Big Proof 2019 Workshop

A Formal Classical Proof of Hahn-Banach in Coq

Marie Kerjean \& Assia Mahboubi
Inria Nantes, LS2N

Based Mathcomp and MathComp Analysis libraries, developed by Reynald Affeldt, Cyril Cohen, Assia Mahboubi, Damien Rouhling,

Pierre-Yves Strub

Big Proof 2019 Workshop

A user experience of Mathematical Components Analysis

Marie Kerjean \& Assia Mahboubi

Inria Nantes, LS2N

Based Mathcomp and MathComp Analysis libraries, developed by Reynald Affeldt, Cyril Cohen, Assia Mahboubi, Damien Rouhling, Pierre-Yves Strub

Disclaimer

- I am relatively new to Coq, and completely new to ssreflect and Mathcomp Libraries.

```
case: z {zmax} gP => [c [_ _ bp _]] /= gP; apply/bp/gP .
```

- This proof is a test for the Mathematical Components Analysis libraries.
https://github.com/math-comp/analysis/blob/hb/hahn_banach.v
- This talk is an excuse to speak about the Mathcomp Analysis project.

Lemma 001 of functional analysis

```
Theorem HB_geom_normed (V : normedtype R) (F : submod V) (f : {scalar F}) :
(forall x , F x -> continuous_at x f)
-> exists g : {scalar V} , ( continuous g ) /\ ( forall x, F x -> (f x = g x) )
```


Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```


Textbook Proof:

- Extending f to a linear function $F \oplus \mathbb{R} v$ bounded by pis follows from the convexity of p and the linearity required for the extension.
- Extending f to the whole space V is done through Zorn's lemma.

Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```

Textbook Proof: [Linear Algebra]

- Extending f to a linear function $F \oplus \mathbb{R} v$ bounded by pis follows from the convexity of p and the linearity required for the extension.
- Extending f to the whole space V is done through Zorn's lemma.

Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```

Textbook Proof: [Linear Algebra]

- Extending f to a linear function $F \oplus \mathbb{R} v$ bounded by pis follows from the convexity of p and the linearity required for the extension.
[real analysis and classical reasoning]
- Extending f to the whole space V is done through Zorn's lemma.
[Axiome of Choice]

Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
        (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```

This is my favorite existence theorem, with countless applications.

Existing Formalisations

- Existing Formalisations in Mizar [1993] and HoL/Isabelle [2000]
- Investigation on a constructive version in point-free topology by Coquand, Negri and Cederquist.

Mathematical-Components

A library in Coq constructed for the formalization of Feit-Thompson theorem [Gonthier and al., 2012].

Libraries for algebra with a strong taste for finite dimension:

- Finite Group Theory.
- Ring and modules.
- Finites dimensional vector spaces.
- Matrixes and Polynomials

Mathematical-Components : a peak into ssralg

[Graphs of scalar functions]

```
Variable (R : ringType) ( V : lmodType R).
Definition linear_rel (f : V >> R -> Prop) :=
    forall v1 v2 l r1 r2, f v1 r1 -> f v2 r2 -> f (v1 + l *: v2) (r1 + l * r2).
    Variable (f : V -> R -> Prop).
    Hypothesis lrf : linear_rel f.
    Lemma linrel_00 x r : f x r >> f 0 0.
    Proof.
    suff -> : f 0 0 = f (x + (-1) *: x) (r + (-1) * r) by move=> h; apply: lrf.
    by rewrite scaleNr mulNr mul1r scale1r !subrr.
    Qed.
```


Ssreflect: un peu, beaucoup, à la folie

- Ssreflect is a set of tacticts and notations, used extensively in the Mathcomp libraries.
- MathComp Proofs are often written in an imperative minimal style : easier to maintain.

Ssreflect: un peu, beaucoup, à la folie

- Ssreflect is a set of tacticts and notations, used extensively in the Mathcomp libraries.
- MathComp Proofs are often written in an imperative minimal style : easier to maintain.
- The user can choose to use it as much as she likes.

```
Lemma linrel_00 x r : f x r >> f 0 0.
Proof.
suff -> : f 0 0 = f (x + (-1) *: x) (r + (-1) * r) by move=> h; apply: lrf.
by rewrite scaleNr mulNr mul1r scale1r !subrr.
Qed.
Lemma long_linrel_00 x r : f x r -> f 0 0.
Proof.
have H: f 0 0 = f (x + (-1) *: x) (r + (-1) * r).
    rewrite scaleNr
    rewrite mulNr
    by rewrite mul1r scale1r subrr subrr. (* unfold if you want *)
intro h. (* move => h*)
apply: lrf.
by [].
Qed.
```


Mathematical-Components- Analysis

Enough of Algebra.

Analysis !

Why ?

