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Linear Logic is about joining Logic and Algebra.

Differential Linear Logic is about joining Logic and Differentiation.

In this talk, we join Logic and Mathematical Physics, Via Linear
Partial Differential Equations and a generalization of Differential

Linear Logic.

This takes place in a more general setting: Computer Science is
drifting from Discrete Mathematics to Analysis.
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Smoothness

Differentiation

Differentiating a function f : Rn → R at x is finding a linear
approximation D(f )(x) : v 7→ Dx(f )(v) of f near x .

f ∈ C∞(R,R)

d(f )(0)

A coinductive definition

Smooth functions are functions which can be differentiated
everywhere in their domain and whose differentials are smooth.
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Linear Logic

A decomposition of the implication

A⇒ B ' !A( B

A linear proof is in particular non-linear.

A ` B is linear. !A ` B is non-linear.

A ` Γ
dereliction

!A ` Γ
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Linear Logic

A decomposition of the implication

A⇒ B ' !A(B

Exponential: Usually, the duplicable copies of A.
Here the exponential is a space of Solution to a Differential
Equation.

A linear proof is in particular non-linear.

A ` B is linear. !A ` B is non-linear.

A ` Γ
dereliction

!A ` Γ
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Differential Linear Logic

` Γ,A⊥
d

` Γ, ?A⊥
` ∆,A

d̄` ∆, !A

A linear proof is in particular
non-linear.

From a non-linear proof we can
extract a linear proof
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Differential Linear Logic

` Γ, ` : A⊥
d

` Γ, ` : ?A⊥
` ∆, v : A

d̄` ∆, (f 7→ D0(f )(v)) : !A

A linear proof is in particular
non-linear.

From a non-linear proof we can
extract a linear proof

Cut-elimination:

` Γ, v : !A
d̄` Γ, !A

` ∆,A⊥
d

` ∆, ?A⊥
cut` Γ,∆

 

` Γ,A ` ∆,A⊥
cut

Γ,∆
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Differential Linear Logic

` Γ, ` : A⊥
d

` Γ, ` : ?A⊥
` ∆, v : A

d̄` ∆, (f 7→ D0(f )(v)) : !A

A linear proof is in particular
non-linear.

From a non-linear proof we can
extract a linear proof

Cut-elimination:

` Γ, v : A
d̄` Γ,D0( )(v) : !A

` ∆, ` : A⊥
d

` ∆, ` : ?A⊥
cut

Γ,∆

 ` Γ, x : A ` ∆, ` : A⊥
cut

Γ,∆,D0(`)(x) = `(x) : R = ⊥
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Just a glimpse at Differential Linear Logic

A,B := A⊗ B|1|A` B|⊥|A⊕ B|0|A× B|>|!A|!A

Exponential rules of DiLL0

` Γ, ?A, ?A
c` Γ, ?A

` Γ w` Γ, ?A
` Γ,A

d` Γ, ?A

` Γ, !A, ` ∆, !A
c̄` Γ,∆, !A

`
w̄` !A

` Γ,A
d̄` Γ, !A

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Linear Partial Differential Equations with constant
coefficient

Consider D a LPDO with constant coefficients:

D =
∑

α,|α|≤n

aα
∂α

∂xα
.

The heat equation in R2

∂2u
∂x2 − ∂u

∂t = 0
u(x , y , 0) = f (x , y)

Theorem (Malgrange 1956)

For any D LPDOcc, there is ED ∈ C∞c (Rn,R)′ such that
DED = δ0, and thus for any φ ∈ C∞(Rn,R):

D(ED ∗ φ) = φ
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What this work is about: A new exponential !D .

D is a Linear partial Differential Operator with constant
coefficients:

DiLL

` Γ,A
d` Γ, ?A

` Γ,A
d̄` Γ, !A

D −DiLL

` Γ, ?DA dD` Γ, ?A

` Γ, !DA
d̄D` Γ, !A
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What this work is about: A new exponential !D .

D is a Linear partial Differential Operator with constant
coefficients:

DiLL = D0 −DiLL Because of A ≡ A⊥⊥

` Γ, ?D0A
d` Γ, ?A

` Γ, !D0A
d̄` Γ, !A

D −DiLL

` Γ, ?DA dD` Γ, ?A
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What this work is about: the same cut-elimination

Cut-elimination models resolution of the Linear Partial Differential
Equations on Distributions Dψ = φ.

` Γ, !DA
d̄D` Γ, !A

` ∆, ?DA
⊥

dD` ∆, ?A⊥
cut` Γ,∆

 

` Γ, !DA ` ∆, ?DA
cut` Γ,∆
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It’s all about semantics
And getting a smooth model of Differential Linear Logic with

involutive linear negation.

JA⇒ BK = C∞(JAK, JBK)

JAK = JAK′′, spaces are reflexive
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Challenges

We encounter several difficulties in the context of topological
vector spaces:

X Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness, and a dual
topology fine enough.

