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Abstract

Differential Linear Logic (DiLL) adds to Linear Logic (LL) a sym-
metrization of three out of the four exponential rules, which allows
the expression of a natural notion of differentiation. In this paper, we
introduce a codigging inference rule for DiLL and study the categori-
cal semantics of DiLL with codigging using differential categories. The
addition of codigging makes the rules of DiLL completely symmetrical.
We will explain how codigging is interpreted thanks to the exponential
function ex, and in certain cases by the convolutional exponential. In
a setting with codigging, every proof is equal to its Taylor series, which
implies that every model of DiLL with codigging is quantitative. We
provide examples of codigging in relational models, as well as models
related to game logic and quantum programming. We also construct
a graded model of DiLL with codigging in which the indices witness
exponential growth. Codigging makes the exponential of-course con-
nective ! in LL into a monad, where the monad axioms enforce Taylor
expansion. As such, codigging opens the door to monadic reformu-
lations of quantitative features in programming languages, as well as
further categorical generalizations.

1 Introduction

The quantitative point of view on programming languages consists in mea-
suring through syntax, types or models their usage in time or resources.
This has in particular led to refined results for the λ-calculus [1][2][3] and
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innovations in probabilistic programming [4][5]. In denotational semantics,
it typically consists of interpreting programs by power series, whose coef-
ficients represent the quantitative information one would like to retrieve.
In an analytic context, power series are in particular functions which equal
their Taylor series at 01:

f(x) =
∑
n∈N

1

n!
D

(n)
0 (f)(x).

The introduction of differentiation as a core primitive of the λ-calculus was
made possible by Linear Logic (LL). We will show that Taylor expansion
can be expressed in terms of a monad structure on the main connective !
in LL. The monad unit represents differentiation at 0, while the monad
multiplication will correspond to the convolutional exponential.

The introduction of LL by Girard [6] and its development is intertwined
with the rise of quantitative semantics [7]. It brought forward the distinction
between linear proofs and non-linear proofs. The logical interpretation of
linear, meaning using an argument exactly once, coincides with the usual al-
gebraic interpretation of functions that preserve sums. The non-linear proofs
and functions are retrieved from the introduction of a so-called exponential
unary connective denoted !.

In LL, there are four exponential laws ruling the use of !A called weak-
ening (w), contraction (c), dereliction (d), and promotion (P):

Γ⊢∆ w
Γ, !A ⊢∆

Γ, !A, !A ⊢∆
c

Γ, !A ⊢ ∆

Γ, A ⊢∆
d

Γ, !A ⊢∆
!Γ⊢ A

P
!Γ⊢ !A

Proofs of A ⊢ B are interpreted as linear implications A⊸ B. Non-linear
implication is defined as A⇒ B := !A⊸ B. As such, the dereliction rule
forgets the linearity of a proof, allowing linear proofs to be considered a
special case of non-linear proofs. Categorically speaking, dereliction is the
counit of a comonad !, while promotion is interpreted thanks to the comul-
tiplication of !. Thus P can be replaced by two rules expressing the func-
toriality of ! (functorial promotion !f) and the comultiplication of !, called
digging (p):

Γ ⊢A !f!Γ ⊢ !A
Γ, !!A ⊢ ∆

p
Γ, !A ⊢ ∆

1Throughout the paper, we denote by Da(f) the derivative of a function f at a point

a, so Da(f)(v) = limh→0
f(a+vh)−f(a)

h
.
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Differential Linear Logic (DiLL) was introduced by Ehrhard and Regnier
[8] as an extension of LL with a syntactical notion of differentiation. DiLL
has led to several works concerning the syntax and semantics of differen-
tiable and probabilistic programming languages [4][9], as well as new proof
methods on λ-terms [1]. In classical DiLL there are three extra exponential
rules called coweakening (w), cocontraction (c), and codereliction (d):

⊢
w⊢ !A

⊢ Γ, !A ⊢ ∆, !A
c⊢ Γ,∆, !A

⊢ Γ, A
d⊢ Γ, !A

The ability to differentiate a proof is encoded in the codereliction rule. Dual
to the dereliction, the codereliction takes a non-linear proof and produces a
linear proof via linearization, that is, by differentiating at zero. The other
new rules are necessary for the cut-elimination of DiLL, and have a miracu-
lous symmetric presentation to the usual exponential rules. For an in-depth
introduction to DiLL, we refer the reader to [10].

Remarkably, the interactions (i.e. the cut-elimination in sequent calcu-
lus or the coherence diagram in categorical models) between the standard
exponential rules and the added rules for DiLL are also symmetrical. For
example, the interaction between dereliction and cocontraction is a mirror
dual to the interaction between codereliction and contraction. Furthermore,
these interactions are nicely illustrated by the basic rules of differential cal-
culus, as explained in Ehrhard and Regnier’s original paper [11]. While DiLL
is solidified as an elegant typing system for higher-order functional analysis,
the reason for the symmetrical nature of its rules and their interactions is
unexplained. In particular, observe that c,w, and d have their dual rule in-
troduced in DiLL with c, w, and d. Missing is a dual rule for digging. Thus
a natural question to ask is if there is such thing as a codigging rule, and if
it makes sense semantically? By dualizing the digging rule, we easily write
a codigging rule (p) as follows:

⊢ Γ, !A
p⊢ Γ, !!A

Contributions In this paper, we define the notion of a categorical model
of DiLL with codigging, study their properties and express codigging in terms
of Taylor expansions. We show that the codigging can be interpreted as an
exponential of distributions, which gives ! a monad structure that enforces
a quantitative setting. We exhibit several models of DiLL with codigging,
such as the weighted relational model or quantum-related examples. We
construct a new graded model in a smooth setting based on the notion of
the convolutional exponential and exponential growth.
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Outline In Section 2, we provide background on the categorical models
of DiLL, and also review !-differential exponential maps in Section 3.1. Sec-
tion 3 is the categorical heart of our paper. In Section 3.2 & 3.4, we define
and study monadic differential categories, which are categorical models of
DiLL with codigging. We show that codigging is a generalized version of
the exponential function ex. The coherence rules of codigging are defined
symmetrically to the one of digging. In Section 3.3, we explain using dis-
tributions why these axioms make sense semantically in terms of ex. In
Section 3.5, we introduce the novel concept of Taylor differential categories,
which are differential categories where Taylor expansion is well-defined, and
show that the “illicit formula” for codigging holds in such a setting. Sec-
tion 4 provides examples of models of DiLL with codigging, including the
well-known relational models, as well as models related to game logic and
quantum theory. In Section 5.1, we give counter-examples of differential
categories that do not have a codigging. That said, we will then show in
Section 5.2 that the convolutional exponential, which is a preexisting no-
tion in functional analysis, interprets codigging in an alternative way and
allows the discovery of new smooth, graded and polarized models of DiLL.
We explain the symmetry of DiLL in terms of the Laplace transformation.
We conclude with Section 6, where we discuss future work on codigging in
category theory, the λ-calculus, and other areas.

More Intuition Let us provide some more details about the interpreta-
tion of the monad structure on !, and how the quantitative setting follows.
In categorical models, formulas are interpreted as objects A,B of a category
L and proofs A ⊸ B as morphisms f : A → B between these objects2.
As part of the Curry-Howard correspondence, these morphisms should be
invariant under the cut-elimination procedure.

Due to its invariance under differentiation and its behavior with respect
to sums, we argue that codigging can be interpreted as a sort of generalized
version of the exponential function3 ex. To justify this last claim, we must

2We assume the reader is familiar with the basic concepts of category theory such as
categories, functors, natural transformations, monoidal categories and (co)monads. In
a category we write maps as f : A → B, identity maps as 1A : A → A, and we write
composition diagrammatically, that is, the composition of maps f : A → B and g : B → C
is denoted f ; g : A → C.

3Beware that we face a difficult overlap in terminology. In LL, the connectives ! and
? are traditionally named “exponential connectives” for the fact they transform additive
connectives into multiplicative ones. Here, we refer to the mathematical exponential
function exp : x 7→ ex. As much as possible, we will refer to the latter as the “exponential
function”, as opposed to “exponential rules” or “exponential connectives” in LL.
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consider what ex in the context of DiLL would even be. The answer to this
question comes from an independent categorical exploration by Lemay [12].
We will explain how the axioms of codigging precisely state that p fits in
this categorical axiomatization of exponential maps.

In categorical models of DiLL, each inference rule is interpreted by a nat-
ural transformation. Since the digging is a natural transformation of type
pA : !A→ !!A, it follows that the codigging should be a natural transforma-
tion of type pA : !!A→ !A. Since we claimed that codigging is a generaliza-
tion of ex, we may take inspiration from the power series formula for ex to
provide a formula for p, which we call the “illicit formula” for p (ignoring
any problems of infinite sums for now):

ex =
∑
n

xn

n!
p : x ∈ !!A 7→

∑
n

cn(d(x)⊗
n
)

n!
∈ !A.

When !A is interpreted by a space of distributions [13], c corresponds to the
convolution law and so p maps x to the convolutional exponential of d(x).

