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Abstract5

Differential Linear Logic extends Linear Logic by allowing the differentiation of proofs. Trying to6

interpret this proof-theoretical notion of differentiation by traditional analysis, one faces the fact that7

analysis badly accommodates with the very basic layers of Linear Logic. Indeed, tensor products8

are seldom associative and spaces stable by double duality enjoy very poor stability properties. In9

this work, we unveil the polarized settings lying beyond several models of Differential Linear Logic.10

By doing so, we identify chiralities - a categorical axiomatic developed from game semantics - as11

an adequate setting for expressing several results from the theory of topological vector spaces. In12

particular, complete spaces provide an interpretation for negative connectives, while barrelled or13

bornological spaces provide an interpretation for positive connectives.14
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1 Introduction19

Linear Logic (LL) is the result of a decomposition of Intuitionistic Logic via an involutive20

linear negation. This linear negation takes its root in semantics: the linear negation of21

a formula is interpreted as the dual1 of the vector space interpreting the formula. While22

LL’s primary intuitions lie in algebra, the study of vectorial models [9, 10] of it led to the23

introduction of Differential Linear Logic [14] (DiLL). This new proof system introduces the24

possibility to differentiate proofs and led to advances in the semantics of probabilistic and25

differentiable programming [11, 6].26

Infinite dimensional vector spaces are necessary to interpret all proofs of DiLL. However27

these spaces are seldom isomorphic to their double dual. The class of all reflexive topological28

vector spaces, that is of spaces invariant via double-dual, moroever enjoys poor stability29

properties. More crucially, duality in topological vector spaces does not define a closure30

operator: simply considering E2 does not produce a reflexive space. Thus historical models31

of Linear Logic traditionally interpret formulas via very specific vector spaces: vector spaces32

of sequences [9], vector spaces over discrete field [10]. How close is the differentitation at33

stakes in DiLL from the one of real analysis ? Denotational models of DiLL in real-analysis34

either don’t interpret the involutivity of linear negation [4] or imply a certain discretisation35

for the interpretation of non-linear proofs [19, 8].36

Polarization is a syntactical refinement of Linear logic arising for matters of proof-search37

[1, 16]. By making vary the topology on the dual, this paper unveils polarized models behind38

preexisting models of DiLL and construct new ones. Meanwhile, it attaches topological39

notions to the concept of polarity in proof theory. We first revisit the poor stability properties40

of reflexive spaces by decomposing it in a polarized version model of MLL. We also revisit41

the notion of bornological spaces persistent in DiLL’s denotational semantics [32, 4] as42

1 The dual of a (topological) K-vector space is the space of all linear continuous linear forms on it:
E1 :“ LpE,Kq
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an interpretation for positives. In a nutshell, we show that while (different variants of)43

complete spaces interpret negative connectives, barrelled spaces (as introduced by Bourbaki)44

or bornological spaces are the good interpretation for positive. While we acknowledge the45

poor computational value of these models - as only the multiplicative part of Linear Logic46

is properly interpreted here- we believe that our setting will extend to exponentials and47

non-linearity, as indicated in the perspective. Indeed, this paper unifies the duality at stakes48

in Linear Logic with the central notion of duality in functional analysis.49

Smooth and polarized differential linear logic50

Before diving into more details, we give a a few intuitions to the categorical semantics of51

(Differential) Linear Logic. We refer to the litterature for a detailed introduction [27, 13].52

Linear Logic is constructed on a fundamental duality between linear and non-linear proofs.53

It features two conjunctions b and ˆ, two disjunctions ` and ‘, as well as exponential54

connectives ? and ! on which structural rules are defined. The exponential ! encodes non-55

linearity: in the call-by-name translation of Intuitionistic Logic to Linear Logic, traditional56

non-linear implications are translated as linear implications from the exponential: Añ B “57

!A( B. An involutive linear negation p´qK is defined inductively on formulas.58

As such, a categorical model of Linear Logic is constituted of a linear-non-linear adjunction[27]59

between two categories. A monoïdal closed category pL,b, 1q interprets linear proofs and60

the multiplicative connectives, while a cartesian closed category pC,ˆ, 0q interprets non-61

linear proofs. To interpret the involutive linear negation of LL, the category L must be62

˚–autonomous. The exponential ! is a co-monad on L, coming from a strong monoïdal63

adjunction: ! :“ E 1 ˝ U and E 1 : C // L $ U : L // C. On top of that, interpreting DiLL64

necessitates an additive categorical structure on L and a natural transformation d̄ : ! // Id65

enabling the linearization of proof (hence their differentiation).66

Topological vector spaces, to be defined precisely afterwards, are a generalization of normed67

or metric spaces necessary to higher-order functions. Smooth functions between topological68

vector spaces are those functions which can be infintely or everywhere differentiated. To69

handle composition or differentiation of smooth functions, the topology of their codomain70

must verify some completeness property2. However, this requirement for completeness mixes71

badly with reflexive spaces (those interpreting an involutive linear negation). Hence the72

difficulty to construct smooth models of DiLL.73

Beyond the distinction between linear and non-linear proofs, polarization in LL [25]74

distinguishes between positive and negative formulas.75

Negative Formulas: N,M :“ a | ?P | ˆP | N `M | K | N &M | J.76

Positive Formulas: P,Q :“ aK | !N | ´N | P bQ | 0 | P ‘Q | 1.77

Semantically, polarization splits L in two categories P and N 3. The developments of this78

paper all take place in the categorical setting developed by Mellies: chiralities [27]4 are a79

decomposition of ˚-autonomous categories in two adjunctions. A strong monoïdal adjunction80

2 As an example, Mackey-Completeness is a minimal completeness condition used by Frölicher, Kriegl
and Michor [15, 24] to develop a theory of higher-order smooth functions

3 Beware that the name polarity is employed with its proof theory meaning: polarity describes a proof-
theoretic behaviour of a formulas and their interpretation. In the theory of topological vector spaces,
the polar of a set denotes the set of all linear forms which are bounded by 1 on this subsets. The two
meaning of polarity are not unrelated in the light of Proposition 26, as in barrelled spaces the polar to
a neighbourhood is bounded.

