Spaces of Non-linear Functions 0000 00000 000000 The exponential

Coherent Banach spaces

# Complete spaces and Differential Linear Logic

### Marie Kerjean

## June 2013

marie.kerjean@ens-lyon.fr

Coherent Banach spaces

# Complete spaces and LL

- Complete topological vector spaces and power series between them are a **continuous and quantitative** model of Linear Logic.
- Bounded sets are fundamental. They allow us to do scalar testing almost everywhere.
- It's a continuous denotational semantics, generalizing Coherent Banach spaces.

# Motivations

- Quantitative semantics : we want to decompose a program as a sum of finite-ressource consuming programs. e.g. : Finiteness spaces
- Finiteness spaces are based on the relational model and therefore are too dependant of their basis.
- Continuous semantics : we want to construct an easy topological model of Linear Logic, where a discrete basis is not needed anymore. e.g. : Convenient spaces

(a)

# A Linear Non-linear adjunction

We want a monoidal closed category on the side of linear functions.



We will have a cartesian category on the side of the non linear functions.

Continuous semantics : topological vector spaces

The question of having a monoidal cartesian closed topological category is an old and difficult question.

$$\mathcal{C}^{\infty}(E \times F, G) = \mathcal{C}^{\infty}(E, \mathcal{C}^{\infty}(F, G))$$

- (Topological spaces, continuous maps) .
- (Smooth manifolfs, smooth maps)

Frölicher, Kriegl, Michor find the solution by looking into what happens in Banach spaces : they created Convenient spaces.

Quantitative semantics : paying attention to ressources

- A linear program is a program using only once its argument.
- A n-linear program is a program using *n* times its argument.
- A program uses a finite number of times its argument x :

$$P(x) = \sum_{n=0}^{\infty} P_n(x)$$

In a quantitative model of Linear Logic, functions carry this idea. They have a Taylor development converging at least somewhere.

$$f(x) = \sum_{n=0}^{\infty} \frac{d^n f(0)(x^n)}{k!}$$

# Three spaces of functions : Looking for the Taylor formula

By defining a slightly different notion of smoothness we have three models of Differential linear logic :

- The category of complete vector spaces, smooth functions and smooth linear maps.
- The category of complete complex vector spaces, holomorphic functions and smooth linear maps.
- The category of complete complex vector spaces, power series, and smooth linear maps.

The last one is a generalisation of Coherent Banach spaces, and resolves the problem in these.

Spaces of Non-linear Functions

The exponential

・ロト ・聞と ・ヨト ・ヨト

э

Coherent Banach spaces

#### Linear Functions

#### Spaces of Non-linear Functions

New-smoothness Holomorphic functions Power series

The exponential

Coherent Banach spaces

Spaces of Non-linear Functions 0000 00000 000000 The exponential

Coherent Banach spaces

イロト 不得 とくほとう ほう

э

# Complete vector spaces and Spaces of Linear Functions

Tools for differentiation.

Coherent Banach spaces

・ロッ ・雪 ・ ・ ヨ ・ ・ ー ・

# Locally convex vector spaces

*E* vector space over  $\mathbb{K}$ .

A subset *C* is convex when  $\forall \lambda \in \mathbb{K}, \forall x, y \in C, \lambda x + (1 - \lambda)y \in C$ . A subset *C* is absolutely convex when  $\forall \lambda, \mu, |\lambda| + |\mu| \leq 1, \lambda x + \mu y \in C$ .

A topology (a collection open sets) on E is needed. We want :

- A linear topology (addition and multiplication by a scalar are continuous).
- a basis of absolutely convex open sets.

(a)

# Completeness in tvs

We want to differentiate (exponentials and power series), we need completeness.

Complete ↓ Complete for bounded Cauchy net ↓ Mackey-complete (net or sequences)

Scalar testing in Mackey-complete spaces A real curve in E is smooth *iff* it is scalarly smooth into  $\mathbb{R}$ .

# Completeness in topological vector spaces

Let *E* be a lcs, with a basis of 0-neighbourhood O.

