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Abstract
Linear Logic refines Classical Logic by taking into account the resources used during the proof and
program computation. In the past decades, it has been extended to various frameworks. The most
famous are indexed linear logics which can describe the resource management or the complexity
analysis of a program. From another perspective, Differential Linear Logic is an extension which
allows the linearization of proofs. In this article, we merge these two directions by first defining a
differential version of Graded linear logic: this is made by indexing exponential connectives with a
monoid of differential operators. We prove that it is equivalent to a graded version of previously
defined extension of finitary differential linear logic. We give a denotational model of our logic,
based on distribution theory and linear partial differential operators with constant coefficients.
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1 Introduction

Linear logic (LL) [20] and its differential counterpart [14] give a framework to study resource
usages of proofs and programs. These logics were invented by enriching the syntax of proofs
with new constructions observed in denotational models of λ-calculus [21, 11]. The exponential
connective ! introduces non-linearity in the context of linear proofs and encapsulate the notion
of resource usage. This notion was refined into parametrised exponentials [22, 13, 17, 19],
where exponential connectives are indexed by annotations specifying different behaviors. Our
aim here is to follow Kerjean’s former works [25] by indexing formulas of Linear Logic with
Differential Operators. Thanks to the setting of Bounded Linear Logic, we formalize and
deepen the connection between Differential Linear Logic and Differential Operators.

The fundamental linear decomposition of LL is the decomposition of the usual non-linear
implication ⇒ into a linear one⊸ from a set of resources represented by the new connective !:
(A ⇒ B) ≡ (!A⊸ B). Bounded Linear Logic (BLL) [22] was introduced as the first attempt
to use typing systems for complexity analysis. But our interest for this logic stems from the
fact that it extends LL with several exponential connectives which are indexed by polynomially
bounded intervals. Since then, some other indexations of LL have been developed for many
purposes, for example IndLL [13] where the exponential modalities are indexed by some
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17:2 Unifying Graded Linear Logic and Differential Operators

functions, or the graded logic BSLL [6, 19, 29] where they are indexed by the elements of a
semiring S. This theoretical development finds applications in programming languages [1, 16].

Differential linear logic [14] (DiLL) consists in an a priori distinct approach to linearity,
and is based on the denotational semantics of linear proofs in terms of linear functions. In
the syntax of LL, the dereliction rule states that if a proof is linear, one can then forget
its linearity and consider it as non-linear. To capture differentiation, DiLL is based on a
codereliction rule which is the syntactical opposite of the dereliction. It states that from
a non-linear proof (or a non-linear function) one can extract a linear approximation of it,
which, in terms of functions, is exactly the differential (one can notice that here, the analogy
with resources does not work). Then, models of DiLL interpret the codereliction by different
kinds of differentiation [10, 3].

A first step towards merging the graded and the differential extension of LL was made by
Kerjean in 2018 [25]. In this paper, she defines an extension of DiLL, named D-DiLL, in which
the exponential connectives ? and ! are indexed with a fixed linear partial differential operator
with constant coefficients (LPDOcc) D. There, formulas !DA and ?DA are respectively
interpreted in a denotational model as spaces of functions or distributions which are solutions
of the differential equation induced by D. The dereliction and codereliction rules then
represent respectively the resolution of a differential equation and the application of a
differential operator. This is a significant step forward in our aim to make the theory of
programming languages and functional analysis closer, with a Curry-Howard perspective. In
this work, we will generalize D-DiLL to a logic indexed by a monoid of LPDOcc.

Contributions. This work considerably generalizes, corrects and consolidates the
extention of DiLL to differential operators sketched in [25]. It extends D-DiLL in the sense
that the logic is now able to deal with all LPDOcc and combine their action. It corrects
D-DiLL as the denotational interpretation of indexed exponential ?D and !D are changed,
leaving the interpretation of inference rules unchanged but reversing their type in a way that
is now compatible with graded logics. Finally, this work consolidates D-DiLL by proving a
cut-elimination procedure in the graded case, making use of an algebraic property on the
monoid of LPDOcc.

Outline. We begin this paper in Section 2 by reviewing Differential Linear Logic and
its semantics in terms of functions an distributions. We also recall the definition of BSLL.
Section 3 focuses on the definition of an extension of BSLL, where we construct a finitary
differential version for it and prove a cut-elimination theorem. The cut-elimination procedure
mimicks partly the one of DiLL or BSLL, but also deals with completely new interactions with
inference rules. Then, Section 4 generalizes D-DiLL into a framework with several indexes and
shows that it corresponds to our finitary differential BSLL indexed by a monoid of LPDOcc.
It formally constructs a denotational model for it. This gives in particular a new semantics
for BSLL. Finally, Section 5 discusses the addition of an indexed promotion to differential
BSLL and possible definitions for a semiring of differential operators.

2 Linear logic and its extensions

Linear Logic refines Classical Logic by introducing a notion of linear proofs. Formulas are
defined according to the following grammar (omitting neutral elements which do not play a
role here):

A,B := A⊗B | A`B | A&B | A⊕B | ?A | !A | · · · .

The linear negation (_)⊥ of a formula is defined on the syntax and is involutive, with
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in particular (!A)⊥ := ?(A)⊥. The connector ! enjoys structural rules, respectively called
weakening w, contraction c, dereliction d and promotion p:

Γ ⊢ ∆ w
Γ, !A ⊢ ∆

Γ, !A, !A ⊢ ∆ c
Γ, !A ⊢ ∆

Γ, A ⊢ ∆
dΓ, !A ⊢ ∆

!Γ ⊢ A p
!Γ ⊢ !A

These structural rules can be understood in terms of resources: a proof of A ⊢ B uses exactly
once the hypothesis A while a proof of !A ⊢ B might use A an arbitrary number of times.
Notice that the dereliction allows to forget the linearity of a proof by making it non-linear.
▶ Remark 1. The exponential rules for LL are recalled here in a two-sided flavour, making their
denotational interpretation in Section 2.1 easier. However, we always consider a classical
sequent calculus, and the new DBSLL will be introduced later in a one-sided flavour to
lightens the formalism.

Differentiation is then introduced through a “codereliction” rule d̄, which is symmetrical
to d and allows to linearize a non-linear proof [14]. To express the cut-elimination with the
promotion rule, other costructural rules are needed, which find a natural interpretation in
terms of differential calculus. Note that the first version of DiLL, called DiLL0, does not
feature the promotion rule, which was introduced in later versions [30]. The exponential rules
of DiLL0 are then w, c, d with the following coweakening w̄, cocontraction c̄ and codereliction d̄
rules, given here in a one-sided flavour.

w̄⊢ !A
⊢ Γ, !A ⊢ ∆, !A

c̄⊢ Γ,∆, !A
⊢ Γ, A

d̄⊢ Γ, !A

In the rest of the paper, as a support for the semantical interpretation of DiLL, we denote
by Da(f) the differential of a function f at a point a, that is:

Daf : v 7→ lim
h→0

f(a+ hv) − f(a)
h

2.1 Distribution theory as a semantical interpretation of DiLL
DiLL originates from vectorial refinements of models of LL [11], which mainly keep their
discrete structure. However, the exponential connectives and rules of DiLL can also be
understood as operations on smooth functions or distributions [31]. In the whole paper,
(_)′ := L(_,R) is the dual of a (topological) vector space, and distributions with compact
support are by definition linear continuous maps on the space of smooth scalar maps, that is
elements of (C∞(Rn,R))′. Distributions are sometimes described as “generalized functions”1

Let us recall the notation for Dirac operator, which is a distribution with compact support
and used a lot in the rest of the paper: δ : v ∈ Rn 7→ (f 7→ f(v)) ∈ (C∞(Rn,R))′

.

Recently, Kerjean [25] gave an interpretation of the connective ? by a space of smooth
scalar functions, while ! is interpreted as the space of linear maps acting on those functions,
that is a space of distributions:

J?AK := C∞(JAK′,R) J!AK := C∞(JAK,R)′.