4 We warn the reader that chiralities have no obvious link with the orientation-related chiralities in physics
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p´qKL : P // N op $ p´qKN : N op //P interprets negations, accompanied with an81

adjunction interpreting shifts ˆ : P // N $ ´ : N //P. This semantics enables an82

internal interpretation of polarized connectives - thus refining traditional interpretation in83

terms of dual pairs.84

Organisation85

We begin this paper by an introduction to topological vector spaces in section 2, leading to86

the introduction of two basic ˚-autonomous categories of vector spaces factorising through87

dual pairs. In section 3, we introduce chiralities as a categorical model of polarized MLL.88

In section 4 we decompose the notion of reflexivity in a chirality of barrelled or weakly89

quasi-complete topological vector spaces - thus showing that chiralities are a relevant setting90

to the intricate theory of topological vector spaces. The last section 5 we give two chiralities91

based on bornological spaces, refining exisiting models of DiLL. The first one in section92

5.2 refines the model based on convenient spaces [22, 4], while the second in section 5.393

refines the models based on Schwartz ε tensor product. Most proofs are quite direct for the94

reader familiar with the theory of topological vector spaces. Those for which we didn’t find95

a reference in the literature are given in appendix.96

2 ˚-autonomous categories of topological vector spaces97

This preliminary section presents a rapid introduction to the various topologies on vector98

spaces and spaces of linear maps between them. We introduce in particular the weak and99

Mackey topology which both leads to ˚-autonomous DiLL, resulting respectively into a100

negative and positive interpretation of DiLL.101

§ Definition 1. A Hausdorff and locally convex topological vector space is a vec-102

tor space endowed with a Haussdorff topology making scalar multiplication and addition103

continuous, and such that every point has a basis of convex 0-neighbourhoods.104

We abbreviate by lcs the term locally convex and Hausdorff topological vector space.105

We denote by Topvec the category of lcs and linear continuous maps between them. The106

topology of a topological vector space E is thus described by the set VEp0q of all its 0-107

neighbourhoods. From now on we work with locally convex Hausdorff topological vector108

spaces on R and denote them by lcs. Working with these object, we will be confronted to109

two definitions of equality:110

§ Definition 2. 1. Two lcs E and F might have the same algebraic structure. The111

existence of a linear isomorphism between E and F will be denoted: E „ F.112

2. Two linearly isomorphic lcs E and F might have the same topological structure. The113

existence of a linear homeomorphism between E and F is stronger than algebraic equality114

will be denoted: E » F.115

Functional analysis is basically the study of spaces of (linear) functions as objects of the116

same class as their codomains. To construct a topology on a space of linear function, one117

must decide of a bornology, that is of the class of sets on which convergence must be uniform.118

§ Definition 3. The space of all linear continuous functions between lcs E and F is denoted119

LpE,F q. The dual of a lcs E is denoted E1 :“ LpE,Rq.120

§ Definition 4. Several bornologies (that is, total collections of sets closed by finite union,121

arbitrary intersection and inclusion) can be defined on a lcs E. The following ones will be122

used in this article:123
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1. σpEq, the bornology of all finite subsets of E.124

2. βpEq, the bornology of all TE sets absorbed by any 0-neighbourhood of E.125

3. µpEq, the bornology of all absolutely convex compact sets in Eσ, that is of all the weakly126

compact absolutely convex sets.127

Any bornology α on E defines a topology on LpE,F q, referred to as the topology of uniform
convergence on α. It is generated by following sub-basis of 0-neighbourhoods:

WB,U “ t`|`pBq Ă Uqu

for B P α and U P VEp0q. We will denote by LαpE,F q the vector space LpE,F q endowed128

with this topology. All of the bornologies σ, µ, β make LαpE,F q and thus E1α a lcs.129

Thus any bornology α defines in particular a topological dual p´q1α. The duals E1σ, E1µ,130

E1β are called respectively the weak, Mackey and strong dual.131

§ Definition 5. Any lcs E can be seen as a space of linear forms, through the following132

continuous linear injection:133

evE :
"

E // pE1αq
1

x ÞÑ δx : pf // fpxqq
134

Thus the topologies constructed above on spaces of linear forms can be defined on any lcs E,135

for which the dual E1 has been computed first hand. In particular, a lcs will be said:136

1. Mackey when it is endowed with the topology induced by pE1µpEqq
1
µpE1q

,137

2. weak when it is endowed with the topology induced by pE1σpEqq
1
σpE1q

,138

3. barrelled when it is endowed with the topology induced by pE1βpEqq
1
βpE1q

. Barrelled spaces139

are in particular Mackey [18, 11.1].140

We will denote respectively by Eµ and Eσ the lcs E endowed with the Mackey and the weak141

topology described above.142

§ Remark 6. The weak topology is a very particular topology with a discrete flavour. On the143

contrary, examples of Mackey spaces are easy to find: as soon as a space is metrisable, it is144

Mackey. The basic example of metrisable spaces are the finite dimensional vector spaces or145

the normed spaces. For an example of a spaces with is metrisable and not normed, consider146

the space of smooth functions C8pRn,Rq endowed with the topology on uniform convergence147

of the iterated derivative on compact subsets of Rn. Examples of barrelled lcs then include148

complete metrisable spaces, and as such Banach spaces. Example of non-metrisable spaces149

include spaces of distributions as C8pRn,Rq1β150

§ Definition 7. E is said to be semi-reflexive when E „ pE1βq
1, and reflexive when151

E » pE1βq
1
β. As a corollary, a lcs E is reflexive if and only if it is barrelled and semi-reflexive.152

Reflexive spaces are stable by product or direct sums. Thus using the strong dual as153

interpretation for the negation of linear logic gives us very little chance to construct a model154

of DiLL without strongly restricting the kind of vector spaces one handles. On the contrary,155

any space is invariant under double weak or Mackey dual.156

When a monoidal category resists ˚-autonomy, the traditional solution is to consider157

pairs of objects of this category, and interpret negation as the switching of position inside a158

pair. This way, one can enforce the dual of constructions which do not preserve reflexivity159

- typically tensor products. Chu categories of vector spaces as defined by Barr [2] are a160

categorical axiomatization of the notion of dual pairs [26].161
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§ Definition 8 (Chu categories of vector spaces). Object of Chu are pairs of vector spaces
pE1, E2q equipped with a symmetric non-degenerate linear form ă ¨, ¨ ą: E ˆ F // R.
Morphisms of Chu are pairs of linear maps:

pf1, f2q : pE1, E2q // pF1, F2q

with f1 : E1 // F1 and f2 : F2 // E2 such that for every x P E1, y P F2 one has162

ă f1pxq|y ą“ă x|f2pyq ą. Chu is a ˚-autonomous category when endowed with the following163

constructions:164

pE1, E2q
K “ pE2, E1q165

pE1, E2q b pF1, F2q “ pE1 b F1,LpE2, F1qq166

pE1, E2q( pF1, F2q “ pLpE1, F1q, E1 b F2q167

§ Theorem 9 (The Mackey-Arens theorem). The weak topology on E is the coarsest locally
convex topology on E which preserves the dual, while the Mackey topology is the finest. In
particular:

pEσpE1qq
1 „ E1 „ pEµpE1qq

1.