On the other hand, the codereliction is a natural transformation of type
d : A → !A, and precomposing a map f : !A → B by dA results in its
differential at 0: dA; f = D0(f) : A→ B. Since (!, p, d) is a comonad, dually
we will have that (!, p, d) is a monad. In particular, the monad axioms
between p and d relate codigging to its derivative and its Taylor expansion.
The monad axiom d!A; pA = 1!A is an analogue of the invariance of ex under
differentiation. The other monad axiom !dA; pA = 1!A accounts for the fact
that all non-linear maps are equal to their Taylor series. Therefore, models
of DiLL with codigging are closely related to quantitative models. What a
quantitative model can lack to have a proper monad structure on ! is the
convergence of p on every element x of !!A. This is strongly related to
the convergence of infinite sums in the model, and the growth allowed to
non-linear maps.

Related Work In their Ph.D. thesis [14], Gimenez studies codigging as a
proof-net construction which is used in the definition of a super-promotion.
As far as we can see, Gimenez’ thesis does not mention its denotational inter-
pretation, which is the heart of our work. The notion of Taylor expansion has
been otherwise widely studied in denotational semantics [10, 15, 16, 17, 18],
exhibiting models which sometimes interpret codigging, and otherwise in-
terpret codigging only on a restricted subset of functions. Quantitative
semantics is not restricted to the LL settings. It also relates to intersection
types [19] and quantitative properties of programs [20]. The differential λ-
calculus [11] considers differentiation as a program transformation, leading
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to resource calculi [21] in which programs compute on quantitative data.
To the best of the authors’ knowledge, these have never been explained in
terms of monads or exponential functions. In the setting of quantitative al-
gebras [22], Mio and Vignudelli studied the lifting of the probability monad
to quantitative equational theories [23]. To the best of our understanding,
this is a distinct approach from the work in this paper.

2 Differential Categories: the Categorical Seman-
tics of DiLL

We now review the categorical semantics of DiLL, which was first developed
by Blute, Cockett, and Seely under the name differential categories in [24],
and later revisited by these three authors along with Lemay in [25], also by
Fiore in [26], and Ehrhard in [10]. In this paper, we will mostly be following
Ehrhard’s notation and terminology in [10], as it takes a more DiLL like
perspective (rather than a purely categorical one). For a more in-depth
introduction to the categorical semantics of LL, we refer the reader to the
introductory source [27].

The underlying category is a symmetric monoidal category, which
interprets the multiplicative fragment of LL. For an arbitrary symmetric
monoidal category, we denote the underlying category as L, the monoidal
product as ⊗, the monoidal unit as I, and the natural symmetry isomor-
phism by σA,B : A⊗B → B⊗A. For simplicity and following the convention
done overall in differential category literature, in this paper we will work in
the setting of a symmetric strict monoidal category, meaning that the asso-
ciativity and unit properties of the monoidal product are equalities, so we
write A1⊗A2⊗ . . .⊗An and A⊗ I = A = I ⊗A. For Classical DiLL, one in
fact needs a star-autonomous category, which interprets the involutive linear
negation. However, since the closed structure does not play a central role in
the story of codigging, we will not assume it in our categorical definitions.

For DiLL, in order to express the product rule for differentiation and that
the derivative of a constant function is zero, we will also require the ability
of taking sums of maps and having zero maps. So an additive symmetric
monoidal category [25, Def 3] is a symmetric monoidal category L which
is enriched over the category of commutative monoids, that is, each hom-
set L(A,B) is a commutative monoid, with addition operation + and zero
0 : A→ B, and such that composition and the monoidal product ⊗ are com-
patible with the additive structure. We will also assume that we have finite
products, which interpret the additive fragment of LL. If an additive sym-
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metric monoidal category has finite products, then by the additive structure
it follows that the products are in fact biproducts, and these distribute with
the monoidal product. Recall that a biproduct can be defined as a product
that is also a coproduct such that the projection maps and injection maps
are compatible. Since the product structure plays a slightly more central
role, we use product notation for biproducts. So if an additive symmetric
monoidal category L has finite (bi)products, we denote the binary product
as ×, with projections πi : A0 × A1 → Ai, and zero object ⊤, and we have
that A⊗ (B × C) ∼= (A⊗B)× (A⊗ C) and A⊗⊤ ∼= ⊤.

For the exponential fragment, there are many equivalent ways to provide
a categorical interpretation of the ! exponential modality such as a monoidal
coalgebra modality (also called a linear exponential modality), an additive
bialgebra modality, or a storage modality. We have chosen the latter which
is defined in terms of the biproduct structure and the Seely isomorphisms.

Definition 2.1. For an additive symmetric monoidal category L with fi-
nite (bi)products, a storage modality [25, Def 10] is a tuple (!, p, d, c,w)
consisting of an endofunctor ! : L → L and four natural transformations:
pA : !A → !!A called the digging, dA : !A → A called the dereliction,
cA : !A→ !A⊗ !A called the contraction, and wA : !A→ I called the weak-
ening, and such that:
1. (!, p, d) is a comonad:

pA; !pA = pA; p!A pA; !dA = 1!A = pA; d!A (1)

2. (!A, cA,wA) is a cocommutative comonoid:

cA; (cA ⊗ 1!A) = cA; (1!A ⊗ cA) cA;σ!A,!A = cA

cA; (1!A ⊗ wA) = 1!A = cA; (wA ⊗ 1!A)
(2)

3. The digging p is a comonoid morphism:

pA; c!A = cA; (pA ⊗ pA) pA;w!A = wA (3)

4. The natural transformation χA,B : !(A × B) → !A ⊗ !B, defined as
χA,B := cA×B; (!π0×!π1), and the weakening w⊤ : !⊤ → I are isomorphisms,
called the Seely isomorphisms, so !(A×B) ∼= !A⊗ !B and !⊤ ∼= I.

From now on we will simply write ! for a storage modality. There are also
two important canonical natural transformations that can be constructed
using the biproduct structure and the inverse of the Seely isomorphisms [25,
Sec.7]. These are cA : !A⊗!A→ !A, and wA : I → !A, respectively called the
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cocontraction and the coweakening. Many interesting identities follow
from these extra maps. Of particular importance to the story of this paper
is that:
5. (!A, cA,wA) is a commutative monoid:

(cA ⊗ 1!A); cA = (1!A ⊗ cA); cA σ!A,!A; cA = cA

(1!A ⊗ wA); cA = 1!A = (wA ⊗ 1!A); cA
(4)

and in fact, !A is a bimonoid:

cA; cA = (cA ⊗ cA); (1!A ⊗ σ!A,!A ⊗ 1!A); (cA ⊗ cA)

cA;wA = wA ⊗ wA wA; cA = wA ⊗ wA

wA;wA = 1I

(5)

6. The dereliction d is compatible with the monoid structure:

cA; dA = wA ⊗ dA + dA ⊗ wA wA; dA = 0 (6)

It is well known that using the Seely isomorphisms, digging, and dereliction,
we can construct a natural transformation µA,B : !A⊗ !B → !(A⊗B) and a
map µI : I → !I which makes ! into a lax monoidal functor. With these we
have that:
7. The digging p is compatible with the monoid structure:

cA; pA = (pA ⊗ pA);µ!A,!A; !cA wA; pA = µI ; !wA (7)

We may now properly state the definition of a codereliction.

Definition 2.2. A differential storage category is an additive symmet-
ric monoidal category with finite (bi)products and a storage modality ! that
comes equipped with a codereliction [25, Def 9] which is a natural trans-
formation dA : A→ !A such that the following equalities hold:

dA; pA = (wA ⊗ dA); (pA ⊗ d!A); c!A dA; dA = 1A

dA; cA = wA ⊗ dA + dA ⊗ wA dA;wA = 0
(8)

To be precise, a categorical model of (Classical) DiLL is a differential stor-
age category that is also monoidal closed (star-autonomous). As discussed
in the introduction, the key dynamic in LL is that we have an interpretation
of non-linear maps and linear maps. In DiLL, we also have the ability of dif-
ferentiating the non-linear maps infinitely many times. Therefore non-linear
maps are better understood as smooth maps. From a categorical point of
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view, the non-linear maps are maps of the coKleisli category. For a differ-
ential storage category L with storage modality !, recall that the coKleisli
category of ! is the category L! whose objects are the same as L but where
a map from A to B in L! is a map of type !A→ B in L. So from the point
of view of DiLL, a non-linear map from A to B is a coKleisli map !A → B,
while a linear map A to B is simply of map of type A→ B.

All the natural transformations which interpret DiLL proofs have a nat-
ural interpretation in terms of basic calculus. In particular, for a coKleisli
map f : !A→ B:

• Precomposing a map ℓ : A → B by the dereliction d forgets that ℓ is
a linear map, d; ℓ : !A→ B.

• The digging p intervenes in the composition of two non-linear maps as
usual in coKleisli categories.

• Precomposing by the contraction c turns a function into its composi-
tion with the diagonal, (c; f)(x) = f(x, x).

• Precomposing by the weakening w turns a point b : I → B into a con-
stant function, wA; b : !A→ B.

• Precomposing by the cocontraction c means summing in the domain
of the function, (cA; f) := (x, y) 7→ f(x+ y).

• Precomposing by the coweakening w corresponds to evaluating at 0,
wA; f = f(0).

• Precomposing by the codereliction d means taking the derivative of a
function at 0, so (dA; f) = D0(f) : A→ B is the linear map mapping
v to the differential of f at 0 according to the vector v.

These intuitions were discovered in discrete models, but also hold in models
based on classical differential calculus.

