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Linear PDE’s as exponentials

Models based on ε
work with Y. Dabrowski



Proofs and smooth objects Distributions and LPDE Models based on ε

Smoothness

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation d(f )(x) : v 7→ d(f )(x)(v) of f near x .

f ∈ C∞(R,R)

d(f )(0)

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.
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Differentiating proofs

I Differentiation was in the air since the study of Analytic
functors by Girard :

d̄(x) :
∑

fn 7→ f1(x)

I DiLL was developed after a study of vectorial models of LL
inspired by coherent spaces : Finiteness spaces (Ehrhard
2005), Köthe spaces (Ehrhard 2002).

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

The rules of DiLL are those of MALL and :

co-dereliction

d̄ : x 7→ f 7→ df (0)(x)

Syntax

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

`
w̄` !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ,A
d̄` Γ, !A
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The computational content of differentiation
Historically, resource sensitive syntax and semantics

I Quantitative semantics : f =
∑

n fn
I Resource λ-calculus and Taylor formulas : M =

∑
n Mn

Differentiation is inspired by the study of continuous systems :

I Differential Geometry and functional analysis

I Ordinary and Partial Differential Equations
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Smoothness of proofs

I Traditionally proofs are interpreted as graphs, relations
between sets, power series on finite dimensional vector spaces,
strategies between games.

I Differentiation appeals to differential geometry, manifolds,
functional analysis : we want to find a denotational model of
DiLL where proofs are smooth functions, and see what
computational or categorical meaning it may have.
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Smooth models of Linear Logic

A,B := A⊗ B|1|A` B|⊥|A⊕ B|0|A× B|>|!A|?A

A decomposition of the implication

A⇒ B '!A ( B

A decomposition of function spaces

C∞(E ,F ) ' L(!E ,F )

The dual of the exponential : smooth scalar functions

C∞(E ,R) ' L(!E ,R) '!E ′

A typical inhabitant of !E is evx : f 7→ f (x).
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Interpreting DiLL in vector spaces

!EE

Linear Functions
A(B, ⊗, `

Non-linear functions
!A ( B, &, ⊕

d

d̄

!E⊗!F '!(E × F )

d ◦ d̄ = IdE

!E⊗!F '!(E × F ) allows to have a cartesian closed Co-Kleisli
category
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Interpreting DiLL in vector spaces

!EE

Linear Functions
A(B, ⊗, `

Non-linear functions
!A ( B, &, ⊕

d

d̄

!E⊗!F '!(E × F )

d ◦ d̄ = IdE

d ◦ d̄ = IdE : the differential at 0 of a linear function is the same
linear function.
c̄ and w̄ : an algebraic structure on !A traditionally inherited from
convolution.
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Interpreting DiLL in vector spaces

!EE

Linear Functions
A(B, ⊗, `

Non-linear functions
!A ( B, &, ⊕

d

d̄

!E⊗!F '!(E × F )

d ◦ d̄ = IdE

We want to find good spaces in which we can interpret all these
constructions, and an appropriate notion of smooth functions.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of general tvs and smooth functions which
is Cartesian closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of general tvs and smooth functions which
is Cartesian closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of smooth functions which is Cartesian
closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

Weak topologies for Linear Logic, K. LMCS 2015.
Involves a topology which is an internal Chu construction.
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Challenges

We encounter several difficulties in the context of topological
vector spaces :

I Finding a category of general tvs and smooth functions which
is Cartesian closed.

I Interpreting the involutive linear negation (E⊥)⊥ ' E

I A model of LL with Schwartz’ epsilon product, K. and Dabrowski, In
preparation.

I Distributions and Smooth Differential Linear Logic, K., In preparation
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What’s not working

A space of (non necessarily linear) functions between finite
dimensional spaces is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails
(Coherent Banach spaces).

I We want to use functions.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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Smooth maps à la Frölicher,Kriegl and Michor

A smooth curve c : R→ E is a curve infinitely many times
differentiable.

c f (c)

f

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated

derivatives exists and are continuous).
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Smooth maps à la Frölicher,Kriegl and Michor
A smooth curve c : R→ E is a curve infinitely many times
differentiable.

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated

derivatives exists and are continuous).

A model of IDiLL

This definition leads to a cartesian closed category of
Mackey-complete spaces and smooth functions, and to a first
smooth model of Intuitionist DiLL a.

aA Convenient differential category, Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)
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A model with Distributions
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Topological vector spaces

We work with Hausdorff topological vector spaces : real or
complex vector spaces endowed with a Hausdorff topology making
addition and scalar multiplication continuous.

I The topology on E determines E ′.

I The topology on E ′ determines whether E ' E ′′.

We work within the category TopVect of topological vector
spaces and continuous linear functions between them.
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Topological models of DiLL

Let us take the other way around, through Nuclear Fréchet spaces.
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Fréchet and DF spaces

I Fréchet : metrizable complete spaces.