Work by Barr [2] reinterprets this theorem in terms of dual pairs: the Mackey Topology168

induces a right adjoint to the functor D : E ÞÑ pE,E1q from the category Topvec of lcs and169

continuous linear maps to the category of dual pairs, while the weak topology induces the left170

adjoint to this functor.171

Mackey Chu WeakK K

E ÞÑ pE,E1q

pE,F q ÞÑ EµpF q F ÞÑ pF, F 1q

pF,Eq ÞÑ FwpEq

172

These adjunctions naturally result in ˚-autonomous categories over Weak and Mackey.173

However these constructions are saturated: topologies on tensor products or hom-sets are174

defined from the dual and are in no way internal. We showed in previous work that Weak175

spaces provide a negative interpretation of DiLL [19], in the sense that negative connective176

preserve weak topologies (see proposition 17).177

Likewise, as hinted by the above diagram, we will show that Mackey spaces provide a178

positive interpretation of MLL - which could be extended to LL also by formal power series.179

To show this, we need to dive into topological tensor products. Here again, topologies on180

vector spaces introduce a variety of distinct notions of continuity.181

§ Definition 10. Consider E, F and G three lcs. We denote:182

1. BpE ˆ F,Gq the vector space of all continuous bilinear functions from E ˆ F (endowed183

with the product topology) to G.184

2. HBαpEˆF,Gq the vector space of all α-hypocontinuous bilinear functions from EˆF185

to G, where α P tσ, µ, βu. These are the bilinear maps h such that for any BE P αpEq186

and BF P αpF q, the families of linear functions ty P F ÞÑ Hpx, yq|x P BEu and tx P E ÞÑ187

hpx, yq|y P BF u are equicontinuous.188

3. BpE ˆ F,Gq the vector space of all separately continuous bilinear functions from189

E ˆ F to G.190

Continuity implies α-hypocontinuity, which in turns implies separate continuity. While191

separate continuity is too weak to be compatible with a fine topology on vector spaces,192
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continuity is in general too strong to ensure the monoidal closedness of our models. Hypo-193

continuity turns out to be the good notion to work with, as in historical models of DiLL [12].194

For concision, we respectively denote as BpE ˆ F q, HBαpE ˆ F q and BpE ˆ F q the spaces195

of scalar bilinear forms BpE ˆ F,Rq, HBαpE ˆ F,Rq and BpE ˆ F,Rq.196

§ Definition 11. The projective tensor product Ebπ F is the finest topology on EbF making197

the canonical bilinear map E ˆ F Ñ E b F continuous. The α-tensor product E bα F198

is the finest topology on E b F making the canonical bilinear map h : E ˆ F Ñ E b F199

α-hypocontinuous.200

The projective tensor product is commutative and associative [18, 15] on lcs and preserves201

this class of topological vector spaces. So does the weak tensor product E bσ F [19, 2.12].202

For wider bornologies, commutativity is immediate but associativity becomes more specific, as203

its asks to have a good knowledge of the bornology α on Ebα F . This question is sometimes204

called as "Grothendieck’ problème des topologies".205

§ Proposition 12. For any lcs E, F and G we have a linear isomorphism LpE bα F,Gq „206

HBαpE ˆ F,Gq. In particular, pE bα F q1 „ HBαpE ˆ F q .207

3 Chiralities as polarized models of MLLpol208

We now detail what we believe to be the relevant setting to express the internal stability of209

polarized models of DiLL. Chiralities were introduced by Mellies [29] after an investigation in210

game semantics. In this section we recall the definitions of dialogue chiralities and introduce211

several versions, according to the involutivity of negations functors.212

§ Definition 13 ([28]). A mixed chirality consists in two symmetric monoidal categories213

pP,b, 1q and pN ,`,Kq, between which there are two adjunctions, one of which being strong214

monoidal:215

pP,b, 1q pN op,`,Kq
p´q

KP

p´q
KN

%

P N

ˆ

´

% (1)216

with a family of natural bijections:217

χp,n,m : N pˆp, n`mq „ N pˆppb nKN q,mq (curryfication) (2)218

The natural bijections χ account for the lost monoidal closedness. They must respect the219

various associativity morphisms by making the following diagrams commute:220

N pˆppm` nq` aq, bq N pˆa, pm` nq˚ b bq

N pˆpm` pn` aqq, bq N pˆpn` aq,m˚ b bq N pˆpaq, n˚ b pm˚ b bqq

assoc

χ

χ χ

assoc., monoidality of negation (3)221

§ Definition 14. A dialogue chirality is a mixed chirality in which the monoidal adjunction222

is an equivalence. A negative chirality is a mixed chirality in which the monoidal adjunction223

is reflective. A positive chirality is a mixed chirality in which the monoidal adjunction is224

co-reflective.225
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Multiplicative Linear Logic is the subpart of Linear Logic constructed from the b and226

` connectives, which is traditionnaly interpreted in a ˚-autonomous category. Interpreting227

polarized Multiplicative Linear Logic in Chiralities requires an additional family of morphisms,228

which basically says that there is only one closure operation between the interpretation of229

negative and positive formulas. Thus one asks for a family of natural isomorphisms in P:230

closp : ´ppKP q » pˆpqKN . closure (4)231

The categorical semantics of Linear Logic interprets formulas as objects of a certain232

category, and proofs as morphisms. Positive formulas of Multiplicative Linear Logic are233

interpreted in P, negative formulas are interpreted in N . In a negative or dialogue chirality,234

a proof of $ n1, . . . , nn, p is interpreted as an arrow in N ppKP , n1 ` . . . nnq, and a proof of235

