb{R})'\hat{\otimes}\mathcal{C}^{\infty}(F,\mathbb{R})' \simeq \mathcal{C}^{\infty}(E \times F,\mathbb{R})'$

 $!\mathbb{R}^n = \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})'.$

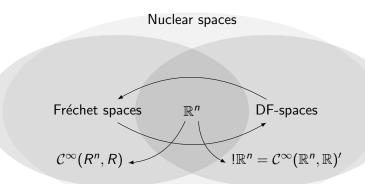
Models based on ε 0000000000

・ロト ・四ト ・ヨト ・ヨト

3

990

A model of Smooth differential Linear Logic



Models based on ε 0000000000

A Smooth differential Linear Logic

A graded semantic

Finite dimensional vector spaces:

 $R^{n}, R^{m} := \mathbb{R}|R^{n} \otimes R^{m}|R^{n} \Im R^{m}|R^{n} \oplus R^{m}|R^{n} \times R^{m}.$

Nuclear spaces :

 $U, V := R^{n} | !R^{n} | ?R^{n} | U \otimes V | U \Im V | U \oplus V | U \times V.$

 $\mathbb{R}^{n} = \mathcal{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R})' \in \text{NUCL}$ $\mathbb{R}^{n} \otimes \mathbb{R}^{m} \simeq \mathbb{R}^{(n+m)}$

We have obtained a smooth classical model of DiLL, to the price of Digging $|A - \circ|!A$.

Models based on ε 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Smooth DiLL, a failed exponential

A new graded syntax

Finitary formulas : $A, B := X | A \otimes B | A \Im B | A \oplus B | A \times B$. General formulas : $U, V := A | !A | ?A | U \otimes V | U \Im V | U \oplus V | U \times V$

For the old rules

$\frac{\vdash \Gamma}{\vdash \Gamma, ?A} w$	$\vdash \Gamma, ?A, ?A$	$\frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} d$
⊢Г,?А "	$- \vdash \Gamma, ?A$	
$\frac{\vdash}{\vdash !A} \bar{w}$	$\vdash \Gamma, !A \vdash \Delta, !A_{\overline{a}}$	$\frac{\vdash \Gamma, A}{\vdash \Gamma, !A} \bar{d}$
$\vdash !A$	$\vdash \Gamma, \Delta, !A$	$\vdash \Gamma, !A \overset{a}{}$

The categorical semantic of smooth DiLL is the one of LL, but where ! is a monoidal functor and d and \overline{d} are to be defined independently.

Models based on ε 0000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Partial Differential Equations as Exponentials

Models based on ε 0000000000

∃ \0 < \0</p>

Linear functions as solutions to an equation

$$\begin{split} f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}) \text{ is linear } & \text{iff } \forall x, f(x) = D(f)(0)(x) \\ & \text{iff } f = \bar{d}(f) \\ & \text{iff } \exists g \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}), f = \bar{d}g \end{split}$$

Another definition for \bar{d}

A linear partial differential operator D acts on $\mathcal{C}^{\infty}(\mathbb{R}^n, R)$:

$$D(f)(x) = \sum_{|\alpha| \leq n} a_{\alpha}(x) \frac{\partial^{\alpha} f}{\partial x^{\alpha}}.$$

Models based on ε 0000000000

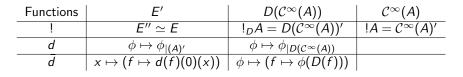
Another exponential is possible

 $!_D A = (D(\mathcal{C}^{\infty}(A,\mathbb{R})))'$

that is the space of linear functions acting on functions f = Dg, for $g \in C^{\infty}(A, \mathbb{R})$, when $A \subset \mathbb{R}^n$ for some *n*.

$$\overline{d}_D : !_D A \to !A; \phi \mapsto (f \mapsto \phi(D(f)))$$

 $d_D : !A \to !_D A; \phi \mapsto \phi_{|D(\mathcal{C}^{\infty}(A))}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recall : The structural morphisms on !E

- The codereliction d
 _E: E →!E = C[∞](E, ℝ)' encodes the differential operator.
- In a ★-autonomous category d_E : E →?E encode the fact that linear functions are smooth.
- c:!E →!E⊗!E → is deduced from the Seely isomorphism and maps ev_x ⊗ ev_x to ev_x.
- $\bar{c}!E \otimes !E \rightarrow !E$ is the convolution \star between two distributions
- $w : !E \to \mathbb{R}$ maps ev_x to 1.
- $\bar{w} : \mathbb{R} \to !E$ maps 1 to $ev_0 : f \mapsto f(0)$, the neutral for \star .

Models based on ε 0000000000

Another exponential 1_D

Consider D a LPDO with constant coefficients :

$$D = \sum_{\alpha, |\alpha| \le n} a_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}.$$

Existence of a fundamental solution For such D there is $E_0 \in C^{\infty}(A)'$ such that $DE_0 = ev_0$.