I (DF)-spaces : such that the dual of a Fréchet is (DF) and the
dual of a (DF) is Fréchet.

Fréchet-spaces DF-spaces

Rn EE ′

P ⊗ QM ` N

( )′

( )′

These spaces are in general not reflexive.
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Nuclear spaces
Nuclear spaces are spaces in which one can identify the two
canonical topologies on tensor products :

∀F ,E ⊗π F = E ⊗ε F

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

A polarized ?-autonomous category

A Nuclear space which is also Fréchet or dual of a Fréchet is
reflexive.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Nuclear spaces

We get a polarized model of MALL : involutive negation ( )⊥, ⊗,
`, ⊕, ×.

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn EE ′

⊗π`

( )′

( )′
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Distributions and the Kernel theorems

A typical Nuclear Fréchet space is the space of smooth functions
on Rn : C∞(Rn,R).

A typical Nuclear DF spaces is Schwartz’ space of distributions
with compact support : C∞(Rn,R)′.

The Kernel Theorems

C∞(E ,R)′⊗̂C∞(F ,R)′ ' C∞(E × F ,R)′

!Rn = C∞(Rn,R)′.
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A model of Smooth differential Linear Logic

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces

Rn
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A Smooth differential Linear Logic

A graded semantic

Finite dimensional vector spaces:

Rn,Rm := R|Rn ⊗ Rm|Rn ` Rm|Rn ⊕ Rm|Rn × Rm.

Nuclear spaces :

U,V := Rn|!Rn|?Rn|U ⊗ V |U ` V |U ⊕ V |U × V .

!Rn = C∞(Rn,R)′ ∈ Nucl

!Rn⊗!Rm '!(Rn+m)

We have obtained a smooth classical model of DiLL, to the price
of Digging !A (!!A.
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Smooth DiLL, a failed exponential

A new graded syntax

Finitary formulas : A,B := X |A⊗ B|A` B|A⊕ B|A× B.
General formulas : U,V := A|!A|?A|U ⊗ V |U ` V |U ⊕ V |U × V

For the old rules

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

`
w̄` !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ,A
d̄` Γ, !A

The categorical semantic of smooth DiLL is the one of LL, but
where ! is a monoidal functor and d and d̄ are to be defined
independently.
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Linear Partial Differential Equations as Exponentials
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Linear functions as solutions to an equation

f ∈ C∞(Rn,R) is linear iff ∀x , f (x) = D(f )(0)(x)
iff f = d̄(f )
iff ∃g ∈ C∞(Rn,R), f = d̄g

Another definition for d̄

A linear partial differential operator D acts on C∞(Rn,R) :

D(f )(x) =
∑
|α|≤n

aα(x)
∂αf

∂xα
.
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Another exponential is possible

!DA = (D(C∞(A,R)))′

that is the space of linear functions acting on functions f = Dg ,
for g ∈ C∞(A,R), when A ⊂ Rn for some n.

d̄D :!DA→!A;φ 7→ (f 7→ φ(D(f )))

dD :!A→!DA;φ 7→ φ|D(C∞(A)

Functions E ′ D(C∞(A)) C∞(A)
! E ′′ ' E !DA = D(C∞(A))′ !A = C∞(A)′

d φ 7→ φ|(A)′ φ 7→ φ|D(C∞(A))

d̄ x 7→ (f 7→ d(f )(0)(x)) φ 7→ (f 7→ φ(D(f )))
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Recall : The structural morphisms on !E

I The codereliction d̄E : E →!E = C∞(E ,R)′ encodes the
differential operator.

I In a ?-autonomous category dE : E →?E encode the fact that
linear functions are smooth.

I c :!E →!E⊗!E → is deduced from the Seely isomorphism and
maps evx ⊗ evx to evx .

I c̄!E⊗!E →!E is the convolution ? between two distributions

I w :!E → R maps evx to 1.

I w̄ : R→!E maps 1 to ev0 : f 7→ f (0), the neutral for ?.
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Another exponential !D

Consider D a LPDO with constant coefficients :

D =
∑

α,|α|≤n

aα
∂α

∂xα
.

Existence of a fundamental solution

For such D there is E0 ∈ C∞(A)′ such that DE0 = ev0.

D commutes with convolution

If f ∈ D(C∞(A)) and g ∈ C∞(A), then f ∗ g ∈ D(C∞(A)).