$ n1, . . . , nn as an arrow in N pˆ1, n1 ` . . . nnq. Symmetrically, in a positive chirality proofs236

should be interpreted as arrows in Pppn1 ` ... ` nnq
KN , pq or Pppn1 ` ... ` nnq

KN , ´pKqq.237

We refer to [3] for details on the invariance by cut-elimination of this procedure.238

§ Theorem 15. Dialogue, negative and positive chiralities provide a categorical semantics239

for polarized MLL.240

In Topvec there may not be a shift from positive to negative describing exactly what a241

double negation would do to an object of P5. We thus introduce the following generalisation242

for chiralities:243

§ Definition 16. A topological chirality takes place between two adjoint categories T and244

C . It adds to this first adjunction a strong monoidal contravariant adjunction between a full245

subcategory of T and a full subcategory of C,246

pP,b, 1q pN op,`,Kq
p´q

KP

p´q
KN

%

T C

ˆ

´

% (5)247

and such that equations 2, 3 and 4 are still validated in T and C respectively.248

In topological chiralities, proofs of MLLpol are interpreted exactly following the pattern249

described previously. The category T might be the category of lcs and C the reflective250

subcategory of complete lcs (see proposition 18 or theorem 26). However, we also present251

chiralities in which we have a non-transparent interpretation for ´, or in which C is not even252

a subcategory of T .253

As an example, we briefly revisit existing models of MLL, inherited from models of DiLL,254

in terms of chiralities. In earlier work [19], the author built a model of DiLL in which255

formulas were interpreted by weak spaces. We argued that the fact that spaces of linear maps256

endowed with the pointwise convergence topology preserve weak spaces gave this model a257

polarized flavour. The space E`σ F :“ LσpE1w, F q is always endowed with its weak topology258

([18, 15.4.7]) and the MLL model described in [19] easily refines in a chirality:259

§ Proposition 17. The following adjunctions define a negative chirality:260

5 For example when negatives are interpreted by metrisable spaces (Proposition 18), there is no operation
on Topvec making a space metrisable.



XX:8 Chiralities in topological vector spaces

pTopvec,bw,Rq pWeakop,`σ,Rq
p´q

1
σ

p´q
1
σ

% Topvec Weak

p´qσ

ι

%

261

in which ι denotes the inclusion functor.262

More recently, in order to find the good setting in which to interpret non-linear proofs as263

the usual smooth function of real analysis, we constructed a polarized model of DiLL [20]264

[21] in which positive formulas are interpreted as complete nuclear DF spaces and negative265

formulas are constructed as nuclear Fréchet spaces6.266

§ Proposition 18. For its multiplicative part, the distribution model of DiLL organises into267

the following negative topological chirality:268

pNdf, b̃π,Rq pNfop, b̂,Rq

p´q
1
β

p´q
1
β

% Topvec Compl

˜́

ι

%

269

in which ˜́ denotes the completion of a lcs, b̃π denotes the completion of the projective270

tensor product, Ndf the category of nuclear DF spaces, Nf the category of Nuclear Fréchet271

spaces, Compl the category of complete lcs and Ẽ the completion of the lcs E.272

Curryfication (Equation 2) is indeed verified, due to the fact that on nuclear complete273

DF spaces (that is duals of nuclear fréchet spaces), separate continuity implies continuity274

[23, 40.2.11]. Closure (Equation 4) is exactly the fact that completion preserve the dual.275

Compared to the model previously exposed[20], the interpretation of the shift to negatives276

ˆ as a completion procedure allows to relax the condition on complete Nuclear DF spaces.277

Positives formulas are interpreted as Nuclear DF spaces and need not to be completed.278

Guided by intuitions of theorem 9, we show that Mackey spaces leave stable the positive279

constructions, and in particular a certain topological tensor product. The proof is provided280

in the appendix.281

§ Proposition 19. Consider E,F P Mackey. Then E bµ F is Mackey.282

It is however not enough to construct a positive chirality. Consider the following adjunc-283

tions, in which ι denotes the inclusion functor and N `µM :“ pN 1µ bµM 1
µq
1
µ:284

pMackey,bµ,Rq pTopvec,`µ,Rq

p´q
1
µ

p´q
1
µ

% Mackey Topvec

ι

p´qµ

%

285

6 Fréchet spaces are metrisable complete lcs, while DF spaces describe their strong duals. Nuclear spaces
are the lcs on which several different topological tensor product correspond. Precise definitions can be
found in the litterature [18, 12.4, 21.1]
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They would define a positive chirality if we had a good characterization of weakly compact286

sets on E bµ F , allowing us to prove the associativity of `µ. As of today, it is however not287

the case.288

Thus we investigate the interpretation of positive formulas MLL in Mackey spaces. This289

leads to three models: a first one based on barrelled spaces (section 4) and two others refining290

it with the notion of bornological spaces (section 5). The goal now is to handle as negatives291

spaces with some completeness, in order to work with smooth functions and differentiability.292

4 Decomposing reflexivity through polarization293

In this section we show that reflexive spaces decompose in a dialogue chirality. Remember that294

a lcs E is reflexive if and only if is barrelled and semi-reflexive (definition 7). Semi-reflexivity295

can in fact be characterized in terms of completeness:296

§ Proposition 20. [18, 11.4.1] E is semi-reflexive iff is is weakly quasi-complete: any297

bounded Cauchy filter in E converges in Eσ. Thus E is reflexive iff it is barrelled and weakly298

quasi-complete.299

These requirements enjoy antagonist stability properties: barrelled spaces are stable300

under inductive limits while weak completeness is preserved by projective limits. In fact,301

barrelledness and weak quasi-completeness are in duality:302

§ Proposition 21. [18, 11.1.4] A Mackey space is barrelled if and only if its weak dual is303

quasi-complete.304

This proposition is the backbone for the construction of a new chirality between Barr, the305

full subcategory of barrelled lcs and wqCompl, the full subcategory of weak quasi-complete306

lcs. We first retrieve a fundamental proposition allowing to prove curryfication (equation 2)307

and then state the necessary stability, associativity and monoidality lemmas. The proofs are308

given in appendix.309

§ Proposition 22. [5, III.5.3.6 ] When E and F are barrelled, every separately continuous310

bilinear map on E ˆ F is β-hypocontinuous.311

§ Proposition 23. The bounded tensor product bβ preserves barrelled spaces and is associative312

on Barr.313

§ Proposition 24. Consider E and F two barrelled lcs. Then pE bβ F q1 „ LpE,F 1βq.314