D commutes with convolution If $f \in D(\mathcal{C}^{\infty}(A))$ and $g \in \mathcal{C}^{\infty}(A)$, then $f * g \in D(\mathcal{C}^{\infty}(A))$.

The coalgebra structure $D(E_0) * f = f$

Models based on ε

(日) (個) (E) (E) (E)

Sac

Functions	E'	$D(\mathcal{C}^\infty(A))$	$\mathcal{C}^{\infty}(A)$
ļ	$E'' \simeq E$	$!_D A = D(\mathcal{C}^\infty(A))'$	$!A = \mathcal{C}^{\infty}(A)'$
d	$\phi \mapsto \phi_{ (A)'}$	$\phi \mapsto \phi_{ D(\mathcal{C}^{\infty}(A))}$	
	$x\mapsto$	$\phi \mapsto$	
ā	$(f\mapsto d(f)(0)(x))$	$(f\mapsto \phi(D(f)))$	
$?A^{\perp}$	E'	$D(\mathcal{C}^\infty(A,\mathbb{R}))$	$\mathcal{C}^\infty(A,\mathbb{R})$
!A	$E'' \simeq E$	$D(\mathcal{C}^\infty(A,\mathbb{R}))'$	$\mathcal{C}^\infty(A,\mathbb{R})'$
Ē		$*: !A \otimes !_D A \rightarrow !_D A$	$*: !A \otimes !A \rightarrow !A$
Ŵ		$1\mapsto E_0$	$1\mapsto ev_0$

and a co-algebra structure : $c :!_D A \rightarrow !A \otimes !_D A$ and $w :!A \rightarrow \mathbb{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Solving Linear PDE's with constant coefficient

\bar{w} is the fundamental solution

 E_0 is the fundamental solution, such that $DE_0 = ev_0$. Its existence is guaranteed when D has constant coefficients.

Solving Linear PDE through \overline{w} and \overline{c} If $f \in C^{\infty}(A)$, then $D(E_0 * f) = f$.

Solving Linear PDE's with constant coefficient

\bar{w} is the fundamental solution

 E_0 is the fundamental solution, such that $DE_0 = ev_0$. Its existence is guaranteed when D has constant coefficients.

```
Solving Linear PDE through \overline{w} and \overline{c}
If f \in C^{\infty}(A), then D(E_0 * f) = f.
If f \in E', then d(ev_0 * f) = f.
```

The rules of Differential Linear Logic encode the resolution of a Linear Partial Differential Equation

Models based on ε •000000000

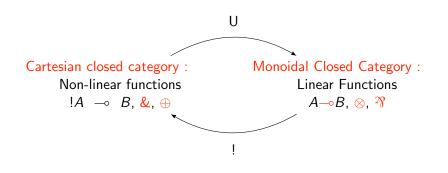
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Models based on ε Joint work with Y. Dabrowski

Models based on ε

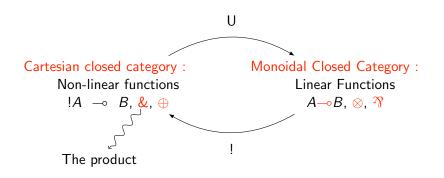
э.

Sac



Models based on ε

Sac

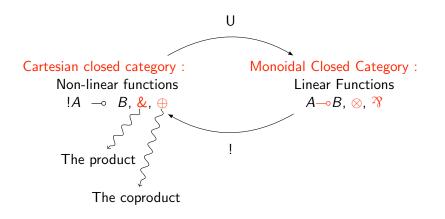


Models based on ε

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Sac

э

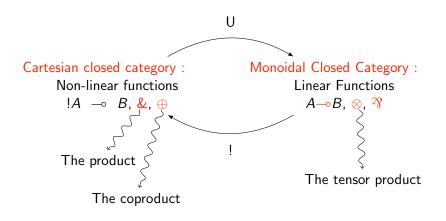


Models based on ε

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

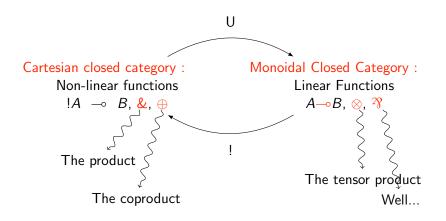
Sac



Models based on ε

э

Sac



Models based on ε 0000000000

Have you heard about the 2?

Many topological tensor product

 \otimes_{π} , \otimes_i , \otimes_{ε} , \otimes_{γ} ...

Grothendieck problème des topologies

Some tensor products may form a monoidal closed category on some specific spaces.

Only one good \Im

 $E \varepsilon F := \mathcal{L}_{\varepsilon}(E'_{c}, F)$, where E'_{c} is E' with the topology compact-open, and the whole space is endowed with the topology of uniform convergence on equicontinuous sets of E'_{c} .

