
Fossacs 2019

Higher-Order Distributions for Linear Logic

Marie Kerjean & Jean-Simon Lemay

Inria Bretagne - LS2N - Nantes & University of Oxford

logo_oxford.png

1 / 34

Differentiating Programs - Differentiating

Functions

I Differentiation in Theoretical Computer Science : Automatic
Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

I Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Differentiation in Computer Science the same as Differentiation in
Mathematics ?

I [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C∞(Rn,R)

I Today : going to Higher Order. C∞(E ,R) ?

2 / 34

Differentiating Programs - Differentiating

Functions

I Differentiation in Theoretical Computer Science : Automatic
Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

I Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Is differentiation in Logic the same as Differentiation in Functional
Analysis ?

I [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C∞(Rn,R)

I Today : going to Higher Order. C∞(E ,R) ?

3 / 34

Differentiating Programs - Differentiating

Functions

I Differentiation in Theoretical Computer Science : Automatic
Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

I Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Is differentiation in Logic the same as Differentiation in Functional
Analysis ?

I [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C∞(Rn,R)

I Today : going to Higher Order. C∞(E ,R) ?

4 / 34

Differentiating Programs - Differentiating

Functions
I Differentiation in Theoretical Computer Science : Automatic

Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

I Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Is differentiation in Logic the same as Differentiation in Functional
Analysis ?

I [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C∞(Rn,R)

I Today : going to Higher Order. C∞(E ,R) ?

From mathematics to computer science.
⇐

Higher-Order
5 / 34

Differentiating Programs - Differentiating

Functions
I Differentiation in Theoretical Computer Science : Automatic

Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

I Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Is differentiation in Logic the same as Differentiation in Functional
Analysis ?

I [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C∞(Rn,R)

I Today : going to Higher Order. C∞(E ,R) ?

From models for physics to models for computing.
⇐

Higher-Order 6 / 34

Curry-Howard-Lambek
The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B .

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus
Coherence spaces [Girard87]

Linear maps f : A(B
Non-linear maps f : !A(B

Linear Logic [Gir87]
Linear proofs f : A ` B

Non-linear proofs f : !A ` B
!A(B ' A⇒ B

Vectorial Models [Ehrhard02/05]
Power series f =

∑
n fn

Differentiation D0 : f 7→ f1
Differential Linear Logic [Ehrhard&Regnier06]

7 / 34

Curry-Howard-Lambek
The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B .

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus
Coherence spaces [Girard87]

Linear maps f : A(B
Non-linear maps f : !A(B

Linear Logic [Gir87]
Linear proofs f : A ` B

Non-linear proofs f : !A ` B
!A(B ' A⇒ B

Vectorial Models [Ehrhard02/05]
Power series f =

∑
n fn

Differentiation D0 : f 7→ f1
Differential Linear Logic [Ehrhard&Regnier06]

8 / 34

Curry-Howard-Lambek
The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B .

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus
Coherence spaces [Girard87]

Linear maps f : A(B
Non-linear maps f : !A(B

Linear Logic [Gir87]
Linear proofs f : A ` B

Non-linear proofs f : !A ` B
!A(B ' A⇒ B

Vectorial Models [Ehrhard02/05]
Power series f =

∑
n fn

Differentiation D0 : f 7→ f1
Differential Linear Logic [Ehrhard&Regnier06]

9 / 34

Curry-Howard-Lambek
The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B .

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus
Coherence spaces [Girard87]

Linear maps f : A(B
Non-linear maps f : !A(B

Linear Logic [Gir87]
Linear proofs f : A ` B

Non-linear proofs f : !A ` B
!A(B ' A⇒ B

Vectorial Models [Ehrhard02/05]
Power series f =

∑
n fn

Differentiation D0 : f 7→ f1
Differential Linear Logic [Ehrhard&Regnier06]

10 / 34

Linear logic

A linear implication

A ⇒ B = ! A (B
C∞(A,B) ' L(!A,B)

Usual Implication

A proof is linear when it uses only once its hypothesis A.

11 / 34

Linear logic

A linear implication

A ⇒ B = ! A(B
C∞(A,B) ' L(!A,B)

Usual implication
Linear Implication

A proof is linear when it uses only once its hypothesis A.

12 / 34

Linear logic

A linear implication

A ⇒ B = ! A (B
C∞(A,B) ' L(!A,B)

Usual implication
Linear implication

Exponential

A proof is linear when it uses only once its hypothesis A.