Note that the language of distributions applies to all models of DiLL as noticed by Ehrhard
on Köthe spaces [10]. The focus of this model was to find smooth infinite dimensional models

1 Indeed, any function with compact support g ∈ C∞(Rn,R) acts as a distribution Tg ∈ (C∞(Rn,R))′

with compact support, through integration: Tg : f 7→
∫

gf . It is indeed a distribution, as it acts linearly
(and continuously) on smooth functions.
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17:4 Unifying Graded Linear Logic and Differential Operators

of DiLL, whose objects were invariant under double negation, that is a model of classical DiLL.
This is an intricate issue, see [8], and a simple solution is to consider models of polarized
calculus. Polarized Linear Logic LLpol [27] separates formulas in two classes:

Negative Formulas: N,M := a | ?P | ˆP | N `M | ⊥ | N &M | ⊤.
Positive Formulas: P,Q := a⊥ | !N | ´N | P ⊗Q | 0 | P ⊕Q | 1.

We interpret formulas of LLpol by Nuclear topological vector spaces, and add the condition
that the spaces are Fréchet or DF according to the polarity of the formulas. Positive formulas
(left stable by ⊗ !) are interpreted as Nuclear DF spaces while Negative formulas (left stable
by ` ?) are interpreted by Nuclear Fréchet spaces. We will not dive into the details of these
definitions, see [24] for more details, but the reader should keep in mind that the formulas are
always interpreted as reflexive topological vector spaces, that is spaces E which are isomorphic
to their double dual E′′. The model of functions and distribution is thus a model of classical
DiLL, in which J(_)⊥K := (_)′.

Nicely, every exponential rule of DiLL has an interpretation in terms of functions and
distributions, through the following natural transformations. In the whole paper, E and
F denote topological vector spaces, which will represent the interpretation JAK and JBK of
formulas A,B of DiLL. For the sake of readability, we will denote the natural transformations
(e.g. d, d̄) by the same label as the deriving rule they interpret, and likewise for connectors
(e.g. ?,⊗, !) and their associated functors.

The weakening w : R → ?E maps 1 ∈ R to the constant function at 1, while the
coweakening w̄ : R → !E maps 1 ∈ R to Dirac distribution at 0: δ0 : f 7→ f(0).
The dereliction d : E′ → ?(E′) maps a linear function to itself while the codereliction
d̄ : E → !E maps a vector v to the distribution mapping a function to its differential at 0
according to the vector v :

d : ℓ 7→ ℓ d̄ : v 7→ (D0(_)(v) : f 7→ D0(f)(v)) .
The contraction c : ?E ⊗ ?E → ?E maps two scalar functions f, g to their scalar
multiplication f.g while the cocontraction c̄ : !E ⊗ !E → !E maps two distributions ψ
and ϕ to their convolution product ψ ∗ ϕ : f 7→ ψ (x 7→ ϕ(y 7→ f(x+ y))), which is a
commutative operation over distributions.

These interpretations are natural, while trying to give a semantics of a model with smooth
functions and distributions. The dereliction is the one from LL, and the codereliction is
the differentiation at 0, which is what differential linear logic provides. The fact that the
contraction is interpreted by the scalar product comes from the kernel theorem, and the
weakening is the neutral element for this operation. The cocontraction is interpreted by the
convolution product, as the natural monoidal operation on distributions, with its neutral
element to interpret the coweakening: the dirac operator at 0.

The natural transformations w, w̄, d, d̄ can also be directly constructed from the biproduct
on topological vector spaces and Schwartz’ Kernel Theorem expressing Seely isomorphisms.

2.2 Differential operators as an extension of DiLL
A first advance in merging the graded and the differential extensions of LL was made by
Kerjean in 2018 [25]. In this paper, she defines an extension of DiLL named D-DiLL. This
logic is based on a fixed single linear partial differential operator D, which appears as a single
index in exponential connectives !D and ?D.

The abstract interpretation of ? and ! as spaces of functions and distributions respectively
allows to generalize them to spaces of solutions and parameters of differential equations. To
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do so, we generalize the action of D0(_) in the interpretation of d̄ to another differential
operator D. The interpretation of d̄ then corresponds to the application of a differential
operator while the interpretation of d corresponds to the resolution of a differential equation
(which is ℓ itself when the equation is D0(_) = ℓ, but this is specifically due to the involutivity
of D0).

In D-DiLL, the exponential connectives can be indexed by a fixed differential operator. It
admits a denotational semantics for a specific class of those, whose resolution is particularly
easy thanks to the existence of a fundamental solution. A Linear Partial Differential Operator
with constant coefficients (LPDOcc) acts linearly on functions f ∈ C∞(Rn,R), and by duality
acts also on distributions. In what follows, each aα will be an element of R. By definition,
only a finite number of such aα are non-zero.

D : f 7→

(
z 7→

∑
α∈Nn

aα
∂|α|f

∂xα
(z)
)

D̂ : f 7→

(
z 7→

∑
α∈Nn

(−1)|α|aα
∂|α|f

∂xα
(z)
)

(1)

▶ Remark 2. The coefficients (−1)|α| in equation 1 originates from the intuition of distri-
butions as generalized functions. With this intuition, it is natural to want that for each
smooth function f , D(Tf ) = TD(f), where Tf stands for the distribution generalizing the
function f . When computing TD(f) on a function g with partial integration one shows that
TD(f)(g) =

∫
D(f)g =

∫
f(D̂(g)) = Tf ◦ D̂, hence the definition.

We make D act on distributions through the following equation:

D(ϕ) :=
(
ϕ ◦ D̂ : f 7→ ϕ(D̂(f))

)
∈ C∞(Rn,R)′.

▶ Definition 3. Let D be a LPDOcc. A fundamental solution of D is a distribution
ΦD ∈ C∞(Rn,R)′ such that D(ΦD) = δ0.

▶ Proposition 4 (Hormander, 1963). LPDOcc distribute over convolution, meaning that
D(ϕ ∗ ψ) = D(ϕ) ∗ ψ = ϕ ∗D(ψ) for any ϕ, ψ ∈ !E.

The previous proposition is easy to check and means that knowing the fundamental solution
of D gives access to the solution ψ ∗ ΦD of the equation D̂(_) = ψ. It is also the reason
why indexation with several differential operators is possible. Luckily for us, LPDOcc are
particularly well-behaved and always have a fundamental solution. The proof of the following
well-known theorem can for example be found in [23, 3.1.1].

▶ Theorem 5 (Malgrange-Ehrenpreis). Every linear partial differential operator with constant
coefficients admits exactly one fundamental solution.

Using this result, D-DiLL gives new definitions for d and d̄, depending of a LPDOcc D:

dD : f 7→ ΦD ∗ f d̄D : ϕ 7→ ϕ ◦D.

These new definitions came from the following ideas. Through the involutory duality, each
v ∈ E corresponds to a unique δv ∈ E′′ ≃ E, and d̄D is then interpreted as ϕ ∈ E′′ 7→ ϕ ◦D0.
Then Kerjean considered that E′′ = (D0(?(E′),R))′ and generalized it by replacing D0 with D,
defining ?DE := D(C∞(E′,R)). This gave types dD : ?DE

′ → ?E′ and d̄D : !DE → !E.
The reader should note that these definitions only work for finite dimensional vector

spaces: one is able to apply a LPDOcc to a smooth function from Rn to R using partial
differentiation on each dimension, but this is completely different if the function has an
infinite dimensional domain. The exponential connectives indexed by a LPDOcc therefore
only apply to finitary formulas: that are the formulas with no exponentials.

FSCD 2023
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2.3 Indexed linear logics: resources, effects and coeffects
Since Girard’s original BLL [22], several systems have implemented indexed exponentials to
keep track of resource usage [9, 15]. More recently, several authors [19, 17, 6] have defined a
modular (but a bit less expressive) version BSLL where the exponentials are indexed (more
specifically “graded”, as in graded algebras) by elements of a given semiring S.

▶ Definition 6. A semiring (S,+, 0,×, 1) is given by a set S with two associative binary
operations on S: a sum + which is commutative and has a neutral element 0 ∈ S and a
product × which is distributive over the sum and has a neutral element 1 ∈ S.
Such a semiring is said to be commutative when the product is commutative.
An ordered semiring is a semiring endowed with a partial order ≤ such that the sum and the
product are monotonic.

This type of indexation, named grading, has been used in particular to study effects and
coeffects, as well as resources [6, 5, 17]. The main feature is to use this grading in a type
system where some types are indexed by elements of the semiring. This is exactly what is
done in the logic BSLL, where S is an ordered semiring. The exponential rules of BSLL are
adapted from those of LL, and agree with the intuitions that the index x in !xA is a witness
for the usage of resources of type A during the proof/program.