3 Codigging

We now introduce the notion of codigging from a categorical point of view.
We will demonstrate how codigging fits naturally in the categorical semantics
and explain that codigging can be interpreted as a generalization of the
classical exponential function ex, and how it’s related to the Taylor series
formula for smooth functions.
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3.1 Exponentials in Differential Categories

We will explain below why codigging should be interpreted as a generalized
expentional function. To help justify this claim, let us first quickly review
the generalization of the exponential function ex in the context of differ-
ential storage categories, called a !-differential exponential map, which was
introduced by Lemay in [12]. Classically, ex admits numerous equivalent
characterization either as the inverse of the natural logarithm function, or
as a limit or converging power series, or even as the unique solution to a dif-
ferential equation. What is surprising about !-differential exponential maps
is that they can be defined for any commutative monoid in a differential
storage category without the need of some notion of convergences, or infi-
nite sums, or even unique solutions for differential equations. Instead, their
axioms are based on three well-known identities of ex which are that ex is
its own derivative, ex+y = exey, and e0 = 1.

Definition 3.1. In a differential storage category, for a commutative monoid
(A,C : A ⊗ A → A,W : I → A), a !-differential exponential map [12,
Def 14] is a map e : !A→ A such that the following equalities hold:

dA; e = 1A cA; e = (e⊗ e);C wA; e = W (9)

A !-differential exponential algebra is a commutative monoid equipped
with a !-differential exponential map.

Categorically speaking, for a !-differential exponential map e, the first
axiom says that e is a retract of the codereliction dA, while the other two
say that e is a monoid morphism. From the point of view of DiLL, a !-
differential exponential map e is a non-linear map from A to A. For the
first axiom, recall that precomposing by the codereliction is interpreted as
differentiating and then evaluating at zero. So the first axiom interprets the
fact that the derivative of ex at 0 is x. For the other two axioms, recall that
precomposing by the cocontraction corresponds to evaluating at the sum
of two arguments, while precomposing by the coweakening corresponds to
evaluating at zero. On the other hand, the multiplication C is interpreted as
a bilinear multiplication on A, and the unit W is a constant function which
gives the mutliplicative unit point of A. Therefore, the other two axioms of
e are indeed analogues of ex+y = exey and e0 = 1.

3.2 Codigging

We now introduce the notion of a differential storage category with codig-
ging, which we call a monadic differential category. Before giving the defi-
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nition of codigging, let us first take a step back and remember our original
motivation. In the added exponential rules of DiLL there was a cocontrac-
tion, coweakening, and codereliction, but there is an astonishing lack of a
codigging. The beautiful part of DiLL is that not only c,w, c,w, d, and d are
symmetrical in their types, but they are also symmetrical in their interac-
tion rules. Indeed (2) and (4) are dual of one another, while the two last
axioms of (8) are dual to (6). As such, this naturally leads us to the fact
that codigging p should be the dual type of the digging, so p : !!A → !A,
and the rules involving p should be symmetrical to the ones of p. So the
axioms of codigging can be split into three parts. Since p and d make ! into
a comonad (1), symmetrically, we will require that p and d will make ! into a
monad, which is where the name monadic differential category comes from.
Similarly, since p is a comonoid morphism with respect to c and w (3), we
will also have that p is a monoid morphism with respect to c and w. Lastly,
we will also require that p and d together satisfy the dual of the chain rule
(8), which is the compatibility axiom between p and d.

Definition 3.2. A monadic differential category is a differential storage
category whose storage modality ! comes equipped with a codigging which
is a natural transformation pA : !!A→ !A, such that the following equalities
hold:
1. (!, p, d) is a monad:

p!A; pA = !pA; pA d!A; pA = 1!A = !dA; pA (10)

2. The codigging p is a monoid morphism:

c!A; pA = (pA ⊗ pA); cA w!A; pA = wA (11)

3. The codigging p and the dereliction d are compatible:

pA; dA = c!A; (pA ⊗ d!A); (wA ⊗ dA) (12)

The type of codigging says that p is a non-linear map from !A to !A.
Furthermore, codigging is indeed a generalized version of ex for !A since
(10) and (11) are precisely the requirements which makes pA a !-differential
exponential map.

Lemma 3.3. In a monadic differential category, the codigging pA : !!A→ !A
is a !-differential exponential map for the commutative monoid (!A, cA,wA).

So the equations of (11), which express the interactions between p and
both c and w, are indeed analogues of both ex+y = exex and e0 = 1. While
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the first part of the second equation of (10), expressing the interaction be-
tween p and d, says that the derivative evaluated at 0 of p is the identity.
To help understand the other codigging axioms, it will be useful to consider
distributions.

3.3 Intuition of the Codigging Axioms via Distributions

In Classical DiLL, elements of !A can be interpreted as distributions, that
is, linear scalar maps acting on non-linear maps, so J!AK := L(L!(JAK, I), I),
where I is often interpreted as the field of real or complex numbers. From
this point of view, cocontraction is interpreted by the convolution of distri-
butions:

cA : ϕ⊗ ψ 7→ ϕ ∗ ψ := (f 7→ ϕ(x 7→ ψ(y 7→ f(x+ y)))

Now recall that for each element x of A, the dirac distribution at x is the
distribution which evaluates a non-linear map at x, so δx : f 7→ f(x). In
many cases, it is sufficient to define what a non-linear map does on dirac
distributions. As such, the dereliction maps a dirac distribution to the
element it tests functions with, dA : δx 7→ x, while the contraction duplicates
the dirac distribution’s test element, cA : δx 7→ δx⊗ δx. These intuitions are
explained in more details in [13].

Since p is a generalization of ex, it will be useful to use a very naive
“illicit formula” for p based on the exponential function’s power series: ex =∑

n
xn

n! . Assuming that we have proper convergences and can operate scalar
multiplication by rationals, we may generalize x with the dereliction and
xn with applying contraction and cocontraction to the dereliction, to obtain
the following formula for codigging:

pA : δϕ 7→ exp∗(ϕ) =
∑
n

ϕ∗
n

n!
(13)

where ϕ∗
n
= ϕ ∗ . . . ∗ ϕ. This is called the convolutional exponential. We

will make this formula precise in Section 3.5, and relate it with new models
in Section 5.

Consider the monad axiom !dA; pA = 1!A. On dirac distributions, the
codereliction gives the differential operator at zero, dA : δx 7→ D0( )(x). On
the left hand side, we have:

!dA; pA : δx 7→ exp (D0( )(x)) =
∑
n

D0( )(x)
∗n

n!
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Now D0( )(x)
∗n is exactly the distribution mapping a function to its n-th

differential at 0, f 7→ D
(n)
0 (f)(x). To see this, let us work this out for the

case n = 2. By definition, the second differential at 0 is D2(f)(x) = D0(z 7→
Dz(f)(x))(x). So we see that:

D0(f)(x) ∗D0(f)(x) = D0(z 7→ D0(y 7→ f(z + y))(x))(x)

= D0(z 7→ Dz(f)(x))(x) = D2(f)(x)

Therefore, if !dA; pA = 1!A holds, this means that for every x ∈ A and
f : !A→ B:

∑
n

D
(n)
0 ( )(x)

n!
= δx thus

∑
n

D
(n)
0 (f)(x)

n!
= f(x).

In other words, in a model with codigging, every non-linear map is equal
to its Taylor expansion at 0. This implies that any model of DiLL with
codigging needs to be a quantitative model, with non-linear maps being
power series, such that the exponential function series also converges.

The third monad axiom p!A; pA = !pA; pA essentially explains how to
interpret the exponential of the exponential, ee

x
. In particular, we have

exp(exp(ϕ)) = pA (exp(δϕ)). Lastly, equation (12) states the interaction
between p and d, which we call the ”cochain rule”, since the compatibility
between d and p is the chain rule. The lefthand side gives:

pA; dA : δδx 7→
∑
n

nx

n!

By factoring out x, we know that the righthand side should be e1x, which is
indeed what the other side of (12) is. On one hand we have that: d!A; dA :
δδx 7→ x. While on the other hand, since weakening maps dirac distributions
to 1, wA : δx 7→ 1, we have also have that pA;wA : δδx 7→ e1. Therefore, (12)
precisely tells us that: ∑

n

nx

n!
= e1x.

At this point it may be worth discussing how one could argue that
codigging p is just a special case of the dereliction d. Indeed, note that
pA : !!A → !A and d!A : !!A → !A have the same types. However, by
comparing (6) and (12), we see that the interactions with c and w differ
significantly. Intuitively what this means is that the dereliction d and the
codigging p are both ways to embed linear maps into non-linear ones. The
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dereliction does this by merely forgetting about linearity, while codigging
creates non-linearity via exponentiation. This can also be compared to the
action of p and d, where p has the same type of a restricted d. While the
digging creates linearity by going to higher-order, dereliction is more radical
and creates linearity through differentiation.

3.4 Other Codigging Properties

A natural question to ask is if there is also any interaction law between
codigging and contraction, or weakening, or even digging. For contraction
and weakening, by dualizing the constructions of [25, Sec.7], we use the
codigging to construct a natural transformation µA,B : !(A⊗B) → !A⊗ !B
and a map µI : !I → I respectively as follows:

µA,B := !(dA ⊗ dB); !χ
−1
!A,!B; pA×B;χA,B

µI := !(wI); pI ;wI

(14)

It is important to point out that while µA,B and µI make ! into a lax
comonoidal functor, they are not inverses to µA,B and µI . Indeed, on dirac
distributions, µA,B : δx ⊗ δy 7→ δx⊗y and µI : 1 7→ δ1. While µA,B gives a
version of partial Taylor expansion in two variables:

µA,B : δx⊗y 7→
∑
n

D
(n)
0 ( )(x)⊗D

(n)
0 ( )(y)

n!