13 / 34

Linear logic

A linear implication

A ⇒ B = ! A (B
C∞(A,B) ' L(!A,B)

A focus on linearity
I Higher-Order is about Seely’s isomoprhism.

C∞(A× B ,C) ' C∞(A, C∞(B ,C))

L(!(A× B),C) ' L(!A,L(!B ,C))

!(A× B)' !A⊗̂!B

I Classicality is about a linear involutive negation :

A⊥ := A(⊥ A′ := L(A,R)
A⊥⊥ ' A A ' A′′

14 / 34

Just a glimpse at Differential Linear Logic
Differential Linear Logic

` : A ` B
d

` : !A ` B
f : !A ` B

d̄D0(f) : A ` B
A linear proof is in particular
non-linear.

From a non-linear proof we can
extract a linear proof

f ∈ C∞(R,R)

d(f)(0)

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)

15 / 34

Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector
space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.

X Handling smooth functions : some completeness.

X Interpreting the involutive linear negation (E⊥)⊥ ' E : Reflexive
spaces.

16 / 34

Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector
space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.

X Handling smooth functions : some completeness.

× Interpreting the involutive linear negation (E⊥)⊥ ' E . Reflexive
spaces

Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)

Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.

17 / 34

Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector
space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.

× Handling smooth functions : some completeness.

X Interpreting the involutive linear negation (E⊥)⊥ ' E : Reflexive
spaces.

Weak topologies for Linear Logic, K. LMCS 2015.

18 / 34

Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector
space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.
X Handling smooth functions : some completeness.
X Interpreting the involutive linear negation (E⊥)⊥ ' E : Reflexive

spaces.

A model of LL with Schwartz’ epsilon product, Dabrowski and K., 2018.

A logical account for PDEs, K., LICS18 [A polarized solution, no
higher-order]

Higher-Order Distributions, Lemay and K., Fossacs19

19 / 34

Exponential : from ressources to distributions

I Linear Logic has long been interpreted in terms of discrete
models and resource consumption.

quantitative semantics: !A :=
∑

n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A(⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E)′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

20 / 34

Exponential : from ressources to distributions

I Linear Logic has long been interpreted in terms of discrete
models and resource consumption.

quantitative semantics: !A :=
∑

n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A(⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E)′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

21 / 34

Exponential : from ressources to distributions
I Linear Logic has long been interpreted in terms of discrete

models and resource consumption.
quantitative semantics: !A :=

∑
n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A(⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E)′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

I The space of distributions with compact support
E ′(Rn) := C∞(Rn,R)′, whose elements are for example :

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

δx : g 7→ g(x)

22 / 34

Exponential : from ressources to distributions

I Linear Logic has long been interpreted in terms of discrete
models and resource consumption.

quantitative semantics: !A :=
∑

n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A(⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E)′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

I LL and Distribution Theory enjoy the same computing principle
same computing principles : Seely’s isomorphisms are Kernel
theorems.

!A⊗ !B ' !(A× B) C∞(E ,R)′⊗̂C∞(F ,R)′ ' C∞(E × F ,R)′ .

23 / 34

Which category of tvs should interpret formulas ?

Reflexive spaces enjoy poor stability properties.

I It is typically not preserved by ⊗.

I Nor by L(,).

Reflexivity takes many forms :

I It depends of the topology E ′β, E ′c , E ′w , E ′µ on the dual.

I The dual is not reflexive : one cannot close by bidual as with
biorthogonals.

Monoidal closedness does not extends easily to the
topological case :

I Many possible topologies on ⊗: ⊗β, ⊗π, ⊗ε.
I LB(E ⊗B F ,G) ' LB(E ,LB(F ,G))
⇔ ”Grothendieck problème des topologies”.

24 / 34

Topological models of DiLL

[Ehr02] [Ehr05] [DE08]

countable bases

of vector spaces

Coherent Banach spaces [Girard99]
a norm is too restrictive

Reflexive anc complete :
e.g. C∞(Rn,R)

C∞(Rn,R) is not finite dimensional

25 / 34

Polarized model of Smooth differential Linear

Logic [K.18]
Typical Nuclear Fréchet spaces are spaces of [smooth, holomorphic,

rapidly decreasing ...] functions.

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces⊗ε ' ⊗π

Rn

()′

()′

What about C∞(!Rn,R) or !!Rn ?