Γ ⊢ B
Γ, !0A ⊢ B

w
Γ, !xA, !yA ⊢ B

Γ, !x+yA ⊢ B
c Γ, A ⊢ B

Γ, !1A ⊢ B
d

!x1A1, . . . , !xn
An ⊢ B

!x1×yA1, . . . , !xn×yAn ⊢ !yB
p

Finally, a subtyping rule is also added, which uses the order of S. In Section 3, we will use an
order induced by the additive rule of S, and this subtyping rule will stand for a generalized
dereliction.

Γ, !xA ⊢ B x ≤ y

Γ, !yA ⊢ B
dI

3 A differential BSLL

In this section, we extend a graded linear logic with indexed coexponential rules. We define
and prove correct a cut-elimination procedure.

Formulas and proofs

We define a differential version of BSLL by extending its set of exponential rules. Here, we
will restrict ourselves to a version without promotion, as it has been done for DiLL originally.
Following the ideas behind DiLL, we add costructural exponential rules: a coweakening w̄, a
cocontraction c̄, an indexed codereliction d̄I and a codereliction d̄. The set of exponential
rules of our new logic DBSLL is given in Figure 1. Note that by doing so we study a classical
version of BSLL, with an involutive linear duality.

▶ Remark 7. In BSLL, we consider a semiring S as a set of indices. With DBSLL, we do
not need a semiring: since this is a promotion-free version, only one operation (the sum)
is important. Hence, in DBSLL, S will only be a monoid. This modification requires two
precisions:

The indexed dereliction uses the fact that S is an ordered semiring. Here, the order will
always be defined through the sum: ∀x, y ∈ S, x ≤ y ⇐⇒ ∃x′ ∈ S, x+ x′ = y. This is
due to the fact that for compatiblity with coexponential rules, we always need ∀x, 0 ≤ x.
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⊢ Γ w
⊢ Γ, ?0A

⊢ Γ, ?xA, ?yA c
⊢ Γ, ?x+yA

⊢ Γ, ?xA x ≤ y dI⊢ Γ, ?yA

⊢ Γ, A
d⊢ Γ, ?A

w̄⊢ !0A
⊢ Γ, !xA ⊢ ∆, !yA c̄⊢ Γ,∆, !x+yA

⊢ Γ, !xA x ≤ y
d̄I⊢ Γ, !yA

⊢ Γ, A
d̄⊢ Γ, !A

Figure 1 Exponential rules of DBSLL

In BSLL, the dereliction is indexed by 1, the neutral element of the product. In DBSLL,
we will remove this index since we do not have a product operation and simply use !
and ? instead of !1 and ?1.

Since every element of S is greater than 0, we have two admissible rules which will appear in
the cut elimination procedure: an indexed weakening wI and an indexed coweakening w̄I :

⊢ Γ
⊢ Γ, ?xA

wI :=
⊢ Γ w

⊢ Γ, ?0A dI⊢ Γ, ?xA

⊢ !xA
w̄I :=

w̄⊢ !0A d̄I⊢ !xA
.

Definition of the cut elimination procedure

Since this work is done with a Curry-Howard perspective, a crucial point is the definition of
a cut-elimination procedure. The cut rule is the following one

⊢ Γ, A ⊢ A⊥,∆
cut⊢ Γ,∆

which represents the composition of proofs/programs. Defining its elimination, corresponds
to express explicitly how to rewrite a proof with cuts into a proof without any cut. It
represents exaclty the calculus of our logic.

In order to define the cut elimination procedure of DBSLL, we have to consider the cases
of cuts after each costructural rule that we have been introduced, since the cases of cuts after
MALL rules or after w, c, dI and d are already known. An important point is that we will
use the formerly introduced indexed (co)weakening rather than the usual one.

Before giving the formal rewriting of each case, we will divide them into three groups.
Since DBSLL is highly inspired from DiLL, one can try to adapt the cut-elimination procedure
from DiLL. This adaptation would mean that the structure of the rewriting is exactly the
same, but the exponential connectives have to be indexed. For most cases, this method
works and there is exactly one possible way to index these connectives, since wI , w̄I , c, c̄, d
and d̄ do not require a choice of the index (at this point, one can think that there is a choice
in the indexing of wI and w̄I , but this is a forced choice thanks to the other rules).

However, the case of the cut between a contraction and a cocontraction will require some
work on the indexes because these two rules use the addition of the monoid. The index of
the principal formula x (resp. x′) of a contraction (resp. cocontraction) rule is the sum of
two indexes x1 and x2 (resp. x3 and x4). But x=x′ does not imply that x1=x3 and x2=x4.
We will then have to use a technical algebraic notion to decorate the indexes of the cut
elimination between c and c̄ in DiLL: the additive splitting.

▶ Definition 8. A monoid (M,+, 0) is additive splitting if for each x1, x2, x3, x4 ∈ M such
that x1 + x2 = x3 + x4, there are elements x1,3, x1,4, x2,3, x2,4 ∈ M such that

x1 = x1,3 + x1,4 x2 = x2,3 + x2,4 x3 = x1,3 + x2,3 x4 = x1,4 + x2,4.

FSCD 2023



17:8 Unifying Graded Linear Logic and Differential Operators

This notion appears in [5], for describing particular models of BSLL, based on the relational
model. Here the purpose is different: it appears from a syntactical point of view. In the rest
of this section, we will not only require S to be a monoid, but to be additive splitting as well.

Now that we have raised some fundamental difference in a possible cut-elimination
procedure, one can note that we do not have mentioned how to rewrite the cuts following an
indexed (co)dereliction. This is because the procedure from DiLL cannot be adapted at all in
order to eliminate those cuts, as dI and d̄I have nothing in common with the exponential
rules of DiLL. The situation is even worse: these cuts cannot be eliminated since these rules
are not deterministic because of the use of the order relation. These considerations lead to
the following division between the cut elimination cases.
Group 1: The cases where DiLL can naively be decorated. These will be cuts involving two

exponential rules, with at least one being an indexed (co)weakening or a non-indexed
(co)dereliction.

Group 2: The case where DiLL can be adapted using algebraic technicality, which is the cut
between a contraction and a cocontraction.

Group 3: The cases highly different from DiLL. Those are the ones involving an indexed
dereliction or an indexed codereliction.

The formal rewritings for the cases of groups 1 and 2 are given in Figure 2. The cut-
elimination for contraction and a cocontraction uses the additive splitting property with the
notations of Definition 8.

Finally, the last possible case of an occurrence of a cut in a proof is the one where dI

or d̄I is applied before the cut: the group 3. The following definition introduces rewritings
where these rules go up in the derivation tree, and which will be applied before the cut
elimination procedure. This technique is inspired from subtyping ideas, which make sense
since dI is originally defined as a subtyping rule.

▶ Definition 9. The rewriting procedures ⇝dI
and ⇝d̄I

are defined on proof trees of DBSLL.
1. When dI (resp. d̄I) is applied after a rule r and r is either from MALL (except the axiom)

or r is w̄I , c̄, d̄I (resp. wI , c, dI), d̄ or d, the rewriting ⇝dI ,1 (resp. ⇝d̄I ,1) exchanges r
and dI (resp. d̄I) which is possible since r and dI do not have the same principal formula.