We stress that the above formula is not the full Taylor series of a smooth
function in two variables: differentiation on two variables separately does not
subsumes differentiation on the pair of variables. Therefore its composition
with µA,B is not equal to the identity in a codigging setting. On the other
hand for µI , recall that the monoidal unit is often interpreted as the field
of real or complex numbers I = K. Then µK : !K → K, interpreted as
a non-linear map K → K, does indeed recapture the classical exponential
function ex : K → K. So on dirac distributions, µI : δx 7→ ex. We can make
this precise as:

Lemma 3.4. In a monadic differential category, the map µI : !I → I, as
defined in (14), is a !-differential exponential map for I (with respect to the
canonical monoid structure on the monoidal unit).

Proof. By construction, µI is the composite of monoid morphisms, and
therefore is itself a monoid morphism. Furthermore, since both wI ◦wI = 1I
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and d!I ◦ pI = 1!I , and by the naturality of d, we have that ηI ◦ µI = 1I .
Therefore, we conclude that µI is a !-differential exponential map on I as
desired.

Turning our attention back to the relation between codigging and the
comonoid structure, we can use µ and µI to obtain the dual of (7) for
codigging.

Lemma 3.5. In a monadic differential category, the codigging p is compat-
ible with the comonoid structure in the sense that the following equalities
hold:

pA; cA = !cA;µ!A,!A; (pA ⊗ pA) pA;wA = !wA;µI (15)

Proof. By symmetry of all the axioms, the calculations to prove (15) are
precisely dual to the calculations to prove (7), which can be found in [25,
App.B].

Unfortunately there does not seem to be any obvious compatibility be-
tween digging and codigging, specifically what pA; pA may be equal to. Even
when investigating in well-behaved models, there does not seem to be any
immediate answer. So, for now, we do not require any extra coherence
between p and p, and discuss possibilities in the conclusion.

Let us briefly focus our attention back to codigging and its relation to
exponential functions. Whenever one has a monad, an important question
to ask is what can we say about its algebras. It turns out that in a monadic
differential category, every algebra for the monad ! comes equipped with
a natural !-differential exponential map. Recall that an algebra for the
monad !, also called a !-algebra, is a pair (A, a) consisting of an object A
and a map a : !A → A, called the !-algebra structure map, such that
pA; a = !a; a and dA; a = 1A. Then not only does every !-algebra have a
canonical commutative monoid structure, but the !-algebra structure map
is also a !-differential exponential map.

Lemma 3.6. In a monadic differential category, let (A, a) be a !-algebra.
Define the maps caA : A⊗A→ A and wa

A : I → A respectively as follows:

caA := (dA ⊗ dA); cA; a wa
A := wA; a (16)

Then (A, caA,wA) is a commutative monoid and a : !A→ A is a !-differential
exponential map. In other words, every !-algebra is a !-differential exponen-
tial algebra.
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Proof. A well-known result about storage modalities is that every !-coalgebra
(the dual of !-algebra for the comonad !) comes equipped with a canonical
cocommutative comonoid structure and the !-coalgebra structure map is a
comonoid morphism [27, Prop.28]. The above proposed construction for
!-algebras is precisely the dual of the one for !-coalgebras. Therefore, by du-
alizing the proof, we indeed have that (A, caA,wA) is a commutative monoid
and a is a monoid morphism. Furthermore, by definition of !-algebra, we
have that a is a retract of the codereliction dA. So we conclude that a is a
!-differential exponential map, as desired.

3.5 Codigging via Taylor Expansion

In the previous sections, we discussed how codigging was closely linked to
Taylor expansion and gave an “illicit formula” for codigging (13), which
is based on the Taylor series of the exponential function ex. The aim of
this section is to make the “illicit formula” for codigging legitimate and
argue that it makes sense in well-behaved differential categories where Taylor
expansion is well-defined. We will justify this even further in Section 4 by
providing examples where the “illicit formula” for codigging holds.

Taylor expansion is an important concept in DiLL, as first developped
by Ehrhard in Regnier in [28] and later studied by many others, such as
Pagini and Tasson in [17] or Boudes et al in [18]. From the categorical
point of view, the concept of Taylor expansion in a differential category was
first discussed by Ehrhard in [10, Sec 3.1]. However, as discussed above, in
order for codigging to properly give a monad, not only do we need Taylor
expansions in a differential category but also that every non-linear map is
equal to its Taylor series. As such, we now introduce the novel concept
of a Taylor differential category, which is essentially a differential category
where if two coKleisli maps have the same Taylor expansion, then they must
be equal. This implies that in a Taylor differential category, every coKleisli
map is equal to its Taylor series, which can be made even more precise in a
setting with some notion of well-defined convergence for infinite sums. The
main result of this section is that a Taylor differential category has codigging
if and only if there is a non-linear map whose Taylor expansion is precisely
given by the “illicit formula” for codigging. In Section 4, we will provide
numerous examples of Taylor differential categories with codigging.

As Taylor differential categories are inspired by Ehrhard’s work, we will
continue using mostly the same notation as in [10]. Let us first define some
useful natural transformations. For every n ∈ N, for an object A or a map
f , we denote A⊗n

and f⊗
n
as a short hand for the monoidal product of n
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copies of A or f , with the convention that A⊗0
= I and A⊗1

= A, and that
f⊗

0
= 1I and f

⊗1
= f . Now for every n ∈ N, define cnA : !A→ !A⊗n

to be the
map which comultiplies !A into n-copies of !A, and cnA : !A⊗n → !A which
multiplies n-copies of !A together. By convention, we set that c1A = 1!A,
c1A = 1!A, c

2
A = cA, and c2A = cA. Now define dnA : !A → A⊗n

and d
n
A :

A⊗n → !A respectively as the composites dnA := cnA; d
⊗n

A and d
n
A := d

⊗n

A ; cnA.
In order to properly define the main natural transformation for Taylor

expansion, it is necessary to be able to multiply by 1
n! , which is an important

ingredient in the Taylor expansion formula. As such, we now need to assume
we are working in a setting where we can scalar multiplying maps by the
non-negative rationals Q≥0. Thus for the remainder of this section, we will
be working in a Q≥0-differential storage category, which means a differential
storage category such that each homset is also a Q≥0-module. In particular,
this implies we may scalar multiply any map f : A → B by any p

q ∈ Q≥0

to obtain a map p
q · f : A→ B, and scalar multiplication is compatible with

composition and the monoidal product. This is not a very heavy require-
ment, and is often a desirable setting of interest, especially when working
with differential categories that have some notion of antiderivatives [10, 29]
or integration [30].

Then define Mn
A : !A→ !A as:

Mn
A :=

1

n!
·
(
dnA; d

n
A

)
(17)

Observe that M0
A = wA;wA and M1

A = dA; dA. Intuitively, pre-composing
a coKleisli map f : !A → B gives the n-th term in Taylor series of f at

0, (Mn
A; f)(x) =

1
n! · D

(n)
0 (f)(x). Here, we call the composite Mn

A; f the n-
th Taylor monomial of f . In [10, Sec 3.1], Ehrhard defined the natural
transformation Tn

A : !A → !A as the sum Tn
A :=

∑n
k=0M

n
A and described

Tn
A; f as the n-th Taylor polynomial of f . We may now define the notion

of a Taylor differential category:

Definition 3.7. A Taylor differential category is a Q≥0-differential
storage category such that for any pair of parallel coKleisli maps f : !A→ B
and g : !A→ B, if for all n ∈ N, Mn

A; f = Mn
A; g, then f = g.

In other words, if two non-linear maps have the same Taylor monomials
(or Taylor polynomials), then they must be equal. This implies that every
non-linear map is completely determined by its Taylor expansion. In fact,
we will explain how in a Taylor differential category, every Taylor series
converges in a well-defined way and how every non-linear map is equal to
its Taylor series.

17



While Taylor differential categories are interesting on their own and merit
further exploration, we are particularly interested in when a Taylor differ-
ential category has a codigging. So assume that a codigging pA : !!A → !A
exists. Using all three of the axioms for a !-differential exponential map,
it is straightforward to compute that d

n
!A; pA = cnA. Thus, the Taylor

monomials of the codigging are Mn
!A; pA = 1

n! · (d
n
!A; c

n
A), with special cases

M0
!A; pA = w!A;wA andM0

!A; pA = d!A. Now observe that the Taylor monomi-
als of the codigging can be defined in any Q≥0-differential storage category.
It turns out that a Taylor differential category has a codigging if there exists
maps whose Taylor monomials are 1

n! · (d
n
!A; c

n
A).

Proposition 3.8. A Taylor differential category is a monadic differential
category if and only if for every A, there exists a (necessarily unique) map
pA : !!A→ !A such that for every n ∈ N, the following equality holds:

Mn
!A; pA =

1

n!
· (dn!A; cnA) (18)

Proof. Let us start with proving that pA is a monoid morphism. Starting
with preservation of the unit, note that the case n = 0 of (18) says that
w!A;w!A; pA = w!A;w!A. Pre-composing each side by w!A, by the bimonoid
identity (5), we have that w!A; pA = w!A as desired. Next to prove that
pA also preserves the multiplication, we will first show that χ!A,!A; c!A; pA
is equal to χ!A,!A; (pA ⊗ pA); cA using the Taylor property. Then carefully
using the bimonoid identities (5) and binoemial coefficient identities, we can
compute that:

Mn
!A×!A;χ!A,!A; c!A; pA =

=
n∑

k=0

1

k!(n− k)!
·
(
dn!A; (!π0)

⊗k ⊗ (!π1)
⊗n−k

; cnA

)
= Mn

!A×!A;χ!A,!A; (pA ⊗ pA); cA

So by the Taylor property we have that χ!A,!A; c!A; pA = χ!A,!A; (pA⊗pA); cA.
Pre-composing both sides by χ−1

!A,!A we obtain that c!A; pA = (pA ⊗ pA); cA.
So pA is indeed a monoid morphism as desired.