26 / 34

Constructing some notion of smoothness which leaves stable
the class of reflexive topological vector space.

We tackle this issue through the space of distribution

Consider E a topological vector space.

I Define an order on linear injections f : Rn ↪→ E by
f ≤ g := ∃ι : Rn ↪→ Rm, f = g ◦ ι.

I Define the action of a distribution on E with respect to these
linear injections:

E ′(E) := lim−→
f :Rn(E

E ′f (Rn)

directed under the inclusion maps defined as

Sf ,g : E ′g (Rn)→ E ′f (Rm), φ 7→ (h 7→ φ(h ◦ ιn,m))

This is similar to work on C∞-algebras [KainKrieglMichor87], which
we need to refine to obtain reflexivity. 27 / 34

A good inductive limit
Because the distributions spaces with which we build the inductive
limit are extremenly regular, we have

I E ′(E) is always reflexive.
 weakly quasi-complete : E = E ′′ algebraically.
 barrelled E ' E ′′ topologically.

I E ′(E) is the dual of a projective limit of spaces of functions :

E(E) := lim←−
f :Rn(E

Ef (Rn)

φ ∈ E ′(E) acts on f = (ff)f :Rn↪→E .

where ff ∈ C∞(Rn,R).

The Kernel Theorem lifts to Higher-Order :

E(E)⊗̂E(F) ' E(E ⊕ F)

28 / 34

Reflexivity is enough for the structural morphisms

Because we worked with reflexive spaces at the beginning, we can
built natural transformations :

dE :

!(E)→ E ′′ ' E

φ 7→ (`︸︷︷︸
E(R

∈ E ′ 7→ φ[(

Rn→R︷︸︸︷
` ◦ f)f :Rn↪→E ∈ E(E)]︸ ︷︷ ︸

R

)

d̄E :

E → !E ' (E(E))′

x 7→ ((ff)f :Rn(E ′) 7→ D0ff (f −1(x))

where f is injective such that x ∈ Im(f) .

And interpretations for (co)-weakening and (co)-contraction follow
from the Kernel Theorem.

29 / 34

We have obtain polarized model of Differential Linear Logic :

CoLim NDF, ⊗̂, ⊕

E ′(F)

Lim NF, `, ×

E(E)

F

E

()′

()′

... without promotion

30 / 34

We have obtain polarized model of Differential Linear Logic :

CoLim NDF, ⊗̂, ⊕

E ′(F)

Lim NF, `, ×

E(E)

F

E

()′

()′

... without promotion

31 / 34

We don’t have a Cartesian Closed Category
This definition gives us functoriality only on isomorphisms :

! :

Refliso → Refliso

E 7→ E ′(E)

` : E (F 7→ !` ∈ E(F ′)

where

(!`)(φ)(g) = φ((g` ◦ f︸︷︷︸
Rn↪→F

)f :Rn↪→E).

No category with smooth functions as maps.

We have however a good candidate to make a co-monad of our
functor.

µE :

!E → !!E

φ 7→

(
(gg)g ∈ E(!E) ' lim−→

g

C∞g (Rm)

)
7→ gg (g−1(φ))

when φ ∈ Im(g) and g is injective

32 / 34

Conclusion
What we have : A Higher-Order exponential extending the
notion of distributions, which interpret classical Differential Linear
Logic without promotion.

E ′(E) := lim−→
f :Rn(E

E ′f (Rn)

Perspectives :
I Linearity / Non-linearity , Solution /Parameter, Positive /

Negative :

 give a categorical structure to the several interactions at
stakes.

I Lifting this exponential to a co-monad:

 finer handling of indexations.
I Constructing exponentials via methods from Numerical Analysis :

 !E = < δx , x ∈ E > [BET12]
 Cut-elimination through Numerical Schemes.

33 / 34

Computing in Higher-Dimension - Computing

Solutions

I If we wanted only smoothness and no reflexivty, we could have
used :

!E = < δx , x ∈ E >
By Frölicher and Kriegl, as used by Blute, Ehrhard and Tasson.

That’s a discretisation scheme.

I In [K18] we showed that cut-elimination is the resolution of
certain class of differential equations for which we have an
explicit one-step resolution .
 generalize to partial differential equations with no explicit

solution.

Let’s embed numerical schemes into cut-elimination.
34 / 34