2. When dI or d̄I is applied after a (co)contraction, the rewriting is

Π
⊢ Γ, ?x1A, ?x2A c
⊢ Γ, ?x1+x2A dI⊢ Γ, ?x1+x2+x3A

⇝dI ,2

Π
⊢ Γ, ?x1A, ?x2A c
⊢ Γ, ?x1+x2A wI⊢ Γ, ?x1+x2A, ?x3A c

⊢ Γ, ?x1+x2+x3A

Π1
⊢ Γ, !x1A

Π2

⊢ ∆, !x2A c̄⊢ Γ,∆, !x1+x2A d̄I⊢ Γ,∆, !x1+x2+x3A

⇝d̄I ,2

Π1
⊢ Γ, !x1A

Π2

⊢ ∆, !x2A c̄⊢ Γ,∆, !x1+x2A
⊢ w̄I⊢ !x3A c̄⊢ Γ,∆, !x1+x2+x3A

3. If it is applied after an indexed (co)weakening, the rewriting is

Π
⊢ Γ wI⊢ Γ, ?xA dI⊢ Γ, ?x+yA

⇝dI ,3

Π
⊢ Γ wI⊢ Γ, ?x+yA

Π
⊢ w̄I⊢ !xA d̄I⊢ !x+yA

⇝d̄I ,3

Π
⊢ w̄I⊢ !x+yA

4. And if it is after an axiom, we define
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Π1

⊢ Γ wI⊢ Γ, ?xA
w̄I

⊢ !xA⊥

cut⊢ Γ

⇝cut
Π1

⊢ Γ

Π1

⊢ Γ, A
d⊢ Γ, ?A

Π2

⊢ ∆, A⊥

d̄
⊢ ∆, !A⊥

cut⊢ Γ, ∆

⇝cut

Π1

⊢ Γ, A

Π2

⊢ ∆, A⊥

cut⊢ Γ, ∆

Π1

⊢ Γ, ?xA, ?yA
c

⊢ Γ, ?x+yA
w̄I

⊢ !x+yA⊥

cut⊢ Γ

⇝cut

Π1

⊢ Γ, ?xA, ?yA
w̄I

⊢ !yA⊥

cut⊢ Γ, ?xA
w̄I

⊢ !xA⊥

cut⊢ Γ

Π1

⊢ Γ, !xA

Π2

⊢ ∆, !yA
c̄Γ, ∆, !x+yA

Π3

⊢ Ξ wI

⊢ Ξ, ?x+yA⊥

cut⊢ Γ, ∆, Ξ

⇝cut

Π1

⊢ Γ, !xA

Π3

⊢ Ξ wI

⊢ Ξ, ?xA⊥

cut⊢ Γ, Ξ wI

⊢ Γ, Ξ, ?yA⊥
Π2

⊢ ∆, !yA
cut⊢ Γ, Ξ, ∆

Π1

⊢ Γ, ?x1 A⊥, ?x2 A⊥
c

⊢ Γ, ?x1+x2 A⊥

Π2

⊢ ∆, !x3 A

Π3

⊢ Ξ, !x4 A
c̄⊢ ∆, Ξ, !x3+x4=x1+x2 A

cut⊢ Γ, ∆, Ξ

⇝cut

Πb

⊢ Γ, ?x1,4 A⊥, ?x2,4 A⊥, ?x3 A⊥
Π2

⊢ ∆, !x3 A
cut

⊢ Γ, ∆, ?x1,4 A⊥, ?x2,4 A⊥

c
⊢ Γ, ∆, ?x4 A⊥

Π3

Ξ, !x4 A
cut⊢ Γ, ∆, Ξ

in which Πa and Πb are as follows:

Πa =

ax
⊢ ?x2,3 A⊥, !x2,3 A

ax
⊢ ?x2,4 A⊥, !x2,4 A

c̄
⊢ ?x2,3 A⊥, ?x2,4 A⊥, !x2 A

Π1

⊢ Γ, ?x1 A⊥, ?x2 A⊥

cut
⊢ Γ, ?x2,3 A⊥, ?x2,4 A⊥, ?x1 A⊥

Πb =

Πa

⊢ Γ, ?x2,3 A⊥, ?x2,4 A⊥, ?x1 A⊥

ax
⊢ ?x1,3 A⊥, !x1,3 A

ax
⊢ ?x1,4 A⊥, !x1,4 A

c̄
?x1,3 A⊥, ?x1,4 A⊥, !x1 A

cut
⊢ Γ, ?x2,3 A⊥, ?x2,4 A⊥, ?x1,3 A⊥, ?x1,4 A⊥

c
⊢ Γ, ?x1,4 A⊥, ?x2,4 A⊥, ?x3 A⊥

Figure 2 Cut elimination for DBSLL: group 1 and group 2 FSCD 2023
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ax
⊢ !xA, ?xA

⊥
dI⊢ !xA, ?x+yA

⊥
⇝dI ,4

ax
⊢ !xA, ?xA

⊥
wI

⊢ !xA, ?xA
⊥, ?yA

⊥
c

⊢ !xA, ?x+yA
⊥

ax
⊢ !xA, ?xA

⊥
d̄I⊢ !x+yA, ?xA

⊥
⇝d̄I ,4

ax
⊢ !xA, ?xA

⊥
⊢ w̄I⊢ !yA c̄

⊢ !x+yA, ?xA
⊥

One defines ⇝dI
(resp. ⇝d̄I

) as the transitive closure of the union of the ⇝dI ,i (resp. ⇝d̄I ,i).

Even if this definition is non-deterministic, this is not a problem. Every indexed
(co)dereliction goes up in the tree, without meeting another one. This implies that this
rewriting is confluent: the result of the rewriting does not depend on the choices made.
▶ Remark 10. It is easy to define a forgetful functor U , which transforms a formula (resp. a
proof) of DBSLL into a formula (resp. a proof) of DiLL. For a formula A of DBSLL, U(A)
is A where each !x (resp. ?x) is transformed into ! (resp. ?), which is a formula of DiLL.
For a proof-tree without any dI and d̄I , the idea is the same: when an exponential rule of
DBSLL is applied in a proof-tree Π, the same rule but not indexed is applied in U(Π), which
is a proof-tree in DiLL. Moreover, we notice that if Π1 ⇝cut Π2, U(Π1)⇝DiLL U(Π2) where
⇝DiLL is the cut-elimination in [12].
We can now define a cut-elimination procedure:

▶ Definition 11. The rewriting ⇝ is defined on derivation trees. For a tree Π, we ap-
ply ⇝dI

, ⇝d̄I
and ⇝cut as long as it is possible. When there are no more cuts, the rewriting

ends.

▶ Theorem 12. The rewriting procedure ⇝ terminates on each derivation tree, and reaches
an equivalent tree with no cut.

In order to prove this theorem, we first need to prove a lemma, which shows that the
(co)dereliction elimination is well defined.

▶ Lemma 13. For each derivation tree Π, if we apply ⇝dI
and ⇝d̄I

to Π, this procedure
terminates such that Π⇝dI

Π1 ⇝d̄I
Π2 without any dI and d̄I in Π2.

Proof. Let Π be a proof-tree. Each rule has a height (using the usual definition for nodes
in a tree). We define the depth of a node as the height of the tree minus the height
of this node. The procedure ⇝dI

terminates on Π: let a(Π) be the number of indexed
derelictions in Π and b(Π) be the sum of the depth of each indexed derelictions in Π. Now,
we define H(Π) = (a(Π), b(Π)) and <lex as the lexicographical order on N2. For each step of
⇝dI

such that Πi ⇝dI
Πj , we have H(Πi) <lex H(Πj):

1. If Πi ⇝dI ,1 Πj , the number of dI does not change and the sum of depths decreases by 1.
Hence, H(Πi) <lex H(Πj).

2. If Πi ⇝dI ,k Πj with 2 ≤ k ≤ 4, the number of derelictions decreases, so H(Πi) <lex H(Πj).
Using this property and the fact that <lex is a well-founded order on N2, this rewriting
procedure has to terminates on a tree Π1. Moreover, if there is an indexed dereliction in Π1,
this dereliction is below an other rule, so ⇝dI ,i for 1 ≤ i ≤ 4 can be applied which leads to a
contradiction with the definition of Π1. Then, there is no indexed dereliction in Π1.

Using similar arguments, the rewriting procedure ⇝d̄I
on Π1 ends on a tree Π2 where

there is no codereliction (and no dereliction because the procedure ⇝d̄I
does not introduce

any derelictions). ◀
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Proof of Theorem 12. If we apply our procedure ⇝ on a tree Π we will, using Lemma 13,
have a tree ΠdI ,d̄I

such that Π ⇝dI
ΠdI

⇝d̄I
ΠdI ,d̄I

and there is no dereliction and no
codereliction in ΠdI ,d̄I

. Hence, the procedure ⇝ applied on Π gives a rewriting

Π⇝dI
ΠdI
⇝d̄I

(
ΠdI ,d̄I

= Π0
)
⇝cut Π1 ⇝cut . . .