Models based on ε 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The ε product and tensor

Only one good \mathfrak{P}

 $E \varepsilon F := \mathcal{L}_{\varepsilon}(E'_{c}, F)$, where E'_{c} is E' with the topology compact-open, and the whole space is endowed with the topology of uniform convergence on equicontinuous sets of E'_{c} .

 $\mathcal{C}^{\infty}(E,F) \simeq \mathcal{C}^{\infty}(E,\mathbb{R})\varepsilon F$ when E and F are complete.

A monoidal category by Schwartz

 ε is associative and commutative on quasi-complete spaces.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

200

Duality as an orthogonality

The topology on E' determines whether $E \simeq E''$

The topological linear duality is in general not an orthogonality :

 $E'_{\beta} \neq ((E''_{\beta})'_{\beta})_{\beta}$

However, when choosing on E^\prime the topology compact open, one always has :

$$E_c'\simeq ((E_c')_c')_c'$$

This allows for the construction of a *-autonomous category.

A *-autonomous category with ε

Completing E'_c does not lead to an orthogonality : one need to find a completion condition strong enough for ε to be associative but weak enough to have a good linear duality.

k-refl

We have a smooth model of MALL where spaces *E* are *k*-complete and $E^{\perp} = \widehat{E_c'}^k$.

A smooth model of LL with ϵ

We adapt the notion of smooth function to \mathcal{C}^∞_{co} in order to have an exponential and a model of LL.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Towards a general construction for smooth models of LL Consider C a small cartesian category contained in *k*-ref.

Smooth functions with parameters

 $\mathcal{C}^{\infty}_{\mathcal{C}}(E,F) := \{ f : E \to F, \forall X \in \mathcal{C} \forall c \in \mathcal{C}^{\infty}_{co}(X,E), f \circ c \in \mathcal{C}^{\infty}_{co}(X,F) \}$

A new induced topology

For any tvs *E* there is an injection $E \hookrightarrow C^{\infty}_{\mathcal{C}}(E'_{\mu}, \mathbb{R})$ which induces a new topology $\mathscr{S}_{\mathcal{C}}(E)$ on *E*.

Then when E is Mackey-complete :

${\mathcal C}$	$\mathscr{S}_{\mathcal{C}}(E)$	
Fin	The Schwartzification of <i>E</i>	
Ban	The Nuclearification of <i>E</i>	
{0}	The weak topology on <i>E</i>	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Towards a general construction for smooth models of LL

A new induced topology

For any tvs E there is an injection $E \hookrightarrow \mathcal{C}^{\infty}_{\mathcal{C}}(E'_{\mu}, \mathbb{R})$ which induces a new topology $\mathscr{S}_{\mathcal{C}}(E)$ on E.

Then when *E* is Mackey-complete :

\mathcal{C}	$\mathscr{S}_{\mathcal{C}}(E)$	
Fin	The Schwartzification of <i>E</i>	
Ban	The Nuclearification of <i>E</i>	
{0}	The weak topology on <i>E</i>	

Towards a general construction for smooth models of LL

A new induced topology

For any tvs *E* there is an injection $E \hookrightarrow C^{\infty}_{\mathcal{C}}(E'_{\mu}, \mathbb{R})$ which induces a new topology $\mathscr{S}_{\mathcal{C}}(E)$ on *E*.

Then when E is Mackey-complete :

${\mathcal C}$	$\mathscr{S}_{\mathcal{C}}(E)$	
Fin	The Schwartzification of <i>E</i>	$+ Mco \Rightarrow LL + \mathcal{C}^{\infty} + \varepsilon$
Ban	The Nuclearification of <i>E</i>	SDiLL (+ LL ?)
{0}	The weak topology on <i>E</i>	LL $($ + \mathcal{C}^{∞} ? $)$

Conjecture

Any $\mathscr{S}_{\mathcal{C}}$ gives us a model of LL.

Models based on ε 00000000000

Conclusion

What we have :

- Several smooth models of Classical Linear Logic
- An interpretation of the exponential in terms of distributions.
- The first steps towards for a generalization of DiLL to linear PDE's.
- The first steps for a general understanding of smooth models of linear logic.

What we could get :

- A constructive Type Theory for differential equations.
- Logical interpretations of fundamental solutions, specific spaces of distributions, Fourier transformations or operation on distributions.
- A categorical framework for understanding smooth models of linear logic.

Models based on ε 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bibliography

- *Convenient differential category* Blute, Ehrhard Tasson Cah. Geom. Diff. (2010)
- Weak topologies for Linear Logic, K. LMCS 2015.
- Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.
- A model of LL with Schwartz' epsilon product, K. and Dabrowski, In preparation.
- Distributions and Smooth Differential Linear Logic, K., In preparation.

Models based on ε 000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you .

I welcome questions, comments, or remarks later or at kerjean@irif.fr.