The coalgebra structure

D(E0) ∗ f = f
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Functions E ′ D(C∞(A)) C∞(A)

! E ′′ ' E !DA = D(C∞(A))′ !A = C∞(A)′

d φ 7→ φ|(A)′ φ 7→ φ|D(C∞(A))

x 7→ φ 7→
d̄ (f 7→ d(f )(0)(x)) (f 7→ φ(D(f )))

?A⊥ E ′ D(C∞(A,R)) C∞(A,R)

!A E ′′ ' E D(C∞(A,R))′ C∞(A,R)′

c̄ ∗ :!A⊗!DA→!DA ∗ :!A⊗!A→!A

w̄ 1 7→ E0 1 7→ ev0

and a co-algebra structure : c :!DA→!A⊗!DA and w :!A→ R
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Solving Linear PDE’s with constant coefficient

w̄ is the fundamental solution

E0 is the fundamental solution, such that DE0 = ev0. Its existence
is guaranteed when D has constant coefficients.

Solving Linear PDE through w̄ and c̄

If f ∈ C∞(A), then D(E0 ∗ f ) = f .

If f ∈ E ′, then d(ev0 ∗ f ) = f .

The rules of Differential Linear Logic encode the resolution of a
Linear Partial Differential Equation
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Solving Linear PDE’s with constant coefficient

w̄ is the fundamental solution

E0 is the fundamental solution, such that DE0 = ev0. Its existence
is guaranteed when D has constant coefficients.
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Models based on ε
Joint work with Y. Dabrowski
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A typical lesson on the semantic of LL

U

!

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕
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A typical lesson on the semantic of LL

U

!
The product

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕
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A typical lesson on the semantic of LL

U

!
The product

The coproduct

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕
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A typical lesson on the semantic of LL

U

!
The product

The coproduct

The tensor product

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕
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A typical lesson on the semantic of LL

U

!
The product

The coproduct

The tensor product

Well...

Monoidal Closed Category :
Linear Functions
A(B, ⊗, `

Cartesian closed category :
Non-linear functions

!A ( B, &, ⊕
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Have you heard about the `?

Many topological tensor product

⊗π, ⊗i , ⊗ε, ⊗γ ...

Grothendieck problème des topologies

Some tensor products may form a monoidal closed category on
some specific spaces.

Only one good `
EεF := Lε(E ′c ,F ), where E ′c is E ′ with the topology
compact-open, and the whole space is endowed with the topology
of uniform convergence on equicontinuous sets of E ′c .
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The ε product and tensor

Only one good `
EεF := Lε(E ′c ,F ), where E ′c is E ′ with the topology
compact-open, and the whole space is endowed with the topology
of uniform convergence on equicontinuous sets of E ′c .

C∞(E ,F ) ' C∞(E ,R)εF when E and F are complete.

A monoidal category by Schwartz

ε is associative and commutative on quasi-complete spaces.
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Duality as an orthogonality

The topology on E ′ determines whether E ' E ′′

The topological linear duality is in general not an orthogonality :

E ′β 6= ((E ′′β )′β)β

However, when choosing on E ′ the topology compact open, one
always has :

E ′c ' ((E ′c)′c)′c

This allows for the construction of a ?-autonomous category.
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A *-autonomous category with ε

Completing E ′c does not lead to an orthogonality : one need to find
a completion condition strong enough for ε to be associative but
weak enough to have a good linear duality.

k-refl

We have a smooth model of MALL where spaces E are k-complete

and E⊥ = Ê ′c
k

.

A smooth model of LL with ε

We adapt the notion of smooth function to C∞co in order to have an
exponential and a model of LL.
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Towards a general construction for smooth models of LL
Consider C a small cartesian category contained in k-ref.

Smooth functions with parameters

C∞C (E ,F ) := {f : E → F ,∀X ∈ C∀c ∈ C∞co (X ,E ), f ◦ c ∈
C∞co (X ,F )}

A new induced topology

For any tvs E there is an injection E ↪→ C∞C (E ′µ,R) which induces
a new topology SC(E ) on E .

Then when E is Mackey-complete :

C SC(E )

Fin The Schwartzification of E
Ban The Nuclearification of E
{0} The weak topology on E
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Towards a general construction for smooth models of LL

A new induced topology

For any tvs E there is an injection E ↪→ C∞C (E ′µ,R) which induces
a new topology SC(E ) on E .

Then when E is Mackey-complete :

C SC(E )

Fin The Schwartzification of E + Mco ⇒ LL + C∞ + ε
Ban The Nuclearification of E SDiLL ( + LL ?)
{0} The weak topology on E LL ( + C∞ ?)

Conjecture

Any SC gives us a model of LL.
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Conclusion
What we have :

I Several smooth models of Classical Linear Logic

I An interpretation of the exponential in terms of distributions.

I The first steps towards for a generalization of DiLL to linear
PDE ’s.

I The first steps for a general understanding of smooth models
of linear logic.

What we could get :

I A constructive Type Theory for differential equations.

I Logical interpretations of fundamental solutions, specific
spaces of distributions, Fourier transformations or operation
on distributions.

I A categorical framework for understanding smooth models of
linear logic.
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Thank you .

I welcome questions, comments, or remarks later or at
kerjean@irif.fr.
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