Now let us explain why ! is a monad. Note that the case n = 1 of (18) says
that d!A; d!A; pA = d!A. Pre-composing each side by d!A, by the codereliction
identity (8), we have that d!A; pA = 1!A. Next, by naturality of Mn and dn,
it easy to compute that for all n we have that Mn

A; !dA; pA = Mn
A. Therefore

by the Taylor property, it follows that !dA; pA = 1!A. On the other hand,
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using the naturality of d
n
, that p is a monoid morphism, and d!A; pA = 1!A,

for every n we can show that:

Mn
!!A; p!A; pA =

1

n!
·
(
dn!!A; p

⊗n

A ; cnA
)
= Mn

!!A; !pA; pA

So by the Taylor property, we have that p!A; pA = !pA; pA. So we have that
! is indeed a monad.

Lastly, using (6), for every n, we can compute that:

M0
!A; pA; dA = 0 = M0

!A; c!A; (pA ⊗ d!A); (wA ⊗ dA)

Mn+1
!A ; pA; dA =

1

n!
·
(
dn+1
!!A ; dA ⊗ w⊗n

A

)
= Mn+1

!A ; c!A; (pA ⊗ d!A); (wA ⊗ dA)

Note that in the n + 1 case, the factor 1
n! is indeed correct since we obtain

n copies of dn+1
!!A ; dA ⊗w⊗n

A , which when multiplied by 1
(n+1)! gives

1
n! . So by

the Taylor property, we obtain that pA; dA = c!A; (pA ⊗ d!A); (wA ⊗ dA). So
we conclude that p is a codigging as desired.

Now let us explain why in a Taylor differential category L, Taylor series
converge. To do so, we must define a metric on the homset L(!A,B) in which
the sequence of Taylor polynomials converges. So define D : L(!A,B) ×
L(!A,B) → R as D(f, g) = 2−n, where n is the smallest natural number
such that Mn

A; f ̸= Mn
A; g, and D(f, g) = 0 if for all n, Mn

A; f = Mn
A; g. Then

D is not only a metric but an ultrametric, making L(!A,B) an ultrametric
space. At first glance this metric may seem a bit ad hoc, but D is in fact a
generalization of the metric for power series, which is used to make power
series properly converge.

Lemma 3.9. In a Taylor differential category, for every coKleisli map f :
!A → B, the following series converges to f with respect to ultrametric D:

f =
∞∑
n=0

Mn
A; f

Proof. First note that Mn;Mn = Mn while Mn;Mm = 0 if n ̸= m. Therefore,

it follows that D

(
m∑

n=0
Mn

A; f, f

)
≤ 2m+1 and so lim

m→∞
D

(
m∑

n=0
Mn

A; f, f

)
= 0.

So we conclude that the desired series converges to f .

As a consequence, the “illicit formula” for codigging is perfectly legiti-
mate in a Taylor differential category.
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Corollary 3.10. In a Taylor differential category that is also a monadic
differential category, the following series converges to the codigging p with
respect to ultrametric D:

pA =

∞∑
n=0

1

n!
·
(
cn!A; d

⊗n

!A ; cnA
)

(19)

It can be checked that (19) is indeed a proper generalization of the “illicit
formula” (13).

A very natural, and important, question to ask is what if there was al-
ready some other established notion of infinite sum or convergence. Would
the resulting Taylor series be the same as the one given by the ultrametric
D? Under mild assumption, the answer is yes. Since many of the exam-
ples in Section 4 have an algebraic notion of infinite sums, let us focus on
this setting. Briefly, recall that a countably complete Q≥0-module is a
Q≥0-module which also has arbitrary countable sums, and such that these
countable sums satisfy certain distributivity and partitions axioms (see [31,
Chap 23] for more details). Then by a QΣ

≥0-differential storage category,
we mean a differential storage category that is enriched over the category of
countably complete Q≥0-modules, that is, each homset is also a countably
complete Q≥0-module such that both composition and the monoidal product
are compatible with the countable sums in the obvious way. In particular,
this means we can scalar multiply maps by Q≥0 and we have countable in-
finite sums of maps

∑∞
n=0 fn : A→ B. With one other assumption (20), we

obtain both the Taylor property and codigging. In the following lemma, all
infinite sums are the ones given by the countable additive enrichment.

Lemma 3.11. Let L be a QΣ
≥0-differential storage category such that the

following equality holds:

∞∑
n=0

Mn
A = 1!A (20)

Then L is a Taylor differential category and for every coKleisli map f : !A→
B, f =

∑∞
n=0M

n
A; f . Furthermore, L is also a monadic differential category

where the codigging pA : !!A→ !A is defined as pA =
∑∞

n=0
1
n! · (d

n
!A; c

n
A).

Proof. Since composition preserves countable sums, (20) implies that f =
∞∑
n=0

Mn
A; f . It then clearly follows that we have a Taylor differential cate-

gory. Lastly, it is easy to check that Mn
!A; pA = 1

n! · (d
n
!A; c

n
A). Therefore by

Proposition 3.8, we have that p is a codigging as desired.
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The above lemma also tells us that for Taylor series, the infinite sum
given by the ultrametric D is the same as the infinite sum given by the
countable additive enrichment.

4 Examples of Codigging

We now provide examples of models with codigging, some of which are
already well known quantitative models of LL.

4.1 Relations

One of the most important categorical models of LL and DiLL is the relational
model. We will now explain how the relational model is also a monadic
differential category. Since this model holds such an important role in LL,
we take the pain of providing quite a bit of detail for this example.

So let REL be the category of sets and relations, that is, the category
whose objects are sets X and whose morphism R : X → Y are relations,
i.e., subsets R ⊆ X × Y . It is already well known that REL is a differential
storage category [24, 2.5.1]. The tensor product is given by the Cartesian
product of sets, X ⊗ Y = X × Y (which is not the categorical product)
and the unit is a chosen singleton I = {∗}. The (bi)product is given by the
disjoint union of sets X ⊔Y and the terminal object is the empty set ∅. The
additive structure is given by the union of sets: the sum of relations is there
union R+ S = R ∪ S and the zero maps are the empty subsets 0 := ∅.

The storage modality ! is given by finite multisets (also sometimes called
finite bags), so !X = Mf (X), the set of all finite multisets of X. The
dereliction dX ⊆ !X ×X and codereliction dX ⊆ X × !X relates elements of
X to the multisets containing that one element:

dX := {([x], x) | ∀x ∈ X} dX := {(x, [x]) | ∀x ∈ X}

The contraction cX ⊆ !X×(!X×!X) and cocontraction cX ⊆ (!X×!X)×!X
relate pairs of finite multisets to their disjoint union, while the weakening
wX ⊆ !X × {∗} and coweakening wX ⊆ {∗} × !X relate ∗ to the empty
multiset:

cX := {(m, (m1,m2)) | ∀m,m1,m2 ∈ !X,m = m1 ⊔m2}
cX := {((m1,m2),m1 ⊔m2) | ∀m1,m2 ∈ !X}

wX := {(∗, ∅)} wX := {(∅, ∗)}
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The digging pX ⊆ !X × !!X relates a finite multiset to all possible finite
multiset of finite multisets (of any size) whose disjoint union is the original
multiset:

pX :=

{
(m, [m1, . . . ,mn]) |∀m,mi ∈ !X, s.t.

⊔
i

mi = m

}

Now there are many ways to argue why REL is also a monadic differential
category. Of particular interest for this paper is using the results of Section
3.5. Now REL is a QΣ

≥0-differential storage category [30, Ex 7.2], where scalar
multiplying by a non-zero rational does nothing, p

q ·R = R, since in particular
R + R = R, and where countable sums are given by the countable unions,∑

nRn =
⋃
Rn. Furthermore, for each n, Mn

X ⊆ !X × !X relates finite bags
of size n to themselves: Mn

X = {(m,m)| ∀w ∈ !X, |m| = n}. Then it is easy
to see that (20) holds. Therefore, REL is both a Taylor differential category
and a monadic differential category. As such, the codigging pX ⊆ !!X × !X
relates a finite multiset of finite multisets to its disjoint union:

pX := {([m1, . . . ,mn],m1 ⊔ . . . ⊔mn) | ∀n ∈ N,mi ∈ !X}

In REL, there is also a notion of transpose, where for a relation R ⊆
X × Y , its transpose R† ⊆ Y ×X is defined as R† = {(y, x)| ∀(x, y) ∈ R}.
Note that pX = p†X , dX = d†X , cX = c†X , and wX = w†

X . We revisit this in
Section 4.4.

4.2 Weighted Relations

We now discuss how the weighted relational model, which is a generalization
of the relational model, also gives a monadic differential category. While this
example is very similar to the one gives above, we still cover this example in
some detail to demonstrate how certain coefficients appear in the definition
of codigging, which were swept under the rug in the relational model. For
an overview on the weighted relational model, we invite the reader to see
Ong’s paper [32].