Applying the forgetful functor U from Remark 10 on each tree Πi (for i ∈ N), the cut-
elimination theorem of DiLL [30] implies that this rewriting terminates at a rank n, because
the cut-elimination rules of DBSLL which are used in Π0 are those of DiLL when the indexes
are removed. Then, Π⇝∗ Πn where Πn is cut-free. ◀

▶ Remark 14. Notice that while DiLL is famous for introducing formal sums of proofs with
its cut-elimination, we have none of that here. The syntactical reason is that, as exponential
are labelled with indices, there is no non-deterministic choices to make here. The semantical
reason is that sum is introduced while operating a cut between codereliction and contraction
(differentiating a scalar multiplication of functions) or a cut between a dereliction and
cocontraction (applying a convolution product of distributions to a linear map). As detailed
in Section 4, LPDOcc do not behave like this and fundamental solutions or differential
operators are painlessly propagated into the first argument of a distribution or function.

4 An indexed differential linear logic

In the previous section, we have defined a logic DBSLL as the syntactical differential of an
indexed linear logic BSLL, with its cut elimination procedure. It is a syntactical differentiation
of BLL, as it uses the idea that differentiation is expressed through co-structural rules that
mirror the structural rules of LL. Here we will take a semantical point of view: starting from
differential linear logic, we will index it with LPDOcc into a logic named IDiLL, and then
study the relation between DBSLL and IDiLL.

4.1 IDiLL: a generalization of D-DiLL
As we saw in Section 2, Kerjean generalized d̄ and d in previous work [25], with the idea
that in DiLL, the codereliction corresponds to the application of the differential operator D0
whereas the dereliction corresponds to the resolution of the differential equation associated
to D0. This led to a logic D-DiLL, where d̄ and d have the same effect but with a LPDOcc D
instead of D0, and where the exponential connectives are indexed by this operator D. One
would expect that this work could be connected to DBSLL, but these definitions clash with
the traditional intuitions of graded logics. The first reason is syntactical: in graded logics,
the exponential connectives are indexed by elements of an algebraic structure, whereas in
D-DiLL only one operator is used as an index. We then change the logic D-DiLL into a logic
IDiLL, which is much closer to what is done in the graded setting. In this new framework, we
will consider the composition of two LPDOcc as our monoidal operation. Indeed, thanks
to Proposition 4, we have that D1(ϕ) ∗D2(ψ) = (D1 ◦D2)(ϕ ∗ ψ). The convolution ∗ being
the interpretation of the cocontraction rule c̄, the composition is the monoidal operation
on the set of LPDOcc that we are looking for. Moreover, the composition of LPDOcc
is commutative, which is a mandatory property for the monoidal operation in a graded
framework. We describe the exponential rules of IDiLL in Figure 3.

The indexed rules dD and d̄D are generalized to rules dI and d̄I involving a variety of
LPDOcc, while rules d and d̄ are ignored for now (see the first discussion of section 5). The
interpretations of ?DA and !DA, and hence the typing of dI and d̄I are changed from what

FSCD 2023
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⊢ Γ wI⊢ Γ, ?DA

⊢ Γ, ?D1A, ?D2A c
⊢ Γ, ?D1◦D2A

⊢ Γ, ?D1A dI⊢ Γ, ?D1◦D2A

w̄I⊢ !DA
⊢ Γ, !D1A ⊢ ∆, !D2A c̄⊢ Γ,∆, !D1◦D2A

⊢ Γ, !D1A d̄I⊢ Γ, !D1◦D2A

Figure 3 Exponential rules of IDiLL

D-DiLL would have directly enforced (see remark 15). Our new interpretations for ?DA

and !DA are now compatible with the intuition that in graded logics, rules are supposed to
add information.

J?DAK := {g | ∃f ∈ J?AK, D(g) = f} J!DAK := (J?DAK′)′ = D̂(J!AK)
dI : J?D1AK → J?D1◦D2AK d̄I : J!D1AK → J!D1◦D2AK

The reader might note that these new definitions have another benefit: they ensure
that the dereliction (resp. the codereliction) is well typed when it consists in solving (resp.
applying) a differential equation. This will be detailed in Section 4.3.

Notice that a direct consequence of Proposition 4 is that for two LPDOcc D1 and D2,
ΦD1◦D2 = ΦD1 ∗ ΦD2 . It expresses that our monoidal law is also well-defined w.r.t. the
interpretation of the indexed dereliction.

▶ Remark 15. Our definition for indexed connectives and thus for the types of dD and d̄D

differs from the original one in D-DiLL [25]. Kerjean gave types dD : ?D,oldE
′ → ?E′

and d̄D : !D,oldE → !E. However, graded linear logic carries different intuitions: indices are
here to keep track of the operations made through the inference rules. As such, dD and d̄D

should introduces indices D and not delete it. Compared with work in [25], we then change
the interpretation of ?DA and !DA, and the types of dD and d̄D. Thanks to this change, we
will see in the rest of the paper D-DiLL as a particular case of DBSLL.

4.2 Grading linear logic with differential operators
In this section, we will show that IDiLL consists of admissible rules of DBSLL for the monoid
of LPDOcc. In order to connect IDiLL with our results from Section 3, we have to study the
algebraic struture of the set of linear partial differential operators with constant coefficients D.
More precisely, our goal is to prove the following theorem.

▶ Theorem 16. The set D of LPDOcc is an additive splitting monoid under composition,
with the identity operator id as the identity element.

To prove this result, we will use multivariates polynomials: R[X(ω)] :=
⋃

n∈N R[X1, . . . , Xn].
It is well known that (R[X(ω)],+,×, 0, 1) is a commutative ring. Its monoidal restriction
is isomorphic to (D, ◦, id), the LPDOcc endowed with composition, through the following
monoidal isomorphism

χ :


(D, ◦) → (R[X(ω)],×)∑

α∈Nn

aα
∂|α|(_)
∂xα

7→
∑

α∈Nn

aαX
α1 . . . Xαn

n
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The following proposition is crucial in the indexation of DBSLL by differential operators,
since the monoid in DBSLL has to be additive splitting.

▶ Proposition 17. The monoid (R[X(ω)],×, 1) is additive splitting.

The proof requires some algebraic definitions to make it more readable.

▶ Definition 18. Let R be a non-zero commutative ring.
1. R is an integral domain if for each x, y ∈ R\{0}, xy ̸= 0.
2. An element u ∈ R is a unit if there is v ∈ R such that uv = 1.
3. Two elements x, y ∈ R are associates if x divides y and y divides x.
4. R is a factorial ring if it is an integral domain such that for each x ∈ R\{0} there is

a unit u ∈ R and p1, . . . , pn ∈ R irreducible elements such that x = up1 . . . pn and for
every other decomposition vq1 . . . qm = up1 . . . pn (with v unit and qi irreducible for each
i) we have n = m and a bijection σ : {1, . . . , n} → {1, . . . , n} such that pi and qσ(i) are
associated for each i.

Proof of Proposition 17. For each integer n, the ring R[X1, . . . , Xn] is factorial. This
classical proposition is for example proved in [4, 2.7 Satz 7].

Let us take four polynomials P1, P2, P3 and P4 in R[X(ω)] such that P1 × P2 = P3 × P4.
There is n ∈ N such that P1, P2, P3, P4 ∈ R[X1, . . . , Xn].

If P1 = 0 or P2 = 0, then P3 = 0 or P4 = 0, since R[X1, . . . , Xn] has integral domain. If
for example P1 = 0 and P3 = 0, one can define

P1,3 = 0 P1,4 = P4 P2,3 = P2 P2,4 = 1

which gives a correct decomposition. And we can reason symmetrically for the other cases.
Now, we suppose that each polynomials P1, P2, P3 and P4 are non-zero. By factoriality

of R[X1, . . . , Xn], we have a decomposition

Pi = uiQni−1+1 × . . . Qni
(for each 1 ≤ i ≤ 4)

where n0 = 0 ≤ n1 · · · ≤ n4, ui are units and Qi are irreducible. Then, the equal-
ity P1P2 = P3P4 gives

u1u2Q1 . . . Qn2 = u3u4Qn2+1 . . . Qn4 .