X Interpreting the involutive linear negation (E⊥)⊥ ' E :
Reflexive spaces, and a dual topology coarse enough.
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vector spaces:

X Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness, and a dual
topology fine enough.

× Interpreting the involutive linear negation (E⊥)⊥ ' E .

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.
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Weak topologies for Linear Logic, K. LMCS 2015.
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Challenges

We encounter several difficulties in the context of topological
vector spaces:

X Finding a category of tvs and smooth functions which is
Cartesian closed. Requires some completeness, and a dual
topology fine enough.

X Interpreting the involutive linear negation (E⊥)⊥ ' E :
Reflexive spaces, and a dual topology coarse enough.

We construct in this paper a polarized solution to this problem.
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Distributions are everywhere

I Distributions with compact support are elements of
C∞(Rn,R)′, seen as generalisations of functions with compact
support:

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

I In a classical and Smooth model of Differential Linear Logic,
the exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥

L(!E ,R) ' C∞(E ,R)
(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

12/ 19



Distributions are everywhere

I Distributions with compact support are elements of
C∞(Rn,R)′, seen as generalisations of functions with compact
support:

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

I In a classical and Smooth model of Differential Linear Logic,
the exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

12/ 19



Distributions are everywhere

I Distributions with compact support are elements of
C∞(Rn,R)′, seen as generalisations of functions with compact
support:

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

I In a classical and Smooth model of Differential Linear Logic,
the exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

12/ 19



Distributions are everywhere

I Distributions with compact support are elements of
C∞(Rn,R)′, seen as generalisations of functions with compact
support:

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

I In a classical and Smooth model of Differential Linear Logic,
the exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

12/ 19



Topological models of DiLL

Coherent Banach spaces, Girard 2004,

a norm is too restrictive

Nuclear Fréchet spaces

are reflexive and complete

C∞(Rn,R) is not finite dimensional

Let us take the other way around, through Nuclear Fréchet spaces.
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A Smooth classical Differential Linear Logic with
Distributions

Fréchet spaces DF-spaces

Nuclear spaces

⊗π = ⊗ε

Rn E ′E

⊗π`
C∞(Rn,R) !Rn = C∞(Rn,R)′

( )′

( )′

Seely’s isomorphism corresponds to Schwartz Kernel Theorem.
Getting a model with Higher-order was done in a recent

collaboration with JS Lemay.
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Another exponential is possible
D a Linear Partial Differential operator with constant coefficients:

!DE = (D(C∞(E ,R))′

that is !DRn = {φ ∈ (C∞c (Rn))′,Dφ ∈ !Rn}.

d̄D :

{
!DE → Dφ

φ 7→ (f 7→ φ(D(f )))
dD :

{
!E → !DE

ψ 7→ ψ ∗ ED

ED is the fundamental solution of D.

Getting back to LL when D = D0

!D0A ' L(A,R)′ ' A′′ ' A by reflexivity.

When D = Id , !DA = !A.
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What this work is about: the same cut-elimination

Cut-elimination models resolution of the Differential Equations on
Distributions Dψ = φ.

` Γ, φ : !DA
d̄D` Γ,Dφ : !A

` ∆, g : ?DA
⊥

dD` ∆,ED ∗ g : ?A⊥
cut` Γ,∆,D(φ)(ED ∗ g) : R = ⊥

 

` Γ, φ : !DA ` ∆, g : ?D(A)
cut` Γ,∆, φ(g) : R = ⊥

D(ED ∗ φ)(g) = D(φ)(ED ∗ g) = φ(g)

ψ = ED ∗ φ
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Intermediates rules for D

DiLL

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d` Γ, ?A

` Γ
w̄` Γ, !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ, x : A
d̄` Γ,D0( )(x)!A

D − DiLL

` Γ w
` Γ, ?DA

` Γ, ?A, ?DA c
` Γ, ?DA

` Γ, ?DA
dD` Γ, ?A

` w̄D` ED : !DA
` Γ, φ : !A ` ∆, ψ : !DA c̄D` Γ,∆, φ ∗ ψ : !DA

` Γ, ψ : !DA
d̄` Γ,Dψ : !A

A deterministic cut-elimination.
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Logic in Computer Science: Curry-Howard-Lambek

This Talk: Linear Partial Differential Equations are the Semantics
for D−DiLL

Mathematical Physics

Theorical computer science
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Conclusion

Take away

Linear Logic and DiLL extends to Linear Partial Differential
Operators, in which !A is interpreted by a space of distributions,
and a space of solutions to a Differential Equation, and
cut-elimination computes the solution.

Now that we’ve build a bridge with functional analysis, there’s A
LOT of exciting possibilities.

Two priorities

I Curry-Howard: a deterministic LPDE calculus.

I Most importantly: towards non-linear PDEs.
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