Briefly, a complete commutative Q≥0-semiring is a commutative semiring
R, which is also a Q≥0-modules and admits arbitrary set indexed sums, and
that are compatible with the Q≥0-semiring structure, see [31, Chap 15].
Then define RΠ to be the category whose objects are sets X and where a
map from X to Y is an arbitrary set function f : X × Y → R. Intuitively,
maps of RΠ are interpreted as generalized matrices with coefficients in R.
It is already known that RΠ is a differential storage category [29, Sec 6],

22



where most of the structure is essentially similar to that of REL. Indeed, the
monoidal structure and (bi)product structure of RΠ are the same as in REL,
while the additive structure of RΠ is given by the sum of R. The storage
modality ! is also given by finite multisets, so !X = Mf (X).

Now define for any set X and elements x, y ∈ X, the Kroenecker delta
δx,y as 1 if x = y and 0 otherwise (where 1 and 0 are viewed as elements in
R). So the dereliction dX : !X×X → R and codereliction dX : X× !X → R
check for singletons:

dX(m,x) := δm,[x] dX := (x,m) := δm,[x]

The contraction cX : !X×(!X×!X) → R and cocontraction cX : (!X×!X)×
!X → R check if a finite multiset is equal to the disjoint uion of a pair of
finite multisets, while on the other hand the weakening wX : !X × {∗} → R
and coweakening wX : {∗} × !X → R check for the empty multiset:

cX (m, (m1,m2)) = δm,m1⊔m2

cX ((m1,m2),m) =

(
|m1|+ |m2|

|m1|

)
δm,m1⊔m2

wX (m, ∗) := δm,∅ wX := (∗,m) := δm,∅

where the binomial coefficient in cX is necessary for the bimonoid equations
(5) to hold. The digging pX : !X × !!X → R checks if the disjoint union of a
finite multiset of finite multisets in the second argument is equal to the first
argument:

pX (m, [m1, . . . ,mn]) := δm,
⊔

i mi

Now RΠ is a QΣ
≥0-differential storage category [29, Thm 6.1], since R is

a Q≥0-module and has infinite sums. For each n, Mn
X : !X × !X → R checks

if a finite multiset is of size n: Mn
X(m1,m2) = δm1,m2δ|m1|,n. Then clearly

(20) holds, and so by Lemma 3.11, RΠ is both a Taylor differential category
and a monadic differential category. Using the formula for codigging, one
computes that the codigging pX : !!X × !X → R checks if the disjoint union
of a finite multiset of finite multisets is equal to the second argument:

pX([m1, . . . ,mn],m) =
1

n!
·
(

|m|
|m1|, . . . , |mn|

)
· δ⊔

i mi,m,

where the coefficients are necessary for the monad identities (10). Observe
that REL is a specific case of the weighted relational model for the Boolean
algebra B = {0, 1}, that is, REL is isomorphic to BΠ. Since 1 + 1 = 1 in B,
coefficients in the codigging and cocontraction definitions disappear.
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4.3 General Construction

Both of the previous examples are in fact examples of a more general con-
struction. It turns out that the storage modality in both examples is con-
structed in the same way, since in particular it is a free exponential
modality, meaning that !A is the cofree cocommutative comonoid over
A. So suppose that we are in a setting with infinite products Π and all sym-
metrized monoidal powers Sn(A) (i.e. the joint equalizer of all permutations
of A⊗n

) exists. Then the free exponential modality can be constructed as
!A =

∏
n S

n(A). If one further assumes that Π is an infinite biproduct and
we can scalar multiply by Q≥0, then Mn

A : !A→ !A precisely picks out Sn(A)
via projection and then injection, !A → Sn(A) → !A, and so (20) is simply
the biproduct identity. Therefore, as a consequence of Lemma 3.11, we may
construct a codigging and state the following:

Lemma 4.1. If a symmetric monoidal category is enriched over Q≥0-modules,
has countable biproducts which are preserved by the monoidal product, and
has symmetrized monoidal powers, then it is a Taylor differential category
and a monadic differential category.

Models with infinite biproducts were in particular studied by Laird et al
[33] with the objective of building models of DiLL related to game logic. In
particular in [33, Sec 5], Laird et al also give a general recipe for how to build
differential storage categories that also satisfy precisely the extra assump-
tions needed for the above. Briefly, for any symmetric monoidal category
L, one can first freely make it enriched over Q≥0-modules, then taking the
countable biproduct completition, and lastly taking the Karoubi envelope
to split idempotents in order to obtain symmetrized monoidal powers. After
all this, the resulting category is not only a differential storage category, but
by the above lemma, also a monadic differential category. By tweaking the
construction slightly with regards to enrichment, it is possible to recover
both the relational model and the weighted relational models when apply-
ing this construction to the terminal category [33, Ex 5.6]. Therefore, from
any symmetric monoidal category, we can construct a monadic differential
category, providing us with a bountiful source for examples of codigging.

4.4 Quantum Related Examples

We now very briefly discuss how, surprisingly, there are also models of DiLL
with codigging that are related to quantum theory. The first is Pagani et
al’s categorical model of a quantum lambda calculus [34], called CPMs

⊕
.
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In particular, CPMs
⊕
is a compact closed category, enriched over R≥0, has

infinite biproducts, and storage modality constructed using symmetrized
monoidal powers. Therefore, by Lemma 4.1, it follows that CPMs

⊕
is a

monadic differential category. The other example is given by examples of
Vicary’s categorical quantum harmonic oscillator as proposed in [35]. The
key to this example is the notion of dagger monoidal category, which is a
category such that for every map f : A → B, there is a map f † : B → A
such that † is contravariant, involutive, and preserves the monoidal struc-
ture. Then briefly, a categorical quantum harmonic oscillator is a dagger
symmetric monoidal category, with †-biproducts, and a free exponential
modality ! such that !(f †) = (!f)†. Every categorical quantum harmonic
oscillator is also a monadic differential category by setting p = p†, d = d†,
c = c†, and w = w†. The main reason for this fact follows from the con-
travariant property of † and that the necessary codigging axioms are dual
to those of a storage modality. REL is a categorical quantum harmonic os-
cillator, and in [35, Sec 6], Vicary conjectures that another model based on
complex inner product spaces is as well.

4.5 Vector Spaces over Z2

We now provide a toy example which is important to highlight nonetheless
since this is an example without infinite sums and yet still admits a codig-
ging. So let Z be the ring of integers and let Z2 be Z modulo 2, that is,
the two element field Z2 = {0, 1}. Let FVECZ2 be the category of finite
dimensional vector spaces over Z2 and Z2-linear maps between them. The
monoidal structure, (bi)product structure, and additive enrichment are all
given in the standard algebraic way for vector spaces. The storage modality !
is given by the exterior algebra, so !V = Ext(V ), which recall is a Z2-algebra
with multiplicaiton given by the wedge product ∧. In particular, recall that
the wedge product is alternating, so x∧x = 0, and elements of !V are given
as finite sums of words of the form w = x1∧. . .∧xn, of any size n. Of course,
the exterior algebra can be defined for vector spaces of any dimension over
any field. Normally the exterior algebra is anti-commutative, meaning that
x ∧ y = −y ∧ x. However for Z2, since 1 = −1, the exterior algebra is a
commutative algebra, and ! is a well-defined (co)monad on FVECZ2 .

The dereliction dV : !V → V projects out words of length one, while the
digging pV : !V → !!V maps a word to the sum of all possible word of words
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whose wedge product is the original word:

dV (w) = δw,x pV (w) :=
∑

∧
wi=w

[w1] ∧ . . . ∧ [wn]

The sum for the digging is finite and well-defined by anti-symmetry of ∧. The
(co)contraction and (co)weakening are given by the (co)multiplication and
the (co)unit of the canonical Z2-bialgebra structure of the exterior algebra.
The codereliction dV : V → !V maps an element of V to the one letter
word, while the codigging pX : !!V → !V maps a word of word to its wedge
product:

dV (x) = x pX([w1] ∧ . . . ∧ [wn]) =
∧
wi

One can check that all the necessary identities do indeed hold, and we con-
clude that FVECZ2 is a monadic differential category, but does not have
infinite sums.

5 Codigging in Functional Analysis

Most examples of Section 4 are settings where any power series converge.
We now study the notion of codigging in models of DiLL closer to standard
textbook analysis. We show that codigging implies a bound on the growth
of functions, explaining why neither Köthe [36] nor quantitative convenient
spaces [37] interpret it. By indexing the exponential with the exponential
growth of functions, we will show that work by Ouerdiane and al. [38]
[39] results in a new higher-order, polarized, graded model of DiLL with
codigging.

5.1 The Convolutional Exponential

In several models of DiLL [13] [37] [40], formulas are interpreted as various
sorts of topological vector spaces (tvs) over R or C, and non-linear proofs
are interpreted as higher-order smooth functions. In [13], Blute, Ehrhard
and Tasson studied a smooth model of (Intuitionnistic) DiLL, which was
later refined to a quantitative simplification by Kerjean and Tasson in [37].
This later version, which we will denote by QMco, only applies to complex
Hausdorff and locally convex tvs (lcs). Recall that by distributions we mean
the scalar linear morphisms acting on non-linear morphisms, in a sense to
be adapted to each model. Then in both models, ! is interpreted as the
completion of the set of distributions generated by all dirac distributions

26



δx. In QMco, if one denotes S(E,C) the lcs of all power series between
a lcs E and C, the interpretation of the exponential !E is included in the
linear dual S(E,C)′ of S(E,C), that is, the space of all linear scalar bounded
morphisms acting on power series.

