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Differentiating Programs - Differentiating

Functions

I Differentiation in Theoretical Computer Science : Automatic
Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

I Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Differentiation in Computer Science the same as Differentiation in
Mathematics ?

I [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C∞(Rn,R)

I Today : going to Higher Order. C∞(E ,R) ?
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I Today : going to Higher Order. C∞(E ,R) ?
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Curry-Howard-Lambek
The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B .

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus
Coherence spaces [Girard87]

Linear maps f : A( B
Non-linear maps f : !A( B

Linear Logic [Gir87]
Linear proofs f : A ` B

Non-linear proofs f : !A ` B
!A( B ' A⇒ B

Vectorial Models [Ehrhard02/05]
Power series f =

∑
n fn

Differentiation D0 : f 7→ f1
Differential Linear Logic [Ehrhard&Regnier06]
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Linear logic

A linear implication

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

Usual Implication

A proof is linear when it uses only once its hypothesis A.
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Linear logic

A linear implication

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

Usual implication
Linear implication

Exponential

A proof is linear when it uses only once its hypothesis A.
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Linear logic

A linear implication

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

A focus on linearity
I Higher-Order is about Seely’s isomoprhism.

C∞(A× B ,C ) ' C∞(A, C∞(B ,C ))

L(!(A× B),C ) ' L(!A,L(!B ,C ))

!(A× B)' !A⊗̂!B

I Classicality is about a linear involutive negation :

A⊥ := A( ⊥ A′ := L(A,R)
A⊥⊥ ' A A ' A′′
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Just a glimpse at Differential Linear Logic
Differential Linear Logic

` : A ` B
d

` : !A ` B
f : !A ` B

d̄D0(f ) : A ` B
A linear proof is in particular
non-linear.

From a non-linear proof we can
extract a linear proof

f ∈ C∞(R,R)

d(f )(0)

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector
space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.

X Handling smooth functions : some completeness.

X Interpreting the involutive linear negation (E⊥)⊥ ' E : Reflexive
spaces.
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Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
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Weak topologies for Linear Logic, K. LMCS 2015.
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Smoothness
Spaces : E is a locally convex and Haussdorf topological vector
space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.
X Handling smooth functions : some completeness.
X Interpreting the involutive linear negation (E⊥)⊥ ' E : Reflexive

spaces.

A model of LL with Schwartz’ epsilon product, Dabrowski and K., 2018.

A logical account for PDEs, K., LICS18 [A polarized solution, no
higher-order]

Higher-Order Distributions, Lemay and K., Fossacs19
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Exponential : from ressources to distributions

I Linear Logic has long been interpreted in terms of discrete
models and resource consumption.

quantitative semantics: !A :=
∑

n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′
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Exponential : from ressources to distributions
I Linear Logic has long been interpreted in terms of discrete

models and resource consumption.
quantitative semantics: !A :=

∑
n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

I The space of distributions with compact support
E ′(Rn) := C∞(Rn,R)′, whose elements are for example :

φf : g ∈ C∞(Rn,R) 7→
∫

fg .

δx : g 7→ g(x)
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Exponential : from ressources to distributions

I Linear Logic has long been interpreted in terms of discrete
models and resource consumption.

quantitative semantics: !A :=
∑

n A
⊗n

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.

!A( ⊥ = A⇒ ⊥
L(!E ,R) ' C∞(E ,R)

(!E )′′ ' C∞(E ,R)′

!E ' C∞(E ,R)′

I LL and Distribution Theory enjoy the same computing principle
same computing principles : Seely’s isomorphisms are Kernel
theorems.

!A⊗ !B ' !(A× B) C∞(E ,R)′⊗̂C∞(F ,R)′ ' C∞(E × F ,R)′ .
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Which category of tvs should interpret formulas ?

Reflexive spaces enjoy poor stability properties.

I It is typically not preserved by ⊗.

I Nor by L( , ).

Reflexivity takes many forms :

I It depends of the topology E ′β, E ′c , E ′w , E ′µ on the dual.

I The dual is not reflexive : one cannot close by bidual as with
biorthogonals.

Monoidal closedness does not extends easily to the
topological case :

I Many possible topologies on ⊗: ⊗β, ⊗π, ⊗ε.
I LB(E ⊗B F ,G ) ' LB(E ,LB(F ,G ))
⇔ ”Grothendieck problème des topologies”.
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Topological models of DiLL

[Ehr02] [Ehr05] [DE08]

countable bases

of vector spaces

Coherent Banach spaces [Girard99]
a norm is too restrictive

Reflexive anc complete :
e.g. C∞(Rn,R)

C∞(Rn,R) is not finite dimensional
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Polarized model of Smooth differential Linear

Logic [K.18]
Typical Nuclear Fréchet spaces are spaces of [smooth, holomorphic,

rapidly decreasing ...] functions.