We denote by pLpE,F qqµ the space LpE,F q endowed with the Mackey topology induced315

by its predual pE bβ F 1q.316

§ Proposition 25. 1. The Mackey dual of a weak quasi-complete space is barrelled and the317

weak dual of a barrelled space is quasi-complete.318

2. Consider F a weak and quasi-complete space, and E a barrelled space. Then for any lcs319

E, LσpE,F q is quasi-complete and endowed with its weak topology.320

3. Consider E,F barrelled spaces. Then pE bβ F q1w » LσpE,F 1wq.321

4. Consider E,F two weak and quasi complete lcs. Then pLσpE1µ, F qqµ » E1µ bβ F
1
β.322

5. The binary operation `w : pE,F q ÞÑ LσpE1µ, F q is associative and commutative on323

wqCompl.324

6. Consider F P Weak and E P Mackey. Then LpEw, F q „ LpE,Fµq and LpE1σ, F q „325

LpF 1µ, Eqq326
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7. Consider E P Barr and F P wqCompl and G PWeak . Then:

LpE,LσpF 1µ, Gqq „ LpE bβ F 1µ, Gq

8. For any E P Mackey and thus any E P Barr, pEwq1µ » pE1wqµ.327

As the others, the proof of the preceding proposition is detailled in the appendix. Let328

us however insist on the fact that the remarkable stability properties are quite inherent to329

barrelledness : for example, the second point is proven thanks to Banach-Steinhauss theorem,330

which precisely holds for function with barrelled spaces as codomains.331

§ Theorem 26. Barrelled spaces and weak quasi-complete spaces organise in the following332

topological dialogue chirality:333

pBarr,bβ ,Rq pwqComplop,`w,Rq

p´q
1
σ

p´q
1
µ

% Mackey Weak

p´qσ

p´qµ

%

334

in which curryfication (Equation 2) is given by proposition 25.7 and closure (Equation 4) by335

proposition 25.8.336

§ Remark 27. As indicated to the author by Y. Dabrowski, there is in fact of a closure337

operation making lcs barrelled [30, 4.4.10], which would give a dialogue chirality and not a338

topological dialogue one. It is however not needed here to interpret proofs of polarized MLL.339

5 Duality with bornological spaces340

Bornological spaces were at the heart of the duality in vectorial models of LL [32, III.5],341

and in the first smooth intuitionistic model of DiLL [4]. However, it was shown that in the342

context of intuitionistic smooth models, bornological topologies were unecessary, and the343

first model made of bornological and Mackey-complete spaces was refined into a model made344

only of Mackey-complete space [22]. We show that bornologicality is in fact the key to make345

smooth models classical, through polarization.346

In this section, we describe two topological chiralities based on bornological spaces.347

Section 5.2 offers a polarized extension to Intuitionistic Models of DiLL [4], while in section348

5.3 we describe a chirality refining [8] which could lead to a more satisfactory interpretation349

of differentiation.350

5.1 Bornologies and bounded linear maps351

In this section, we recall preliminary material on the more specific subject of vector spaces352

endowed with bornologies, as exposed in the litterature [17, 15]. So far, we worked with353

topological vector spaces, on which the canonical bounded subsets are the one of βpEq.354

One can also work with bornologies as the primary structure, and from that construct355

0-neighbourhoods as those which absorb any element of the bornology.356

§ Definition 28. Consider E a vector space. A bornology on a vector space E is a vector357

bornology if it is stable under addition and scalar multiplication. It is convex if it is stable358

under convex closure, and Hausdorff if the only bounded sub-vector space in B is t0u.359
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§ Definition 29. A bounded map is a map for which the image of a bounded set is bounded.360

We denote by LpE,F q the vector space of all bounded linear maps between E,F P Bornvec.361

Is is endowed with the bornology of all equibounded sets of functions, that is sets of functions362

sending uniformly a bounded set in E to a bounded set in F .363

§ Definition 30. We consider the category BornVec of vector spaces endowed with a convex364

Hausdorff vector bornology, with linear bounded maps as arrows.365

While the converse is not true, a linear continuous map is always bounded. Thus we366

have a functor Born : Topvec //BornVec mapping any lcs E to the same vector space367

endowed with its bornology βpEq, and a linear continuous function to itself.368

§ Definition 31. Consider E P BornVec with bornology BE. Then a subset U Ă E is said369

to be bornivorous if for every B P BE there is a scalar λ P K such that B Ă λU .370

We consider the functor Top : BornVec //Topvec which maps E to the lcs E with371

the topology of generated by bornivorous subsets, and which is the identity on linear bounded372

functions.373

§ Proposition 32. A linear bounded map between two vector spaces E and F endowed with374

respective bornologies BE and BF defines a linear continuous maps between E endowed with375

ToppBEq and F endowed with ToppBF q.376

The interaction between bornologies and topologies is best described through the following377

adjunction [15, 2.1.10]:378

BornVec Topvec

Top

Born

%

379

In the light of section 3, as the domain of a left-adjoint functor, spaces with bornologies380

should interpret positive connectives while lcs are better suited to interpret negatives. We381

will refine this intuition through the category of bornological lcs, which is the co-reflective382

category arising through the previous adjunction.383

§ Proposition 33. [18, 13.1.1] A lcs E is said to be bornological if one of these following384

equivalent propositions is true:385

1. For any other lcs F , any bounded linear map f : E //F is continuous, that is LpE,F q “386

LpE,F q,387

2. E is endowed with the topology Top ˝ BornpEq,388

3. E is Mackey, and any bounded linear form f : E //K is continuous.389

We denote by bTopVec the category of bornological lcs and continuous (equivalently390

bounded) linear maps between them7. Equivalently to bTopVec, one can consider topological391

spaces in BornVec, that is spaces in BornVec which are invariant under Born ˝Top. This392

are the vector spaces with a convex vector bornology which consists exactly of all the sets393

absorbed by all the bornivorous subsets.394

7 Beware of the difference between spaces of BornVec which are not endowed with a canonical bornology,
and bornological lcs of bTopVec.
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§ Proposition 34. [15] bTopVec is a co-reflective category in Top and tBornVec is395

reflective in BornVec.396

bTopVec Topvec

U

Top˝Born

% BornVec tBornVec

Born˝Top

ι

%

397

in which U and ι denotes forgetful functors, leaving objects and maps unchanged.398