## Cauchy sequence

A net  $(x_{\gamma})_{\gamma \in \Gamma}$  is a Cauchy net iff  $\forall O \in \mathcal{O}, \exists \gamma_O \in \Gamma, \alpha, \beta \geq \gamma_0, x_{\alpha} - x_{\beta} \in O.$ 

# Mackey-cauchy sequence

A net  $(x_{\gamma})_{\gamma \in \Gamma}$  is a Mackey-Cauchy net iff  $\exists B, \exists (\lambda_{\alpha,\beta}) \to 0, x_{\alpha} - x_{\beta} \in \lambda_{\alpha,\beta}B.$ 

A complete space is a space where every Cauchy-net converges.

Coherent Banach spaces

## Bounded sets in Ics

## Definition

A set *B* in a locally convex topological vector space *E* is told to be bounded if for every 0-neighbourhood  $\mathcal{U}$  there is  $\lambda \in \mathbb{K}$  such that  $B \subseteq \lambda \mathcal{U}$ .

Bounded sets are dramatically simpler to work with :

Scalar testing for bounded sets

A set B is bounded iff for all  $I \in E^*$ , I(B) is bounded in K.

 $E^{\star}$  is the space of linear continuous forms on E.

|   |    |     |   |   |   | - |    |   |   |    |   |     |   |
|---|----|-----|---|---|---|---|----|---|---|----|---|-----|---|
|   | T. | n   | P | a | r | - | 11 | n | 0 | tı | 0 | n   | S |
| - |    | ••• | ~ | - |   |   | -  |   | ~ |    | ~ | ••• | - |

## Bornological

A linear map  $I : E \to F$  is bornological when  $\forall B \subseteq E$ , B bounded, I(B) is bounded in F.

 $\mathcal{L}(E, F)$  is the space of all linear maps between E and F, with the topology of uniform convergence on bounded subsets of E.

Completeness of  $\mathcal{L}(E, F)$ 

When F is complete,  $\mathcal{L}(E, F)$  is complete.

We will denote E' the space  $\mathcal{L}(E, \mathbb{K})$  of linear bornological maps from E to  $\mathbb{K}$ .

# Complete spaces and Linear Bornological functions

We define  $E \otimes F$  as the completed of the algebraic tensor product between E and F. At the beginning, the tensor product is endowed the finest topology making  $h: E \times F \to E \otimes F$  bornological.

 $\mathbb K$  is the unit for  $\otimes.$  And it is a complete topological vector space !

### Theorem

The Category of Complete spaces and Linear Bornological functions, endowed with  $\otimes$ , is a monoidal closed category.

Spaces of Non-linear Functions • OO The exponential

Coherent Banach spaces

# A new definition for smoothness

Objects : Complete vector spaces.

Functions : New-smooth maps between them.

Spaces of Non-linear Functions

Coherent Banach spaces

# New Smoothness

## Smooothness for curves

A curve  $c : \mathbb{R} \to E$  is smooth when it is infinitely many times differentiable.

## Smooothness for maps

A function  $F : E \to F$  is (new-)smooth *iff* it sends smooth curves to smooth curves.

## Boman's theorem, extended by Frölicher

A smooth map between Banach spaces is smooth *iff* it is new-smooth.

# Cartesian closedeness

The category of locally convex spaces and new-smooth maps is cartesian closed.

$$\mathcal{C}^{\infty}(E \times F, G) \simeq \mathcal{C}^{\infty}(E, \mathcal{C}^{\infty}(F, G))$$

- We can define on  $C^{\infty}(E, F)$  a vector topology such that when *E* and *F* are complete, so is  $C^{\infty}(E, F)$ .
- The product of two complete spaces is complete.

Coherent Banach spaces

# Boundedness and smoothness

## Linear, bornological and smooth

A linear functions between topological vector spaces is new-smooth *iff* bornological.

The proof boils down to a version of the mean-value theorem :

If c is a continuous differentiable curve in E, if A is closed and convex and  $\forall t, c'(t) \in A$ , then  $c(b) - c(a) \in A$  for all  $a, b \in \mathbb{R}$ .

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

э

# Complex analysis : Holomorphic functions

Objects : Complete complex vector spaces.

Functions : Holomorphic maps between them.