Since u1u2 and u3u4 are units, the factoriality implies that n2 = n4 − n2 and that there
is a bijection σ : {1, . . . , n2} → {n2 + 1, . . . , n4} such that Qi and Qσ(i) are associates for
each 1 ≤ i ≤ n2. It means that for each 1 ≤ i ≤ n2, there is a unit vi such that Qσ(i) = viQi.
Hence, defining two sets A3 = σ−1({n2 + 1, . . . , n3}) and A4 = σ−1({n3 + 1, . . . , n4}) we can
rewrite our polynomials P1 and P2 using:

A1,3 = A3 ∩ {1, . . . , n1} = p1, . . . , pm1 R1,3 = Qp1 . . . Qpm1
v1,3 = vp1 . . . vpm1

A1,4 = A4 ∩ {1, . . . , n1} = q1, . . . , qm2 R1,4 = Qq1 . . . Qqm2
v1,4 = vq1 . . . vqm2

A2,3 = A3 ∩ {n1 + 1, . . . , n2} = r1, . . . , rm3 R2,3 = Qr1 . . . Qrm3
v2,3 = vr1 . . . vrm3

A2,4 = A4 ∩ {n1 + 1, . . . , n2} = s1, . . . , sm4 R2,4 = Qs1 . . . Qsm4
v2,4 = vs1 . . . vsm4

which leads to

P1 = u1R1,3R1,4 P2 = u2R2,3R2,4 P3 = u3v1,3R1,3v2,3R2,3 P4 = u4v1,4R1,4v2,4R2,4
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Finally, we define our new polynomials

P1,3 = u1R1,3 P1,4 = R1,4 P2,3 = u3v1,3v2,3

u1
R2,3 P2,4 = u1u2

u3v1,3v2,3
R2,4

gives the wanted decomposition: this is straightforward for P1, P2 and P3 (the coefficients
are chosen for that), and for P4, it comes from the fact that u1u2 = u3u4 (which is in the
definition of a factorial ring), and that v1,av1,bv2,av2,b = 1 which is easy to see using our new
polynomials R1,3, R1,4, R2,3, R2,4 and the equality P1P2 = P3P4. ◀

This result ensures that (D, ◦, id) is an additive splitting monoid. Then, D induces a
logic DBDLL. In this logic, since the order of the monoid is defined through the composition
rule, for D1 and D2 in D we have

D1 ≤ D2 ⇐⇒ ∃D3 ∈ D, D2 = D1 ◦D3

which expresses that the rules dI and d̄I from IDiLL and those from DBDLL are exactly the
same. In addition, the weakening and the coweakening from DBDLL are rules which exists in
IDiLL (the (co)weakening with D = id), and a weakening (resp. a coweakening) in IDiLL can
be expressed in DBDLL as an indexed weakening (resp. an indexed coweakening). In fact,
this indexed weakening is the one that appears in the cut elimination procedure of DBSLL.
Hence, this gives the following proposition.

▶ Proposition 19. Each rule of IDiLL is admissible in DBDLL, and each rule of DBDLL
except d and d̄ is admissible in IDiLL.

With this proposition, Theorem 12 ensures that IDiLL enjoys a cut elimination procedure,
which is the same as the one defined for DBSLL. This procedure will even be easier in the case
of IDiLL. One issue in the definition of the cut elimination of DBSLL is to define wI and w̄I .
This is no longer a problem in IDiLL because these rules already exist in this framework.

4.3 A concrete semantics for IDiLL
Now that we have defined the rules and the cut elimination procedure for a logic able to
deal with the interaction between differential operators in its syntax, we should express how
it semantically acts on smooth maps and distributions. For MALL formulas and rules, the
interpretation is the same as the one for DiLL (or D-DiLL), given in Section 2. First, we give
the interpretation of our indexed exponential connectives. Beware that we are still here in a
finitary setting, in wich exponential connectives only apply to finite dimensional vector spaces,
meaning that JAK = Rn for some n in equation (2) below. This makes sense syntactically as
long as we do not introduce a promotion rule, and corresponds to the denotational model
exposed originally by Kerjean. As mentioned in the conclusion, we think that work in higher
dimensional analysis should provide an higher-order interpretation for indexed exponential
connectives [18].

Consider D ∈ D. Then D applies independently to any f ∈ C∞(Rn,R) for any n,
by injecting smoothly C∞(Rn,R) ⊆ C∞(Rm,R) for any m ≥ n. We give the following
interpretation of graded exponential connectives:

J!DAK := ({f ∈ C∞(JAK,R) | ∃g ∈ C∞(JAK,R), D(f) = g})′ = D̂(J!AK)
J?DAK := {f ∈ C∞(JAK′,R) | ∃g ∈ C∞(JAK′,R), D(f) = g} = D−1(J?AK) (2)

From this definition, one can note that when D = id, we get

J!idAK = (C∞(JAK,R))′ = J!AK J?idAK = C∞(JAK′,R) = J?AK.
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▶ Remark 20. One can notice that, as differential equations always have solutions in our case,
the space of solutions J?DAK is isomorphic to the function space J?AK. The isomorphism in
question is plainly the dereliction dD : f 7→ ΦD ∗ f . While our setting might be seen as too
simple from the point of view of analysis, it is a first and necessary step before extending
IDiLL to more intricate differential equations. If we were to explore the abstract categorical
setting for our model, these isomorphisms would be relevant in a bicategorical setting.

The next step is to give a semantical interpretation of the exponential rules. Most of these
interpretations will be quite natural, in the sense that they will be based on the intuitions
given in Section 4.1 and on the model of DiLL described in previous work [25]. However, the
contraction rule will require some refinements. The contraction takes two formulas ?D1A

and ?D2A, and contracts them into a formula ?D1◦D2A. In our model, it corresponds to the
contraction of two functions f ∈ C∞(E′,R) such that D1(f) ∈ C∞(E′,R) and g ∈ C∞(E′,R)
such that D2(g) ∈ C∞(E′,R) into a function h ∈ C∞(E′,R) such that D1◦D2(h) ∈ C∞(E′,R).
In differential linear logic, the contraction is interpreted as the pointwise product of functions.
This is not possible here, since we do not know how to compute D1 ◦D2(f.g). We will then
use the fundamental solution, which has the property that D(ΦD ∗ f) = f . This leads to the
following definition.

▶ Definition 21. We define the interpretation of each exponential rule of IDiLL by:

w :
{
R → ?idE

1 7→ cst1
w̄ :

{
R → !idE
1 7→ δ0

c :
{

?D1E ⊗̂ ?D2E → ?D1◦D2E

f ⊗ g 7→ ΦD1◦D2 ∗ (D1(f).D2(g))
c̄ :
{

!D1E ⊗̂ !D2E → !D1◦D2E

ψ ⊗ ϕ 7→ ψ ∗ ϕ

dI :
{

?D1E → ?D1◦D2E

f 7→ ΦD2 ∗ f
d̄I :

{
!D1E → !D1◦D2E

ψ 7→ ψ ◦D2

▶ Remark 22. One can note that we only have defined the interpretation of the (co)weakening
when it is indexed by the identity. This is because, as well as for DBSLL, the one of wI and
w̄I can be deduced from this one, using the definition of dI and d̄I . This leads to

wI : 1 7→ ΦD ∗ cst1 = cstΦD(cst1) w̄I : 1 7→ δ0 ◦D = (f 7→ D(f)(0)).

The interpretation for c̄ and c is justified by the fact that in Nuclear Fréchet or Nuclear
DF spaces [25], both the ` and ⊗ connectors of LL are interpreted by the same completed
topological tensor product ⊗̂. They however do not apply to the same kind of spaces, as ?E
is Fréchet while !E isn’t. Thus, basic operations on the interpretation of A`B or A⊗B are
first defined on elements a⊗ b on the tensor product, and then extended by linearity and
completion.