Fréchet spaces

C∞(Rn,R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces⊗ε ' ⊗π

Rn

( )′

( )′

What about C∞(!Rn,R) or !!Rn ?
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Constructing some notion of smoothness which leaves stable
the class of reflexive topological vector space.

We tackle this issue through the space of distribution

Consider E a topological vector space.

I Define an order on linear injections f : Rn ↪→ E by
f ≤ g := ∃ι : Rn ↪→ Rm, f = g ◦ ι.

I Define the action of a distribution on E with respect to these
linear injections:

E ′(E ) := lim−→
f :Rn(E

E ′f (Rn)

directed under the inclusion maps defined as

Sf ,g : E ′g (Rn)→ E ′f (Rm), φ 7→ (h 7→ φ(h ◦ ιn,m))

This is similar to work on C∞-algebras [KainKrieglMichor87], which
we need to refine to obtain reflexivity. 27 / 34



A good inductive limit
Because the distributions spaces with which we build the inductive
limit are extremenly regular, we have

I E ′(E ) is always reflexive.
 weakly quasi-complete : E = E ′′ algebraically.
 barrelled E ' E ′′ topologically.

I E ′(E ) is the dual of a projective limit of spaces of functions :

E(E ) := lim←−
f :Rn(E

Ef (Rn)

φ ∈ E ′(E ) acts on f = (ff )f :Rn↪→E .

where ff ∈ C∞(Rn,R).

The Kernel Theorem lifts to Higher-Order :

E(E )⊗̂E(F ) ' E(E ⊕ F )
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Reflexivity is enough for the structural morphisms

Because we worked with reflexive spaces at the beginning, we can
built natural transformations :

dE :


!(E )→ E ′′ ' E

φ 7→ ( `︸︷︷︸
E(R

∈ E ′ 7→ φ[(

Rn→R︷︸︸︷
` ◦ f )f :Rn↪→E ∈ E(E )]︸ ︷︷ ︸

R

)

d̄E :


E → !E ' (E(E ))′

x 7→ ((ff )f :Rn(E ′) 7→ D0ff (f −1(x))

where f is injective such that x ∈ Im(f ) .

And interpretations for (co)-weakening and (co)-contraction follow
from the Kernel Theorem.
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We have obtain polarized model of Differential Linear Logic :

CoLim NDF, ⊗̂, ⊕

E ′(F )

Lim NF, `, ×

E(E )

F

E

( )′

( )′

... without promotion
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We don’t have a Cartesian Closed Category
This definition gives us functoriality only on isomorphisms :

! :


Refliso → Refliso

E 7→ E ′(E )

` : E ( F 7→ !` ∈ E(F ′)

where

(!`)(φ)(g) = φ((g` ◦ f︸︷︷︸
Rn↪→F

)f :Rn↪→E ).

No category with smooth functions as maps.

We have however a good candidate to make a co-monad of our
functor.

µE :


!E → !!E

φ 7→

(
(gg )g ∈ E(!E ) ' lim−→

g

C∞g (Rm)

)
7→ gg (g−1(φ))

when φ ∈ Im(g) and g is injective
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Conclusion
What we have : A Higher-Order exponential extending the
notion of distributions, which interpret classical Differential Linear
Logic without promotion.

E ′(E ) := lim−→
f :Rn(E

E ′f (Rn)

Perspectives :
I Linearity / Non-linearity , Solution /Parameter, Positive /

Negative :

 give a categorical structure to the several interactions at
stakes.

I Lifting this exponential to a co-monad:

 finer handling of indexations.
I Constructing exponentials via methods from Numerical Analysis :

 !E = < δx , x ∈ E > [BET12]
 Cut-elimination through Numerical Schemes.
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Computing in Higher-Dimension - Computing

Solutions

I If we wanted only smoothness and no reflexivty, we could have
used :

!E = < δx , x ∈ E >
By Frölicher and Kriegl, as used by Blute, Ehrhard and Tasson.

That’s a discretisation scheme.

I In [K18] we showed that cut-elimination is the resolution of
certain class of differential equations for which we have an
explicit one-step resolution .
 generalize to partial differential equations with no explicit

solution.

Let’s embed numerical schemes into cut-elimination.
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