§ Proposition 35. [30, 11.3] Consider E and F two bornological lcs. Then E bβ F is399

bornological.400

AsbB is associative and commutative on tBornVec (see [15, 3.8.1] or [4, 3.1]), pbTopVec,bβ ,Rq401

is a monoidal category.402

§ Proposition 36. As bornological lcs are in particular Mackey, we have a contravariant403

adjunction and a coreflection:404

pbTopVec,bβ ,Rq pMackeyopq

p´q
1
µ

Top˝Bornpp´q1
µq

% bTopVec Mackey

ι

Top˝Born

%

405

This however is not enough to have a chirality: we do not have a suitable interpretation for406

the dual of bβ which would be associative on all Mackey spaces, and not just on duals of407

bornological spaces. More generally, bornological spaces do not verify a duality theorem408

with some kind of complete spaces, or at least not some kind involving duals which preserves409

reflexivity [18, 13.2.4]. One solution detailed detailed in section 5.2, is to add a suitable410

notion of completeness. The other solution, in section 5.3 is to refine our setting, and consider411

ultrabornological spaces.412

5.2 Convenient vector spaces classically413

To the notion of bornology corresponds a good notion of completeness, enforcing the conver-414

gence of Cauchy sequences with respect the norms generated by bounded subsets.415

§ Definition 37. [15] Consider V an absolutely convex and bounded subspace of a E P

BornVec. We denote by EV the vector space generated by V . It is a normed vector space
when endowed with the gauge:

pV : x P EV ÞÑ suptλ ą 0 | λx P V u.

An absolutely convex and bounded subset V is said to be a Banach disk when EV is complete416

for its norm. E is said to be Mackey-Complete when every absolutely convex and bounded417

subset is a banach disk.418

Equivalently, the definition of Mackey-Completeness extends to Topvec when one419

considers the bounded sets of βpEq. We choose the notation Mco to denote the full420

subcategory of Topvec made of Mackey-complete lcs. Mackey-complete spaces are the heart421

of several smooth models of DiLL [4, 8, 22].422
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In particular, in work by Blute Ehrhard and Tasson [4] formulas were interpreted by423

convenient spaces, that is bornological lcs which are also Mackey-complete8. We denote424

by Conv the full subcategory of bornological and Mackey-complete lcs, endowed with linear425

bounded (equivalently continuous) maps.426

§ Proposition 38. [15, 2.6.5] The full subcategory Conv Ă bTopVec of Mackey-complete427

bornological lcs is a reflective subcategory with the Mackey completion p_M as left adjoint to428

inclusion.429

The Mackey-completed B tensor product b̂MB is easily proved to be commutative and430

associative on Conv [15, 3.8]. For F P Topvec, let us denote pF qconv :“ {Top ˝ BornpF q
M

431

the completion of the bornologification of F .432

§ Definition 39. For E,F P Mco, E `b F :“ ppBornpE1µqb̂
M
B BornpF 1µqqconvq1µ.433

This operation preserve Mackey-completeness (see the proof of theorem 40), and is com-434

mutative by [18, 8.6.5]. We acknowledge that this definition lacks simplicity, and ideally435

polarization should allow for less completions on the `.436

§ Theorem 40. Convenient spaces and Mackey-Complete spaces organise in the following437

topological positive chirality:438

pConv, b̂Mβ ,Rq pMcoop,`b,Rq

p´q
1
µ

pBornpp´q1
µqq

conv

% bTopVec Topvec

Top

Born

%

439

5.3 Ultrabornological and Schwartz spaces440

In this section, we refine the previous chirality into a finer one, to get closer to objects441

used in the first classical non-polarized smooth models of DiLL [8]. Convenient spaces are a442

particular case of ultrabornological spaces, that is spaces which are bornological with respect443

to a stricter class of bounded subsets.444

§ Definition 41. [18, 11.1] A lcs E is said to be ultrabornological when its 0-neighbourhoods445

are exactly the one absorbing all Banach disks.446

Let us denote by ubTopVec the full subcategory of ultrabornological spaces. If we447

denote by uBorn : Topvec //BornVec the functor mapping a lcs E to the same vector448

space endowed with the bornology of its Banach disks, we have a coreflective subcategory:449

ubTopVec Topvec

ι

Top˝uBorn

%

450

Ultrabornological spaces are in particular barrelled [18, 13.1.3], and offer a fine duality theory451

related to Schwartz spaces. For a lcs E, let us denote by B0 the bornology consisting of the452

absolutely convex and weakly closed closure of the set of maps converging 0 in some EB , for453

B an absolutely convex and weakly closed bounded subset of B.454

8 Mackey-completeness in fact is what makes bornological lcs ultrabornological, and in particular barrelled.
This work can be seen as an adaptation of convenient spaces to the chirality of barrelled spaces
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§ Definition 42. Schwartz spaces are those lcs which are endowed with the topology of455

uniform convergence on the sequences in their dual which converges to 0 in some E1V , where456

V stands for an equicontinuous subset of E9 (proposition [18, 10.4.1]). We denote by Schw457

the full subcategory of Schwartz lcs.458

We denote by S : Topvec // Schw the functor mapping a lcs to the same lcs endowed459

with the topology of uniform convergence on the sequences in E1 which converge equicontinu-460

ously to 0, and by SCompl subcategory of Schwartz and complete lcs. Although there is461

not a unique Schwartz topology on a space preserving the dual, S pEq is the finest Schwartz462

topology which is coarsest than the original topology of E.463

§ Proposition 43. [18, 13.2.6] A lcs E is ultrabornological if and only if the schwartzification464