!E = ⟨δx⟩x∈E ⊆ S(E,C)′

As always, !E is endowed with a comonad structure and a bialgebra struc-
ture, which is nicely defined on the dirac distributions. For example, the
dereliction is dE : δx ∈ !E 7→ x, the cocontraction is c : δx ⊗ δy ∈
!E⊗̂!E 7→ δx+y, the codereliction is d : v 7→ limt→0

δtv−δ0
t and the pro-

motion is p : δx → δδx . The codigging however is not given here as the dual
of the digging.

The category QMco has Taylor expansions [37, Cor 5.18] such that the
Taylor series of a coKleisli map f converge to f [37, Cor 5.37]. Furthermore,
in QMco, Mn

E : !E → !E corresponds exactly to 1
n!Θn in [37]. Therefore, it

follows that QMco is in fact a Taylor differential category. Now suppose we
have some sort of codigging. Then the convolutional exponential formula
(13) gives:

pE(δδx) : f 7→
∑
n

1

n!
f(n · x) (21)

Let’s observe what happens for the complex exponential power series, exp :
z 7→ ez.

pE(δδx)(exp) =
∑
n

1

n!
en·x =

∑
n

1

n!
(ex)n = ee

x

This shows that for functions f that behave like an exponential function,
pE(δδx)(f) would be well defined. Unfortunately, it turns out this codigging
cannot converge on every power series, as it cannot converge on tower of
exponentials. Indeed, for f : z 7→ ee

z
, pE(δδx)(f) does not converge. So

while p is well defined on exp, it is not on the composition of exp with itself.
In fact, in general, the power series which interpret non-linear proofs

have uncontrolled growth. This explains why (too) general quantitative
models such as Köthe [36] or quantitative convenient spaces do not admit a
codigging. This raises the question of whether codigging can properly exists
in a smooth setting where infinite sums do not always converge. To solve
this issue, we consider a case where ! is graded.

5.2 Making Nuclear spaces go higher-order, quantitatively

Convolutional calculus has been developed for higher order functions in in-
finite dimensional analysis. It features a nice duality theory [39] and allows

27



for the generalization of power series on distributions by using convolutional
powers [38]. We now sketch how these allow for a higher-order extension
of a previously known first order model of DiLL based on Fréchet Nuclear
spaces [41]. It does not constitute a monadic differential category per se, but
rather a graded and polarized version of it, whose proper categorical setting
will be explored in future work. Polarization [42] separates LL formulas in
two classes, which are interpreted in two categories made equivalent by the
interpretation of the negation [43].

The indexation is similar to what can be found in models of graded
LL [44]. The indexed exponential rules for ! are interpreted as exponential
actions of partially ordered semirings over monoidal closed categories [45].
This includes an indexed comonad (Prop 5.8) interpreting the usual rules of
LL, and a new indexed monad (Prop 5.6) interpreted by the coexponential
rules of DiLL, as well as a strong monoidality of the exponential functor
which allows for the interpretation of c,w, c, and w (Prop 5.3). Here, indices
are Young functions, and bound the exponential growth of functions. We
do not yet explore in this paper the full categorical consequences of mixing
indexed exponential connectives and coexponential rules, but this is work in
progress.

This higher-order development solves the limitations encountered by
Kerjean and Lemay in [41]. A first paper by Kerjean [46] interprets formu-
las of DiLL in specific lcs, that is, Nuclear Fréchet spaces (Nf) for negative
formulas of LL, and Nuclear DF-spaces (Ndf) for positive formulas. By ex-
tension, Nf and Ndf also denotes the category of Nf (resp. Ndf) lcs and
continuous linear maps. In what follows N and M denotes Nf complex lcs
while P and Q denote Ndf complex lcs. N ′ denotes the strong dual of N ,
that is the tvs L(N ′,C) endowed with the topology of uniform convergence
on bounded subsets of N ′.

Fréchet spaces DF-spaces

Nuclear spaces

Rn P = N ′N

C∞(Rn,R) !Rn = C∞(Rn,R)′

( )′

( )′

This setting provides a denotational model for DiLL up to promotion,
meaning that ! is only interpreted when acting on Kn, and not for any higher-
order lcs. A partial solution is provided in [41] by using the completeness
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of the category of Nf to construct a higher-order interpretation for !, which
alas does not interpret promotion for technical reasons. The notions of
convolutional exponential and functions whose growth allows exponentiation
solve these limitations. This was mainly done in a work by Ouerdiane and
al. [39] where they defined a space Fθ(P ) of holomorphic functions with
exponential growth. In this definition, θ : R+ → R+ is some Young function

[47][48], i.e. it is convex, increasing, null at 0 and lim
x→∞

θ(x)
x = ∞.

Proposition 5.1. [49] The topology on any Nf space N can be defined
through a denumerable family of Hilbertian norms | |p, p ∈ N, and if one
denote Np the Hilbert space resulting of the completion of N with respect to
| |p, we have that: ⋂

p

Np = N
⋃
p

(Np)
′ = N ′.

Definition 5.2. [39] For a Young function θ and for a Banach space B, let
Exp(B, θ,m) denote the Banach space of holomorphic functions from B to
C such that:

|f(z)| ≤ Keθ(m||z||). (22)

The space Exp(θ,m, p) is Banach when endowed with the norm

f 7→ sup{|f(z)|e−θ(m||z||)|z ∈ B}.

One can define two types of functions with exponential growth on an Nf
lcs N or its dual:4

Fθ(N)=
⋂
m,p

Exp(Np, θ,m) Gθ(N
′)=

⋃
m,p

Exp(N ′
p, θ,m).

Through an isomorphism with spaces of formal power series, one can show
that Fθ(N) is a Nf space [39, Prop 2]. As such, its dual F ′

θ(N), i.e. the
space of distributions acting on Fθ(N), is aNdf space. As linear morphisms
are bounded, Gθ : Ndf → Ndf and Fθ : Nf → Nf are indeed functors.

4We define F ′
θ on Nf spaces to stay in the chirality [43] (a polarized version of a ∗-

autonomous category) used in [46]. Indeed, only spaces L(F ′
θ(N),M) stay in Nf, and not

L(F ′
θ(P ),M) [46, Prop 3.23].
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Fréchet spaces DF-spaces

Nuclear spaces

N ′N

G ′
θ(N

′) ≃ Fθ∗(N) F ′
θ(N) ≃ Gθ∗(N

′)

( )′

( )′

Proposition 5.3. The functor Fθ satisfies monoidal laws, depending on θ:
F ′

θP
(N)⊗̂F ′

θQ
(M) ≃ F ′

θP+θQ
(N ×M), where ⊗̂ stands for the completed

projective tensor product.

Proof. The strong monoidality of the distribution functor is classically in-
terpreted as a variant of Schwart’z Kernel Theorem. We refer to [50] for a
detailed proof which we briefly adapt here. The injection Fθ(N)⊗̂Fθ(M) →
Fθ(N×M) corresponds to f⊗g 7→ f ·g where f ·g denotes the scalar multi-
plication between two functions with scalar values. The topology on N ×M
is generated by the maximums of semi-norms from N and M . Consider p, q
and m′ > 0. Then for any m′ there is Kf and Kg such that:

|f(z) · g(z′)| ≤ KfKge
θP (m′|z|−p)+θQ(m′|z′|−q)

≤ KfKge
(θP+θQ)(m′(max(|z|−p,|z′|−q))

≤ KfKge
(θP+θQ)(m′(|(z,z′)|p,q)

F and G enjoy an important duality theorem, which is strongly related
to the fact that N and P are reflexive. What the following theorem implies
is that distributions on one type of functions F or G are functions of the
other type G or F respectively.

The surjectivity is done by approximating a function h ∈ Fθ(N ×M)
by polynomials on compact support. It is an adaptation of the proof by
Meise (which applies for dual of Fréchet Montel spaces, while our spaces are
Fréchet Nuclear so in particular Montel).

Theorem 5.4. [39, Thm 1] For the conjugate Young function θ∗ := supt≥0(tx−
θ(t)), we have that the Laplace transformations results in an isomorphisms:

L :

{
F ′

θ(N) ≃ Gθ∗(N
′)

ϕ 7→
(
ℓ ∈ N ′ 7→ ϕ(x ∈ N 7→ eℓ(x) ∈ C)

)
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The conjugate of θ, also called the convex conjugate, is related to in-
verses: if the function θ can be defined as θ =

∫
µ(t)dt, then θ∗ =

∫
µ−1(t)dt.

The Laplace transformation turn the convolution products of distribution
into the (pointwise) product of functions. Therefore, it also transforms con-
volutional power series of distributions into usual power series of functions,
where the monoidal law is the scalar pointwise multiplication.

In a following work [38], Ouerdiane and different authors characterize
the spaces F ′

θ on which convolutional generalizations to power series can
act. The exponential function generalizes to the convolutional exponential,
which is the codigging. The following propositions are shown thanks to the
use the isomorphism L introduced in Theorem 5.4. It can also be seen as a
way of characterizing the composition of function with exponential growth.

Proposition 5.5. [38, Cor 1] For any ϕ ∈ Fθ(N)′, its convolutional expo-
nential is an element of F(eθ∗)

∗(N)′.