# Towards Taylor Formula

A function  $f : \mathbb{C} \to \mathbb{C}$  is said to be holomorphic if it is complex differentiable.

$$f(z) = \lim_{w \to 0, w \in \mathbb{C}} \frac{f(Z + w) - f(z)}{w}$$

A holomorphic function is :

- Infinitely many times differentiable.
- Analytic : around each point  $z_0 \in \mathbb{C}$ ,  $f(z+z_0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} z^n$ .
- It verifies the Cauchy formula :  $\frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_{|\lambda|=r} \frac{f(\lambda)}{\lambda^{n+1}} d\lambda.$
- It verifies the Cauchy inequalities :  $|\frac{f^{(n)}(0)}{n!}| \le |\frac{\sup\{f(\lambda ||\lambda|=r\}}{r^n}|$  for all sufficiently small r.

# Holomorphic curve and functions in lcs

## Curves and functions

A curve  $c : \mathbb{D} \to E$  is holomorphic when it is complex differentiable. A function  $f : E \to F$  is a holomorphic mapping when it maps a holomorphic curve to a holomorphic curve

And it works! Since an holomorphic function is smooth,

Cartesian closedeness

$$\mathcal{H}(E \times F, G) \simeq \mathcal{H}(E, \mathcal{H}(F, G))$$

00000

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

# The Taylor formula

Every holomorphic map verifies a Taylor formula on a finitary open, around each point in its codomain.

 $\forall x \in E$ , there is a set U containing 0, and for ever  $y \in U$  :

$$f(x+y) = \sum_{n=0}^{\infty} \frac{df^n(x)(y^n)}{n!}$$

# The Cauchy Formula

## Working with scalars

0000

Let *E* be a complete space. Then  $c : \mathbb{D} \to E$  is complex differentiable *iff* it is scalarly complex differentiable

The Cauchy Formula still holds for functions : since E is complete, we can integrate.

$$rac{(f\circ c)^{(n)}(0)}{n!}=rac{1}{2\pi i}\int\limits_{|\lambda|=r}rac{f\circ c(\lambda)}{\lambda^{n+1}}d\lambda$$

Cauchy Inequality

If U is a set such that  $f(rB) \subseteq U$ , then  $\frac{d^n f(0)}{n!}(B) \subseteq \frac{\overline{U}}{r^n}$ .

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

э

# Power series between lcs

Objects : Complete vector spaces.

Functions : Power series between them.

## From Power series in $\mathbb C$

In  $\mathbb{C}$ , a power serie is a converging sum

$$\sum_{n\in\mathbb{N}}a_nz^n$$

This sum converges uniformly in a certain bounded set.

For  $x \in F$ ,  $x^n$  doesn't exists. But :

• 
$$a_n = \frac{1}{n!} (z \mapsto \sum_{n \in \mathbb{N}} a_n z^n)^{(n)}(0)$$
  
•  $z \mapsto a_n z^n = \frac{1}{n!} d^n (z \mapsto \sum_{n \in \mathbb{N}} a_n z^n)(0)(z, ..., z)$ 

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ●

... to power series in topological vector spaces

In  $\mathcal{C}^{\infty}(E, F)$ , a power serie is a sum of smooth n-homogeneous maps.

$$f(x) = \sum_{n \in \mathbb{N}} f_n(x)$$
  
$$f_n \in \mathcal{H}^{\infty}_n(E, F) \simeq \mathcal{L}^n_{sym}(E^{,...,E}; F)$$

For all  $w \in \mathbb{C}$ , we have  $f_n(wx) = w^n f_n(x)$ . Equivalently,  $f_n(x) = \tilde{f}_n(x, ..., x)$ ,  $f_n$  being *n*-linear and smooth.

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

S(E,F)

## More than pointwise convergence

S(E, F) is the space of the power series from E to F, where the  $\sum f_n$  converge uniformly on bounded sets of E.

We give to S(E, F) the topology of uniform convergence on bounded subsets of E.

0-neighbourhoods :  $U_{B,U} = \{f | f(B) \subseteq U\}$ 

where B is a bounded set in E and U is a neighbourhood of 0 in F.

Coherent Banach spaces

・ロッ ・雪 ・ ・ ヨ ・ ・ ー

The first step to cartesian closedeness : completeness of S(E, F)

Bornological, smooth and Holomorphic

A power serie in S(E, F) is bornological, and  $S(E, F) \subset \mathcal{H}(E, F) \subset \mathcal{C}^{\infty}(E, F)$ .