S pE1µq of its Mackey-dual is complete.465

Through this dual characterization, we can offer a refinement of the smooth unpolarized466

model of DiLL [8], in which formulas are interpreted by so-called ρ-reflexive spaces10. These467

are a reflexive version of Schwartz Mackey-Complete spaces. Indeed, Schwartz468

Mackey Complete spaces were introduced as a refinement of quasi-complete spaces, on which469

a good interpretation for the ` would still be associative, and which could offer some hope470

for reflexivity. We recall the following characterization of ρ-reflexive spaces:471

§ Proposition 44. [8, Thm 5.9] A Hausdorff locally convex space is ρ-reflexive, if and only472

if it is Mackey complete, has its Schwartz topology associated to the Mackey topology of its473

dual µpsqpE,E1q and its dual is also Mackey complete with its Mackey topology.474

Thus this model really is a negative interpretation of DiLL, and we will emphasize this475

point of view by refining it into a negative chirality. Negative formulas are interpreted in the476

category ComplµSch of Complete spaces which are endowed with the finest Schwartz topo-477

logy preserving the dual11: E » ÊM and E » S pE1µq. The following chirality corresponds478

to the decomposition of η-reflexivity as described by Jarchow [18, 13.4.6].479

§ Theorem 45. Ultrabornological spaces and complete spaces which have the Schwartz topology480

associated to their Mackey topology organise in the following topological dialogue chirality:481

pubTopVec, b̂Mβ ,Rq pComplµSchop, ε,Rq

S pp´q1
µq

p´q
1
µ

% Topvec Sch

S p´q

ι

%

482

in which ε refers to Schwartz’ ε product [31].483

The cartesian closed category of smooth maps, interpreting the non-linear proofs of484

Linear Logic in [8], was based on the same pattern than the smooth maps in the bornological485

setting [24]. In that context, differentiation leads to a bounded linear function, and not486

9 Note that equicontinuity only depends on the topology of E and not on the choice of a bornology on E
10For a Mackey space, being ultrabornological is also equivalent for the strong nuclearification of its

Mackey dual to be complete. Thus everything done here in terms of Schwartz spaces could be done in
term of nuclear spaces, as for unpolarized smooth models of DiLL

11A lcs can be endowed with several Schwartz topologies which preserve the dual, while bornologification
for example depends only of the dual pair pE, E1

q as bounded and weakly bounded set correspond.
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necessarily a continuous one. The previous adjunction should lead to a polarized model of487

DiLL with Complete Schwartz spaces, in which smooth maps are defined on ultrabornological488

spaces, and their differential is thus immediately continuous. Indeed, lifting this model -to489

higher-order will lead to functions having an ultrabornological space as codomain, and thus490

to bounded functions to be continuous.491

6 Conclusion492

This work presented several chiralities of topological vector spaces, and refines four preexisting493

smooth models of Differential Linear Logic. We show that chiralities are a good setting for494

mostly preexisting yet intricate results in the theory of topological spaces, and that this495

mathematical theory sheds light on previously unseen computational behaviours. Indeed,496

the following features are observed here:497

Two distinct negations (in Theorem 26, Theorem 40 and Theorem 45).498

A non-transparent interpretation of the positive shift ´ in Theorem 26 and Theorem 40.499

Chiralities which are not dialogue chiralities but which feature a negation involutive only500

on the negatives (Proposition 18) or on the positive (Theorem 40).501

The chirality of barrelled spaces and weakly quasi-complete lcs is the most elegant one,502

as any topological operation corresponds to a logical operation. The situation is less clear503

in the case of bornological spaces, which are a good interpretation for the positives but on504

which the interpretation of the negatives undergoes closure operations. In particular, the505

role of Mackey-completion is not clear. While it allows to interpret positive formulas by506

ultrabornological (thus barrelled) spaces, it results in a completeness condition on positive507

formulas, while completeness is usually understood as the characteristic of negative formulas.508

The results exposed here could lead to developments in the theory of programming509

languages involving linear negations [7] [6]. But most of all, we believe that chiralities are a510

good setting for the non-linear part of Differential Linear, and the models presented here511

would serve as a basis for models of higher-order differential computations. Indeed, there is no512

categorical semantics of DiLL reflecting the symmetry of its exponential laws. We conjecture513

that chiralities should model the interaction between positives and negatives, as well as the514

interaction between linear proofs and non-linear proofs in DiLL. In the linear-non-linear515

chirality, the exponential would model the strong monoidal adjunction, while dereliction and516

codereliction would be modelled as shifts.517
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A Proofs omitted in the paper580

Proof of Proposition 12. Let us denote hα : EˆF //EbαF the canonical α-hypocontinuous581

bilinear mapping. By precomposition with hα, any continuous linear map in LpE bα F q582

results in a α-hypocontinuous map. Consider h P HBαpE ˆ F,Gq and suppose that its583

algebraic factorisation to a linear map H̃ on EbF is not continuous on the α-tensor product:584

then there is a 0-neighbourhood V in G such that h̃´1pV q is not a 0-neighbourhood in EbαF .585

The topology on E b F generated by the α topology still makes hα α-hypocontinuous as586

h´1
α ph̃

´1pV qq “ h´1pV q, and we obtain a contradiction. đ587

Proof of Proposition 19. For the purpose of this proof, we will denote by pEbF qµ the tensor588

product of two lcs, endowed with the Mackey topology induced by its dual HBµpE ˆ F q. By589

proposition 12, we have that pEbµF q1 “ HBµpEˆF q, thus the topology of EbµF is coarser590

that the one of pEbF qµ. Let us show that the canonical bilinear map h : EˆF // pEbF qµ591

is µ-hypocontinuous. Then as pEbµF q is defined as the finest topology on the tensor product592

making h µ-hypocontinuous, we will have that that E bµ F is finer that the one of pE bF qµ593

and our proof will follow.594

Consider K a weakly compact absolutely convex subset of E. Let us show that the family595

of functions hpK,´q is equicontinuous. As F is endowed with its Mackey topology, continuity596

from F to pE b F qµ is equivalent to weak continuity from F to E b F endowed with the597

weak topology induced by HBµpE ˆ F q. Consider ` P pE b F q1µ. By proposition 9 we have598

that ` ˝ h P HBµpE ˆ F q, and thus the family ` ˝ hpK,_q is equicontinuous. Equicontinuity599

of f over weakly compact and absolutely convex sets in F is treated symmetrically. đ600