- Because it's fun.
- Because it is needed for verification.
[P.-Y. Strub - EasyCrypt - probabilistic computation].
- Because it is needed for verifying robotics .
[R. Affeldt, C. Cohen, D. Rouhling - CoqRobot - Lassalle Invariance

Mathematical-Components- Analysis

Fact

- Formalisation in Coq has been influenced a lot by the constructive point of vue on mathematics - because it can.

Mathematical-Components- Analysis

Opinion

- Formalisation in Coq has been too much influenced by the constructive point of vue on mathematics - because it can.

Mathematical Components Analysis: CIC ++ Axiome of Choice + Excluded middle + Functional Extensionality + Propositional Equality

This library reinterprets and extends the Coquelicot project.
[Boldo and al, 2015]

Libraries

- Reals.
- Topology, Derivation.
- Norms and Complete spaces.
- Landau Notations and tactics,
- Soon*: Complex analysis and Lebesgue integration

Figure: Mathematical Components Analysis hierarchy
[Cohen 2018]

Mathematical-Components- Analysis

```
Lemma tychonoff (I : eqType) (T : I -> topologicalType)
    (A : forall i, set (T i)) :
    (forall i, compact (A i)) ->
    @compact (product_topologicalType T)
[set f : forall i, T i | forall i, A i (f i)].
Variable ( M : uniformType).
Lemma flim_ballP {F} {FF : Filter F} (y : M) :
    F --> y <-> forall eps : R, 0 < eps -> \forall y' \near F, ball y eps y'.
Proof. by rewrite -filter_fromP !locally_simpl /=. Qed.
Variable ( U V : normedspace ) .
Lemma linear_for_continuous (f: {linear U >> V }) :
    (f : _ -> _) =0_ (0 : U) (cst (1 : R^o)) -> continuous f.
```


All about \mathbb{R}

- \mathbb{R} in coq/reals.v : an axiomatic definition used by Coquelicot.

Variable (x : R). Check ' $|x|$.

- \mathbb{R} in analysis/reals.v : a realArchiType of mathcomp with a least upper bound operator.

Variable (R : realType) (x : R). Check ' $|x|$.

- \mathbb{R} in analysis/normedtype.v: a normed type when seen as R^{0}.

Variable (x : R^o). Check '| x$] \mid$.
These features will be corrected soon but meanwhile some transports lemmas are needed.

Lemma absRE : forall x : R, abs $\mathrm{x}=$ normrr x

Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```


Textbook Proof:

- Extending f to a linear function $F \oplus \mathbb{R} v$ bounded by pis follows from the convexity of p and the linearity required for the extension.
- Extending f to the whole space V is done through Zorn's lemma.

Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```

Textbook Proof: [Linear Algebra]

- Extending f to a linear function $F \oplus \mathbb{R} v$ bounded by pis follows from the convexity of p and the linearity required for the extension.
- Extending f to the whole space V is done through Zorn's lemma.

Hahn-Banach before normed spaces

```
Variables (R : realFieldType) (V : lmodType R)
    (p : convex R) (F : submod V).
Theorem HahnBanach (f : scalar V) :
    ( forall x, F x -> ( f x <= p x )) ->
    exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```

Textbook Proof: [Linear Algebra]

- Extending f to a linear function $F \oplus \mathbb{R} v$ bounded by pis follows from the convexity of p and the linearity required for the extension.
[real analysis and classical reasoning]
- Extending f to the whole space V is done through Zorn's lemma.
[Axiome of Choice]

Hahn-Banach Finally

Reasoning on the graphs of linear function which are bounded by a convex function and which extends f.

```
Definition spec (g : V >> R -> Prop) :=
    [/\ functional g, linear_rel g, maj_by p g & forall v, F v -> g v (f v) ].
Record zorn_type : Type := ZornType
    {carrier : V -> R -> Prop; specP : spec carrier}.
Lemma domain_extend (z : zorn_type) v :
    exists2 ze : zorn_type, (zorn_rel z ze) & (exists r, (carrier ze) v r).
Theorem HahnBanach : exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```

chosing scalar V was maybe a bad choice.

Looking for Lemmas

Search (exists _ , _) "Hahn".

- Searching via patterns.

Search _ (exists _ , _) (continuous _) in topology.

- Searchin via names (next slide).

Search "HB".
Search "my_favorite_thm".
Search "why_on_earth_isnt_this_automated".

Looking for Lemmas

Search (exists _ , _) "Hahn".

- Searching via patterns.

```
    Search _ (exists _ , _) (continuous _) in topology.
```

- Searchin via names (next slide).

Search "HB".
Search "my_favorite_thm".
Search "why_on_earth_isnt_this_automated".

- Combine the two.

Looking for Lemmas

Search (exists _ , _) "Hahn".

- Searching via patterns.

```
Search _ (exists _ , _) (continuous _) in topology.
```

- Searchin via names (next slide).

Search "HB".
Search "my_favorite_thm".
Search "why_on_earth_isnt_this_automated".