In order to ensure that Definition 21 gives a correct model of IDiLL, we should verify the
well-typedness of each morphism. First, this is obvious for the weakening and the coweakening.
The function cst1 defined on E is smooth, and δ0 is the canonical example of a distribution.
Moreover, we interpret w and w̄ in the same way as in the model of DiLL on which our intuitions
are based. The indexed dereliction is well-typed, because for f ∈ ?D1E, there is g ∈ C∞(E′,R)
such that D1(f) = g by definition. Hence, D1 ◦D2(ΦD2 ∗ f) = D1(f) = g ∈ C∞(E′,R) so
dI(f) ∈ ?D1◦D2E. For the contraction, if f ∈ ?D1E and g ∈ ?D2E, D1(f) and D2(g) are in
C∞(E′,R), and so is their scalar product. Hence, D1 ◦D2(c(f ⊗ g)) = D1(f).D2(g) which
is in C∞(E′,R). The indexed codereliction is also well-typed: for ψ ∈ !D1E, equation (2)
ensures that ψ = D̂1(ψ1) with ψ1 ∈ !E, so ψ ◦D2 = (ψ1 ◦D1) ◦D2 ∈ !D1◦D2E. Finally, using
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similar arguments for the cocontraction, if ψ ∈ !D1E and ϕ ∈ !D2E, then ψ = D̂1(ψ1) and
ϕ = D̂2(ϕ1), with ψ1, ϕ1 ∈ !E. Hence,

ψ ∗ ϕ = (ψ1 ◦D1) ∗ (ϕ1 ◦D2) = (ψ1 ∗ ϕ1) ◦ (D1 ◦D2) = D̂1 ◦D2(ψ1 ∗ ϕ1) ∈ !D1◦D2E.

We have then proved the following proposition.

▶ Proposition 23. Each morphism w, w̄, c, c̄, dI and d̄I is well-typed.

Another crucial point to study is the compatibility between this model and the cut elimination
procedure ⇝. In denotational semantics, one would expect that a model is invariant w.r.t.
the computation. In our case, that would mean that for each step of rewriting of ⇝, the
interpretation of the proof-tree has the same value.

It is easy to see that this is true for the cut wI/w̄I , since D(ΦD ∗ cst1)(0) = cst1(0) = 1.
For the cut between a contraction and an indexed coweakening, the interpretation before the
reduction is δ0(D1 ◦D2)(ΦD1◦D2(D1(f).D2(g))) = D1(f)(0).D2(g)(0), which is exactly the
interpretation after the reduction2.

Finally, proving the invariance of our semantics over the cut between a contraction or a
weakening, and a cocontraction takes slightly more work. The weakening case is enforced by
linearity of the distributions, while the contraction case relies on the density of {δx | x ∈ E}
in !E.

▶ Lemma 24. The interpretation of DBSLL with D as indexes is invariant over the c/c̄ and
the c̄/wI cut-elimination rules, as given in Figure 2.

Proof. Before cut-elimination, the interpretation of the c̄/w as given in Figure 2 is:

(ψ ∗ ϕ)(ΦD1◦D2 ∗ cst1)
= ψ(x 7→ ϕ(y 7→ ΦD1 ∗ (ΦD2 ∗ cst1)(x+ y)))
= ψ(x 7→ ϕ(y 7→ ΦD1(z 7→ ΦD2 ∗ cst1(x+ y − z))))
= ψ(x 7→ ϕ(y 7→ ΦD1(cstΦD2 (cst1))))

= ψ(x 7→ ϕ(y 7→ ΦD1(ΦD2(cst1).cst1)))
= ψ(x 7→ ϕ(y 7→ ΦD2(cst1).ΦD1(cst1))) (by homogeneity of ϕ)
= ψ(x 7→ ϕ(cstΦD2 (cst1).ΦD1 (cst1)))

= ψ(x 7→ ϕ(ΦD1(cst1).cstΦD2 (cst1)))

= ψ(x 7→ ΦD1(cst1).ϕ(cstΦD2 (cst1))) (by homogeneity of ϕ)

= ψ(cstΦD1 (cst1).ϕ(cstΦD2 (cst1)))

= ψ(ϕ(cstΦD2 (cst1)).cstΦD1 (cst1))

= ϕ(cstΦD2 (cst1)).ψ(cstΦD1 (cst1)) (by homogeneity of ψ)

which corresponds to the interpretation of the proof after cut-elimination.
Let us tackle now the c̄/c cut-elimination case. Suppose that we have D1, D2, D3, D4 ∈ D

such that D1 ◦D2 = D3 ◦D4. By the additive splitting property we have D1,3, D1,4, D2,3, D2,4
such that

D1 = D1,3 ◦D1,4 D2 = D2,3 ◦D2,4 D3 = D1,3 ◦D2,3 D4 = D1,4 ◦D2,4.

2 The scalar product (_._) appears as the tensor product in R ⊗ R, and is transparent in sequent
interpretation as R = J⊥K.
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The diagrammatic translation of the cut-elimination rule in Figure 2 is the following.

!D1E ⊗ !D2E !D1,3E⊗!D1,4E⊗!D2,3E⊗!D2,4E

!D1◦D2E =!D3◦D4E

!D3E⊗!D4E !D1,3E⊗!D2,3E⊗!D1,4E⊗!D2,4E

c̄D1,D2

c′
D1,3,D1,4 ⊗c′

D2,3,D2,4

c′
D3,D4

c̄D1,3,D2,3 ⊗c̄D1,4,D2,4

As we interpret formulas by reflexive spaces, we can without loss of generality interpret
contraction as a law c′

Da,Db
: !Da◦Db

E → !Da
E ⊗ !Db

E. Because we are working on finite
dimensional spaces E, an application of Hahn-Banach theorem gives us that the span
of {δx | x ∈ E} is dense in !E. As such, the interpretation of c′ can be restricted to
elements of the form δx ◦ Da ◦Db ∈ !Da◦Db

E, and one checks easily that the dual of c
(Definition 21) is : c′

Da,Db
: δx ◦ Da ◦Db 7→ (δx ◦ Da) ⊗ (δx ◦ Db). Remember that the

convolution of Dirac operators is the Dirac of the sum of points, and as such we have :
c̄Da,Db

: (δx ◦ Da) ⊗ (δy ◦ Db) 7→ (δx+y ◦ Db ◦ Da). Now one can compute easily that the
diagram above commutes on elements (δx ◦ D1) ⊗ (δy ◦ D2) of !D1E ⊗ !D2E, and as such
commutes on all elements by density and continuity of c̄ and c′. ◀

In order to ensure that this model is fully compatible with ⇝, it also has to be invariant
by ⇝dI

and by ⇝d̄I
. For ⇝dI

, the interpretation of the reduction step when the indexed
dereliction meets a contraction is

ΦD3 ∗ (ΦD1◦D2 ∗ (D1(f).D2(g)))
= ΦD1◦D2◦D3 ∗ ((D1(f).D2(g)).cst1)
= ΦD1◦D2◦D3 ∗ ((D1(f).D2(g)).D3(ΦD3 ∗ cst1))
= ΦD1◦D2◦D3 ∗ (D1 ◦D2(ΦD1◦D2 ∗ (D1(f).D2(g))).D3(ΦD3 ∗ cst1))

which is the interpretation after the application of⇝dI ,2. The case with a weakening translates
the fact that ΦD1◦D2 = ΦD1 ∗ΦD2 . Finally, the axiom rule introduces a distribution ψ ∈ !D1E

and a smooth map f ∈ !D1E, and⇝dI ,4 corresponds to the equality ΦD1◦D2 ∗D1(f) = ΦD2 ∗f .
The remaining case is the procedure ⇝d̄I

, which is quite similar to ⇝dI
. The invariance

of the model with the cocontraction case follows from Proposition 4. For the weakening,
this is just the associativity of the composition, and the axiom works because δ0 is the
neutral element of the convolution product. We can finally deduce that our model gives an
interpretation which is invariant by the cut elimination procedure of Section 3.

▶ Proposition 25. Each morphism w, w̄, c, c̄, dI and d̄I is compatible with the cut elimination
procedure ⇝.

5 Promotion and higher-order differential operators

In the previous section, we have defined a differential extension of graded linear logic, which
is interpreted thanks to exponentials indexed by a monoid of differential operators. This
extension is done up-to promotion, meaning that we do not incorporate promotion in the set
of rules. There are two reasons why it makes sense to leave promotion out of the picture:

DiLL was historically introduced without it, with a then perfectly symmetric set of rules.
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Concerning semantics, LPDOcc are only defined when acting on functions with finite
dimensional codomain: D : C∞(Rn,R) → C∞(Rn,R). Introducing a promotion rule
would mean extending the theory of LPDOcc to higher-order functions.

In this section, we sketch a few of the difficulties one faces when trying to introduce promotion
and dereliction rules indexed by differential operators, and explore possible solutions.