# S(E, F) is complete

S(E, F) is a complete space when F is a complete space.

In fact, S(E, F) is the completed of the space of polynomials.

The second step : switching terms in sums

If 
$$f = \sum f_n \in S(E, S(F, G))$$
, then

$$\forall x \in E, f_n(x) = \sum f_{n,x,m} \in S(F,G)$$

We want  $f(x)(y) = \sum_{p} \tilde{f}_{p}(x, y)$ , where  $\tilde{f}_{p}$  is *p*-homogeneous.

$$\sum_{p}\sum_{n+m=p}f_{n,x,m}(y)=f(x)(y)=\sum_{n}\sum_{m}f_{n,x,m}(y)$$

Scalar testing for Power series A serie  $f(x) = \sum f_n(x)$  converges in *F* iff it converges weakly in *F*.

000000

$$S(E \times F, G) \simeq S(E, S(F, G))$$

## Fubini Theorem in C

Let  $(a_{n,m})_{n,m\in\mathbb{N}}$  be a serie such that  $\sum \sum |a_{n,m}|$  is convergent. Then  $\sum_{m} \sum_{n} a_{n,m} = \sum_{n} \sum_{m} a_{n,m} = \sum_{p} \sum_{n+m=p}^{m} a_{n,m}$ 

Then we have pointwise convergence of the permuted sums.

The Cauchy formula allows us to have uniform convergence on each bounded subset.

## Cauchy Inequality

If  $B_0$  is a closed bounded set such that  $f(2B) \subseteq U$ , then  $f_n(B) \subseteq \frac{B_0}{2n}$ .

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

# The exponential and the Taylor formula

We need :

- A comonad !
- Verifying the Seely isomorphism.
- Making the power series as the maps of the co-Kleisli category.
- Reflexive spaces...

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

Wanted : 
$$S(E, F) \simeq \mathcal{L}(!E, F)$$
.

If E were reflexive in our category

$${\sf E}={\cal L}({\cal L}({\sf E},{\Bbb C}),{\Bbb C})={\sf E}''=({\sf E}^\perp)^\perp$$

then  $!E \simeq (!E)'' \simeq (S(E,\mathbb{C}))'$ .

Since we **don't have** reflexivity, we are going to form !E by embedding it into  $(S(E, \mathbb{C}))'$ . The classical way to do so is through the evaluation application.

$$\delta: E \to S(E, \mathbb{C}))'$$
  
 $\delta_x = ev_x : f \mapsto f(x)$ 

Spaces of Non-linear Functions

Coherent Banach spaces

## The exponential

## $\delta$ is well defined

 $\delta_x$  is linear and smooth, so  $\delta_x \in \mathcal{L}(S(E,\mathbb{C}),\mathbb{C})$ .

!E is the completion of  $<\delta(E)>$  in  $\mathcal{L}(S(E,\mathbb{C}),\mathbb{C})$ .

- It inherits the topology of  $\mathcal{L}(S(E,\mathbb{C}),\mathbb{C})$ .
- ! is an endofunctor in the category of complete spaces and linear bornological maps.
- ! is a co-monad with natural transformations  $\rho : ! \rightarrow !! \rho(\delta_x) = \delta_{\delta_x}$  ans  $\epsilon : ! \rightarrow 1 \ \epsilon(\delta_x) = x$ .

Spaces of Non-linear Functions

The exponential

・ロト ・ 何 ト ・ ヨ ト ・

Coherent Banach spaces

## $\delta$ is a power serie

Forall  $x \in E$ , define  $x^n \in !E$  with :

• 
$$x^0: f \mapsto f(0)$$
  
•  $x^1 = \lim_{t \to 0} \frac{\delta_{tx} - \delta_0}{t}: f \mapsto df(0)(x),$   
•  $x^n = \bigtriangledown (\frac{\delta_{tx} - \delta_0}{t} \otimes x^{n-1}): f \mapsto d^n f(0)(x^{\otimes n}).$ 

 $x^n$  extracts the  $n^{th}$  derivative in 0, applied to  $x^{\otimes n}$ , from a power serie.