Proof of Proposition 23. Consider E and F two barrelled spaces. Let us show that Ebβ F601

is barrelled. As on barrelled spaces the bornologies µ and β correspond, and as the Mackey602

tensor product preserves Mackey spaces (proposition 19), we just need to show that the weak603

dual pHBβpE ˆ F qqσ of E bβ F is quasi-complete. However, we also know that on barrelled604

spaces, the β-hypocontinous bilinear maps are exactly the separately continuous ones. Thus605

we just need to show that any simply bounded Cauchy-Filter pfγqγPΓ simply converges to a606

separately continuous bilinear maps. This follows from the quasi-completeness of E1w and607

F 1w.608

Let us show associativity Consider E, F and G three barrelled spaces. As on barrelled609

spaces the µ-tensor product corresponds with the β tensor product, and as the first one610

preserve the Mackey topology, we just need to show that ppEbβF qbβGqq and pEbβ pFbβGqq611

have the same dual. These dual are respectively HBβppEbβF qˆGq and HBβpEbβ pF ˆGqq.612

By the fact that on barrelled spaces, β-hypocontinuity and separate continuity correspond,613

we have that these two space are linearly isomorphic. đ614
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Proof of Proposition 24. By proposition 12 we have pEbβ F q1 „ HBβpEˆF q. Let us show615

that HBβpE ˆ F q „ LpE,F 1βq. Consider h P HBβpE ˆ F q. For any x P E, we have by the616

fact that hypocontinuity implies separate continuity that hpx,_q P F 1, and by hypocontinuity617

that x ÞÑ hpx,_q is continuous from E to F 1β . Conversely, any ` P LpE,F 1βq is hypocontinuous618

by proposition 22. đ619

Proof of Proposition 25. 1. This follows from proposition 21 and from the fact that weak620

duals are weak spaces, and Mackey duals are Mackey spaces by proposition 9.621

2. That LσpE,F 1W q is endowed with its weak topology follows from [18, 15.4.7]. Quasi-622

completeness follows from the fact that bounded sets of LσpE,F 1W q are the simply623

bounded ones, that bounded Cauchy filters converge pointwise thanks to the quasi-624

completeness of F , and that this limit function defined pointwise is continuous thanks to625

the Banach-Steinhauss theorem [18, 11.1.3] applied to E.626

3. By proposition 12 we have that pE bβ F q1 „ HBβpEˆq. As on barrelled spaces β-627

hypocontinuous functions and separately continuous functions correspond, we have in628

turn that pE bβ F q1 „ HBβpEˆq „ BpE ˆ F q „ LpE.F 1wq. The linear homeomorphism629

pE bβ F q
1
w » LσpE.F 1wq follows from the fact that the latter space is endowed with its630

weak topology [18, 15.4.7].631

4. As LσpE1µ, F q is induced by the weak topology induced by E1 b F 1, we have that632

pLσpE1µ, F qqµ » pE1 b F 1qµpLpE1
µ,F qq

. As E1µ and F 1µ are both barrelled spaces, it fol-633

lows from propositions 19 and 23 that E1µ bβ F 1β is Mackey and linearly homeomorphic634

to pE1 b F 1qµpLpE1
µ,F qq

.635

5. Associativity and commutativity follow from the fact that LσpE1, F q is endowed with the636

weak topology induced by E1 b F 1.637

6. The first point follows from proposition 9 (and is in fact part of the proof to the adjunction638

9). The second point follows from [18, 8.6.1, 8.6.5].639

7. By proposition 12, we have that LpE bβ F 1µ, Gq „ HBβpE ˆ F 1µ, Gq. As F 1µ is barrelled640

we have by proposition 22 that HBβpE ˆ F 1µ, Gq is isomorphic to BpE ˆ F 1µ, Gq, and our641

result follow easily.642

8. Both pEwq1µ and pE1wqµ correspond algebraically to the vector space E1. The former is643

endowed with the topology of uniform convergence of σpEwq compact subsets of E. The644

second is endowed with the topology of uniform convergence on σppE1wq1q compact subsets645

of E. As E „ pE1wq, both topologies correspond.646

đ647

Proof of Theorem 40. The Mackey dual pToppEqq1µ of a convenient lcs is always Mackey-648

complete. Indeed, bounded sets of pToppEqq1µ are the scalarly bounded ones ([18, 8.3.4]),649

thus these are the simply bounded ones, sending a point in E to a bounded set in650

R. However, as bornological Mackey-Complete lcs are barrelled, we have by Banach-651

Steinhauss theorem that simply bounded sets of ToppEq1 are equicontinuous, and thus652

equibounded as E is bornological. Equibounded sets of ToppEq1 are easily shown to be653

Banach disks.654

As bornological lcs are in particular Mackey, we have that pBornpTopp´q1µq1µqconv is the655

identity on Conv.656

For E P Conv and F P Mco, one has by the diverse adjunctions at stakes: LpToppEq1µ, F q »657

LpF 1µ, pToppEq1µq1µq » LpF 1µ,ToppEqq » LpBornpF 1µq, Eq » Lp {BornpF 1µq
M
, Eq. Thus the658

contravariant adjunction is proved.659

One has easily that pEb̂MB F q1B » LβpToppEq, F 1Bq, and thus p´q1B is indeed a strong660

monoidal functor.661
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Let us prove equation 2, in the case this time of a positive chirality. Thus we need662

to give natural bijections for E,F P Conv and G P Compl: LpEb̂MB F, pGqconvq »663

LpE,LpF, pGqconvq This follows from the reflection of Proposition 38, and the monoidality664

of bB in bornological vector spaces.665

đ666

Proof of Theorem 40. As ultrabornological spaces are in particular barrelled, the associ-667

ativity and commutativity of b̂ubβ holds. The functors S pp´q1µq and p´q1µ well defined by668

proposition 43. Consider in particular F P McµSch. Then F 1µ is Mackey, and by definition669

S p{pF 1µq
1
µ » F is complete. As ultrabornological spaces are Mackey, the duality functors670

define an equivalence of categories. The adjunction follows from proposition 9 and from671

the that the schwartification of a lcs preserves its dual [18, 10.4.4], and thus its Mackey672

topology. As ultrabornological spaces are barrelled, curryfication (equation 2) is inherited673

from theorem 26. đ674
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