- Combine the two.
- Ask by mail / gitter.

Naming Convention

You should expect the name of hte main statement in the lemma.

```
normedModType_hausdorff : forall (K : absRingType) (V : normedModType K),
    hausdorff V
```

A list of suffix abbreviation :
$\underline{\mathrm{A}}:$ associativity, $\underline{\mathrm{C}}$: commutativity, $\underline{\mathrm{D}}$: addition, $\underline{\underline{E}}$: definition elimination, characteristic properties (often reflection lemmas), z: module/vector space scaling.

```
Lemma normmZ : forall (K : absRingType) (V : normedModType K) (1 : K) (x : V),
    \(' \mid[1\) *: x] \(|='| 1 \mid \%\) real \(* '|[x]|\).
Lemma normr_ge0 : forall ( R : numDomainType) ( \(\mathrm{x}: \mathrm{R}\) ) , \(0<='|x|\).
```



```
                        F, ' \(|[y-F]|<e p s)\).
Lemma locally_normE : forall (K : absRingType) (V : normedModType K) (x : V) (P :
    classical_sets.set V), locally_ (ball_ norm) x \(P=(\backslash n e a r x, P x)\).
```


Hahn-Banach, Finally

The theorem is formalized, but questionable until it is not used somewhere:

```
https://github.com/math-comp/analysis/blob/hb/hahn_banach_applications.v
Variable ( V : normedModType R)
Lemma continuousR_boundedO (f : {scalar V}) :
    (continuousR_at 0 f) -> ( exists r , (r>0 ) /\ (forall x : V, ('|f x| ) <=
            ('|[x]| ) * r ) ) .
Theorem HB_geom_normed ( F : pred V ) (H : submod_closed F) (f : {scalar V}) :
    continuousR_on F f ->
        exists g : {scalar V} , (continuous g ) /\ ( forall x, F x >> (g x = f x)).
```


The Maths should be in Prop

Coq involves a sort Prop, allowing for propositional extensionality and transparent to extraction.

```
Variable Choice : forall T U (P : T >> U >> Prop),
    (forall t : T, exists u : U, P t u) -> { e, forall t, P t (e t) }
Theorem HahnBanach : exists g : {scalar V},
    (forall x, g x <= p x) /\ (forall x, F x -> g x = f x).
```


However:

- Proving a result in Prop should be done using only axioms in Prop.
- The proof of Zorn in boolp.v used extensively the Choice in Type.

```
Definition xget {T : choiceType} x0 (P : set T) : T :=
    if pselect (exists x : T, '[<P x>]) isn't left exP then x0
    else projT1 (sigW exP).
```


Fixpoint theorem and Zorn in Prop

Following Lang's Algebra book :

```
Lemma fixpoint_T ( R : {strict_inductive_order T}) (f : T -> T) :
    (forall t, R t (f t))) -> exists t, t = f t.
Lemma Zorn T (R : {order T}) :
    (forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) ->
    exists t, forall s, R t s >> s = t.
```

By (Diaconescu: Choice -> EM) Hahn-Banach Theorem depends of the following axioms ;

```
Axiom prop_irrelevance : forall (P : Prop) (x y : P), x = y.
Axiom funext : forall (T U : Type) (f g : T > U ), (f =1 g) -> f = g.
Axiom propext : forall (P Q : Prop), (P <-> Q) >> (P = Q).
Axiom choice_prop := ((forall T U (Q : T -> U -> Prop),
    (forall t : T, exists u : U, Q t u) >> (exists e, forall t, Q t (e t)))).
```


Difficulties

- Mathcomp has its focus on the interaction between bool and Prop, while Mathematical Components Analysis does everything with Prop.
[classical_sets.v], properties on reals soon to be corrected
Check ub. (*forall R : archiFieldType, pred R \rightarrow pred R*)
Notation set $\mathrm{R}:=\mathrm{R}$-> Prop
Definition ubd (A : set R) (a : R) := forall $\mathrm{x}, \mathrm{A} x \rightarrow \mathrm{x}<=\mathrm{a}$.
- Mathcomp Libraries have a discrete flavour. This is misleading for a new library user.

$$
\text { [vector. } \mathrm{v}=\text { finite dimensional vector spaces] }
$$

Conclusion

Better documentation is needed.

Meanwhile:

- Slides by Cyril Cohen :
https://perso.crans.org/cohen/CoqWS2018.pdf
- Lessons and exercices on Coq, Ssreflect and Mathcomp libraries:

$$
\begin{gathered}
\text { https://team.inria.fr/marelle/en/ } \\
\text { coq-winter-school-2018-2019-ssreflect-mathcomp/ }
\end{gathered}
$$

- A Book by Assia Mahboubi and Enrico Tassi :
https://math-comp.github.io/mcb/
- Gitter forums: tell us
https://gitter.im/math-comp/analysis

Installation: Via git or opam, or soon via Nix.