$$\delta_x = \sum_n x^n$$
 in  $S(E, \mathbb{C})'$ .

$$\delta = \sum_{n} (x \mapsto x^{n}) \in S(E, S(E, \mathbb{C})')$$

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

The co-Kleisli category

We want  $S(E, F) \simeq \mathcal{L}(!E, F)$ 

- If f ∈ S(E, F), define f̂ : !E → F with f̂(δ<sub>x</sub>) = f(x). f̂ is linear and bornological.
- If g ∈ L(!E, F), define ğ : E → F with ğ = g ∘ δ . Since δ is a power serie, and g is linear, ğ is a power serie.

This is an adjunction, with co-unit  $\epsilon : ! \to 1 \epsilon(\delta_x) = x$ , and unit  $\delta$ .

# The Seely isomorphism

Let us show that

$$|E\otimes|F\simeq!(E\times F)$$

 $!(E \times F)$  verifies the universal property of the tensor product :

- $\delta \in S(E \times F, !(E \times F))$ , so  $\tilde{\delta} \in \mathcal{L}(!E \otimes !F, !(E \times F))$
- Let f be a smooth bilinear map from  $!E \times !F$  to G. Then

$$f \in \mathcal{L}(!E, \mathcal{L}(!F, G))$$
  
 $\simeq S(E, S(F, G))$   
 $\simeq S(E imes F, G)$   
 $\simeq \mathcal{L}(!(E imes F), G)$ 

• So  $\tilde{f} \in \mathcal{L}(!(E \times F), G)$  is unique, and  $f = \tilde{f} \circ \tilde{\delta}$ .

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

# Synthesis

- Complete spaces, Linear bornological maps and Power series form a model of Linear Logic, missing reflexivity.
- Our non-linear maps verify the Taylor formula everywhere.
- We have a differential operator x<sup>1</sup> ∈!E : a model of DiLL is within reach.

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

# A generalisation of Coherent Banach spaces

The Norm problem resolved.

Coherent Banach spaces

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・

# Norm and coherence

- A continuous version of Coherent spaces.
- Complete to mimick the infinite cliques.
- Normed to do simple.

Cliques are bounded sets.

Example : the difference between the two additives & and  $\oplus$ .

# Coherent Banach spaces

... are reflexive because the dual is specified : A space is a triplet (E,  $E^{\perp}$ , < ., . >).

Linear maps between coherent Banach spaces are linear bornological maps.

Non-Linear maps from E to F are power series defined on the unit ball of E. They do not compose.

 $(?E)^{\perp}$  is the set of analytical maps from the unit ball in E to  $\mathbb{C}$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

# Coherent Banach spaces

We can introduce the same kind of reflexivity on our spaces.

# A full subcategory

Coherent Banach spaces and Linear maps form a full subcategory of our complete spaces and smooth maps.

## Bornology solve the problem of the norm

We don't need to multiply our maps by scalar to make them compose.

Spaces of Non-linear Functions

The exponential

Coherent Banach spaces

## Not the end

#### **Reflexive space**

- We want a category with an "intern" reflexivity.
- *L*(*L*(*E*, ℂ), ℂ) ≃ *E* in our category *iff* their bornologized topology is complete, and their dual is reflexive

## **Fixpoints**

• We would like a fixpoint operator.

Spaces of Non-linear Functions

Coherent Banach spaces

# References

- 1. Blute, Richard; Ehrhard, Thomas; Tasson, Christine *A* convenient differential category.
- 2. Andreas Kriegl and Peter W. Michor. *The convenient setting* of global analysis
- 3. Frölicher, Alfred; Kriegl, Andreas Linear spaces and differentiation theory.
- 4. Bochnak, Jacek; Siciak, Józef Analytic functions in topological vector spaces.
- 5. Girard, Jean-Yves. Coherent Banach spaces : a continuous denotational semantics.

Spaces of Non-linear Functions

The exponential

・ロト ・聞ト ・ヨト ・ヨト

æ

#### Coherent Banach spaces



Spaces of Non-linear Functions

The exponential

・ロト ・ 日 ・ ・ 日 ・ ・

#### Coherent Banach spaces