Graded dereliction

Indexing the promotion goes hand-in-hand with indexing the dereliction. In Figure 1, we
introduced a basic (not indexed) dereliction and codereliction rule d and d̄. The original
intuition of DiLL is that codereliction computes the differentiation at 0 of some proof.
Following the intuition of D-DiLL, dereliction computes a solution to the equation D0(_) = ℓ

for some ℓ. Therefore, as indexes are here to keep track of the computations, and following
equation (2), we should have (co)derelictions indexed by D0 as below:

⊢ Γ, A
d̄⊢ Γ, !A

⊢ Γ, A
d⊢ Γ, ?A

⊢ Γ, A
d̄D0⊢ Γ, !D0A

⊢ Γ, A dD0⊢ Γ, ?D0A

Mimicking what happens in graded logics, D0 should be the identity element for the
second law in the semiring interpreting the indices of exponentials in DBSLL. However, D0
is not a linear partial differential operator (even less with constant coefficient). Let us briefly
compare how a LPDOcc D and D0 act on a function f ∈ C∞(Rn,R):

D : f 7→

(
y ∈ Rn 7→

∑
α∈Nn

aα
∂|α|f

∂xα
(y)
)

D0 : f 7→

y ∈ Rn 7→
∑

0≤i≤n

yi
∂f

∂xi
(0)


where (xi)i is the canonical base of Rn, yi is the i-th coordinate of y in the base (xi)i,
and aα ∈ R. To include LPDOcc and D0 in a single semiring structure, one would need to
consider global differential operators generated by:

D : f 7→
(

(y, v) 7→
∑

α∈Nn aα(v) ∂|α|f
∂xα (y)

)
, with aα ∈ C∞(Rn,R).

The algebraic structure of such a set would be more complicated, and the composition in
particular would not be commutative, and as such not suitable for the first law of a semi-ring
which is essential since it ensures the symmetry of the contraction and the cocontraction.

Graded promotion

To introduce a promotion law in DBSLL, we need to define a multiplicative law ⊙ on D,
with D0 as a unit. We will write it under a digging form:

⊢ Γ, ?D1?D2A dig⊢ Γ, ?D1⊙D2A

This relates with recent work by Kerjean and Lemay [26], inspired by preexisting
mathematical work in infinite dimensional analysis [18]. They show that in particu-
lar quantitative models, one can define the exponential of elements of !A, such that
eD0 : C∞(Rn,R) → C∞(Rn,R) is the identity. It hints at a possible definition of the
multiplicative law as D1 ⊙D2 := D1 ◦ eD2 .

Even if one finds a semi-ring structure on the set of all LPDOcc, the introduction of
promotion in the syntax means higher-order functions in denotational models. Indexed
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exponential connectives are defined so-far thanks to the action of LPDOcc on functions with
a finite number of variable. To make LPDOcc act on higher order function (e.g. elements of
C∞(C∞(Rn,R),R) and not only C∞(Rn,R)) one would need to find a definition of partial
differential operators independent from any canonical base, which seems difficult. Moreover,
contrarily to what happens regarding the differentiation of the composition of function, no
higher-order version of the chain rule exists for the action of LPDOcc on the composition
of functions. A possible solution could come from differentiable programming [7], in which
differentials of first-order functions are propagated through higher-order primitives.

As a trick to bypass some of these issues, we could consider that the !D modalities are not
composable. This is possible in a framework similar to the original BLL or that of IndLL [13],
where indexes have a source and a target.

6 Conclusion

In this paper, we define a multi-operator version to D-DiLL, which turns out to be the finitary
differential version of Graded Linear Logic. We describe the cut-elimination procedure and
give a denotational model of this calculus in terms of differential operators. This provides
a new and unexpected semantics for Graded Linear Logic, and tighten the links between
Linear Logic and Functional Analysis.

There are several directions to explore now that the proof theory of DBSLL has been
established. The obvious missing piece in our work is the categorical axiomatization of our
model. In a version with promotion, that would consist in a differential version of bounded
linear exponentials [6]. A first study based on with differential categories [2] was recently
done by Pacaud-Lemay and Vienney [28]. While similarities will certainly exist in categorical
models of DBSLL, differences between the dynamic of LPDOcc and of differentiation at 0 will
certainly require adaptation. In particular, the treatment of the sum will require attention
(proof do not need to be summed here while differential categories are additive). Finally,
beware that our logic does not yet extend to higher-order and that without a concrete
higher-model it might be difficult to design elegant categorical axioms.

Another line of research would consist in introducing more complex differential operators
as indices of exponential connectives. Equations involving LPDOcc are extremely simple
to manipulate as they are solved in a one step computation (by applying a convolution
product with their fundamental solution). The vast majority of differential equations are
difficult if not impossible to solve. One could introduce fixpoint operators within the theory
of DBSLL, to try and modelize the resolution of differential equation by fixed point. This
could also be combined with the study of particularly stable classes of differential operators,
as D-finite operators. We would also like to understand the link between our model, where
exponentials are graded with differential operators, with another new model of linear logic
where morphisms corresponds to linear or non-linear differential operators [32] [28].
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15 Yōji Fukihara and Shin-ya Katsumata. Generalized bounded linear logic and its categorical
semantics. In Foundations of Software Science and Computation Structures (FoSSaCS).
Springer International Publishing, 2021.

16 Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin Pierce. Linear
Dependent Types for Differential Privacy. POPL ’13. ACM, 2013.

17 Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo Uustalu.
Combining effects and coeffects via grading. International Conference on Functional Program-
ming, ICFP. Association for Computing Machinery, 2016.

18 R. Gannoun, R. Hachaichi, H. Ouerdiane, and A. Rezgui. Un théorème de dualité entre
espaces de fonctions holomorphes à croissance exponentielle. Journal of Functional Analysis,
171(1), 2000.

19 Dan Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Programming
Languages and Systems,, European Symposium on Programming, (ESOP). Springer Berlin
Heidelberg, 2014.

20 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.
21 Jean-Yves Girard. Normal functors, power series and λ-calculus. Annals of Pure and Applied

Logic, (2), 1988.
22 Jean-Yves Girard, Andre Scedrov, and Philip Scott. Bounded linear logic. 9, 08 1991.
23 Lars Hormander. Linear partial differential operators. Springer Berlin, 1963.
24 Hans Jarchow. Locally convex spaces. B. G. Teubner Stuttgart, 1981. Mathematical Textbooks.
25 Marie Kerjean. A logical account for linear partial differential equations. In Logic in Computer

Science (LICS), Proceedings. Association for Computing Machinery, 2018.
26 Marie Kerjean and Jean-Simon Pacaud Lemay. Taylor Expansion as a Monad in Models of

Dill, 2023. preprint.
27 O. Laurent. Etude de la polarisation en logique. Thèse de Doctorat, Université Aix-Marseille

II, March 2002.
28 Jean-Simon Pacaud Lemay and Jean-Baptiste Vienney. Graded differential categories and

graded differential linear logic, 2023. preprint.
29 Paul-André Melliès. Parametric monads and enriched adjunctions. 2012.



F.Breuvart, M.Kerjean and S.Mirwasser 17:21

30 Michele Pagani. The Cut-Elimination Theorem for Differential Nets with Promotion. In Typed
Lambda Calculi and Applications, TLCA 2009, Proceedings.

31 L. Schwartz. Théorie des distributions. Publications de l’Institut de Mathématique de
l’Université de Strasbourg, No. IX-X. Hermann, Paris, 1966.

32 James Wallbridge. Jets and differential linear logic. Mathematical Structures in Computer
Science, 30(8), 2020. doi:10.1017/S0960129520000249.

FSCD 2023

https://doi.org/10.1017/S0960129520000249

	1 Introduction
	2 Linear logic and its extensions
	2.1 Distribution theory as a semantical interpretation of DiLL
	2.2 Differential operators as an extension of DiLL
	2.3 Indexed linear logics: resources, effects and coeffects

	3 A differential BSLL
	4 An indexed differential linear logic
	4.1 IDiLL: a generalization of D-DiLL
	4.2 Grading linear logic with differential operators
	4.3 A concrete semantics for IDiLL

	5 Promotion and higher-order differential operators
	6 Conclusion