Proposition 5.6. For any Young functions θ1, θ2 we have a natural trans-
formation in the category Ndf:

pN : F ′
θ1

(
F ′

θ2(N)
)
→ F ′(

θ∗1e
θ∗2

)∗(N)

Proof. This could by shown by a direct adaptation of [38, Thm 1]. We
offer another explanation, thanks to the following intermediate proposition,
which corresponds to the composition in the co-Kleisli of a comonad Gθ1 .

Proposition 5.7. Given linear continuous maps f : G ′
θ1
(P1) → P2 and

g : G ′
θ2
(P2) → P3, then we have a linear continuous map

g ◦ f : G ′
(θ2eθ1)

(P1) → P3.

This creates an adjunction resulting in G ′
θ as an indexed comonad, with

comultiplication: p⊥ : G ′
θ2eθ1

→ G ′
θ2

G ′
θ1
. To obtain Prop 5.6, one takes

the dual of p⊥ and runs it through the Laplace isomorphism (Thm5.4).
As linear functions are bounded, thanks to the reflexivity of Nf and Ndf
spaces, we also obtain natural transformations dN : F ′

Id(N) → N and
dN : N → F ′

Id(N).

Note that the functions of Fθ(N) are only defined to be entire (every-
where holomorphic) and not power series (equal to their Taylor series at 0).
However, they are in direct correspondences with a space of formal power
series on N ′ [39, Prop 1], confirming the intuition that the codigging indeed
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recaptures some quantitative models. Now the indexed monad structure on
F ′

θ( ) gives us the type to look for the usual indexed comonad structure on
it. The indices in the interpretation of the digging rule is an indication of
how functions with exponential growth compose.

Proposition 5.8. Given linear continuous maps f : F ′
θ1
(N1) → N2 and g :

F ′
θ2
(N2) → N3, we obtain a linear continuous map g ◦ f : F ′

(θ2eθ1)
(N1) →

N3. This result in a comonad comultiplication:

p : F ′
(θ2eθ1)

(N) →
(
F ′

θ2(F
′
θ1(N))

)
.

Proof. Thanks to their reflexivity, and to the fact that on Nuclear spaces
the dual of the completed topological projective tensor product is itself, we
have that for any spaces P and M L(P,M) ≃ L(N,K)⊗̂M . Therefore,
we can safely assume that N3 = K in the proposition. Likewise, we have
that f ∈ L(F ′

θ1
(N1) → N2 are in one-to-one correspondence with non-linear

functions f̃ : N1 → N2 such that there is is a semi-norm | |p2 on N2 such
that for every semi-norm | |p1 on N1, every integer m, there is K such that

|f̃(x)|p2 ≤ Keθ1(m|x|p1 ).

Consider this property for the f fixed in the proposition. As g satisfies the
same hypotheses, we have that for every m′ there is K ′ such that:

|g̃(f̃(x)| ≤ K ′eθ2(m
′|f̃(x)|p2 ) ≤ K ′eθ2(m

′Keθ1(m|x|p1 ))

One can choose K such that m′K ≥ 1, and thus

|g̃(f̃(x)| ≤ K ′eθ2(e
θ1(m

′Km|x|p1 ))

Thus f̃ ; g̃ corresponds to a function g ◦ f ∈ L(F ′
θ1
(N1),K).

Note that the above is hinting at a possible semiring structure on the set
of Young functions, with θ1 · θ2 = (θ∗1e

θ∗2 )∗ as a non-commutative multipli-
cation law, while the additive law being the sum of Young functions. The ∗
is optional, and depends on whether one considers digging or codigging. In
particular, when indexing DiLL with graded operators, it might be worth to
consider an analogue to ∗ operating on the set of indices. This brings us to
our final statement which can be easily checked:

Proposition 5.9. In any model of DiLL made of vector spaces over R or
C, the Laplace transformation L turns the interpretation of the structural
rules w, d, c, p of LL into the costructural rules of DiLL w, d, c, p, when the
latter are defined.
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Indeed, with the explanation of Section 5.1 in mind, L transforms D0( )
into a dereliction, δ0 into the constant map at 1, and convolution into scalar
multiplication.

6 Conclusion

In this paper, we constructed and studied the notion of monadic differential
categories, which give the ! connective of LL a monad structure on top of its
well-known comonad structure. This gives the interpretation of ! a perfectly
symmetrical structure. We showed that codigging was naturally interpreted
by properly generalized exponential functions, and we also explained how
the monad axioms imply that every non-linear map was equal to its Taylor
series. We also related the interpretation of the codigging with the notion
of convolutional exponential, allowing us to construct a new graded and
polarized model of DiLL with codigging.

Future Work This paper only provides the beginning of the story of
codigging, and we believe there is still much more to explore on the subject.
A first step would be to find even more examples of monadic differential
categories. In particular, it would be quite desirable to understand whether
Finiteness spaces [51] or Köthe spaces [36] can somehow be restricted to
functions with exponential growth to provide new vectorial models of DiLL
with codigging. More generally, we would like to study how codigging is
related to ∗-autonomous categories.

To develop the theory of differential proof-nets with codigging, one would
need to look at Gimenez’ work [14], but the presentation could potentially
differ. We hope that the categorical structure presented in this paper has
been made precise enough to make the cut-elimination procedure in DiLL
with codigging unambiguous. In particular, one would need to add a codig-
ging rule p as written in the introduction with the rule of functorial promo-
tion, or the corresponding “copromotion” rule.

?Γ ⊢ a : A
P̄

?Γ ⊢ f(a) : ?A f : (x : A⊥) 7→ e⟨x|a⟩ ∈ K

In particular, the interpretation of the function f of type ?A created via P̄
involves the usual exponential function.

In proof nets, this may consist of adding a sort of coexponential box.
Keeping in mind our description of codigging, one may require some sort of
mixed distributive law [52] to express the compatibility between the monad
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and comonad structures on !. In our case, the mixed distributive law would
be a natural transformation of type λA : !!A→ !!A. If one assumes this extra
structure, it may be possible to use λA to somehow express compatibility
between digging p and codigging p. We conjecture that an “illicit formula”

for the mixed distributive law would be λ =
∑

n
1
n! ·

(
dn;µ; !d

n
)
.

We would also be curious to understand if the monad structure ! adds
anything for λ-terms and if it could offer an interesting reformulation of
resource calculi. Even in a language whose model does not admit a codigging
p as a morphism of the category, one can have morphisms return : v 7→
D0( )(v) and bind : δx → f → exp∗(f(x)).

Lastly, in relation to Section 5, designing a proper syntax and categorical
semantics for graded DiLL is currently a work in progress, and related to
the indexation of DiLL with differential operators [46][53][54]. As Young
duality applies to functions θ which are defined on infinite dimensional tvs,
we conjecture that this model can be generalized to reflexive tvs without
involving semi-norms. Convolutional calculus is also linked with the study
of differential equations, and might offer some interesting questions and
answers.

In this paper we constructed and studied the notion of monadic differ-
ential categories, which give the ! connective of LL a monad structure on
top of its well-known comonad structure. This gives the interpretation of
! a perfectly symmetrical structure. We showed that codigging was natu-
rally interpreted by exponential functions ex, and we also explained how
the monad axioms imply that every non-linear map was equal to its Taylor
series. We also related the interpretation of the codigging with the notion
of convolutional exponential, allowing us to construct a new graded and
polarized model of DiLL with codigging.

Future work This paper only provides the beginning to the story of codig-
ging, and we believe there is still much more to explore on the subject.

A first step would be to find even more examples of monadic differential
categories. In particular, it would be quite desirable to understand whether
Finiteness spaces [51] or Kothe spaces [36] can somehow be restricted to
functions with exponential growth to provide new vectorial models of DiLL
with codigging. More generally, we would like to study how codigging is
related to ∗-autonomous structure on differential categories.

To develop the theory of differential proof-nets with codigging, one would
need to look at Gimenez’ work [14], but the presentation could possibly dif-
fer. We hope that the categorical structure presented in this paper has been
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made precise enough to make the cut-elimination procedure in DiLL with
codigging unambiguous. In particular, one would need to add a codigging
rule p as written in the introduction. In proof nets, this may consist of
adding sort of coexponential box. Keeping in mind our description of codig-
ging, one may require some sort of mixed distributive law [52] to express
the compatibility between the monad and comonad structures on !. In our
case, the mixed distributive law would be a natural transformation of type
λA : !!A→ !!A. If one assumes this extra structure, it may be possible to use
λA to somehow express a compatibility between digging p and codigging p.
We conjecture that an “illicit formula” for the mixed distributive law would

be λ =
∑

n
1
n! ·

(
dn;µ; !d

n
)
.

We would also be curious to understand if the monad structure ! adds
anything for λ-terms and if it could offer an interesting reformulation of
resource calculi. In fact, even in a language whose model does not admit a
codigging p as a morphism of the category, one can have morphisms return :
v 7→ D0( )(v) and bind : δx → f → exp∗(f(x)).

Lastly, in relation with Section 5, designing a proper syntax and categor-
ical semantics for graded DiLL is currently a work in progress, and related
to the indexation of DiLL with differential operators [46]. As Young duality
applies to functions θ which are defined on infinite dimensional tvs, we con-
jecture that this model can be generalized to reflexive tvs without involving
semi-norms. Convolutional calculus is also linked with the study of differ-
ential equations, and might offer some interesting questions and answers.
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de dualité entre espaces de fonctions holomorphes à croissance exponen-
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