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Abstract

Automatic Differentiation is the study of the efficient computation of differentials. While
the first automatic differentiation algorithms are concomitant with the birth of computer sci-
ence, the specific reverse differentiation algorithm has been brought to a modern light by its
application to neural networks. In this work, we unveil a surprising connection between reverse
differentiation and Godel’s Dialectica interpretation, a logical translation that realizes semi-
classical axioms. This unexpected correspondence is detailed through the setting of A-calculus,
linear logic, and categories. Thus reverse differentiation, as a logical transformation, extracts
intentional information on programs and proofs.

1 Introduction

Dialectica was originally introduced by Gdodel in a famous paper [G5d58] as a way to constructively
interpret an extension of HA [AF98], but turned out to be a very fertile object of its own. Judged
too complex, it was quickly simplified by Kreisel into the well-known realizability interpretation that
now bears his name. Soon after the inception of Linear Logic (LL), Dialectica was shown to factorize
through Girard’s embedding of LJ into LL, purveying an expressive technique to build categorical
models of LL [dP89]. In its logical outfit, Dialectica led to numerous applications and was tweaked
into an unending array of variations in the proof mining community [KohO8§].

The modern way to look at Dialectica is however to consider it as a program translation, or
more precisely two mutually defined translations of the A-calculus exposing intensional informa-
tion [Péd14].

In a different scientific universe, Automatic Differentiation [GW08] (AD) is the field that studies
the design and implementation of efficient algorithms computing the differentiation of mathematical
expressions and numerical programs. Indeed, due to the chain rule, computing the differential of a
sequence of expressions involves a choice, namely when to compute the value of a given expression
and when to compute the value of its derivative. Two extremal algorithms coexist. On the one hand,
forward differentiation [Wen64] computes functions and their derivatives pairwise in the order they
are provided, while on the other hand reverse differentiation [Lin76] computes all functions first and
then their derivative in reverse order. Depending on the setting, one can behave more efficiently
than the other. Notably, reverse differentiation has been critically used in the fashionable context
of deep learning.

Differentiable programming is a rather new and lively research domain aiming at expressing au-
tomatic differentiation techniques through the prism of the traditional tools of the programming
language theory community. As such, it has been studied through big-steps semantics [AP20],



continuations [WZD™19], functoriality [EI18], and linear types [BMP20]. It led to a myriad of im-
plementation over rich programming languages, proven correct through semantics of higher-order dif-
ferentiable functions [KPJK 22, [Vik21] [MP21]. Surprisingly, these various principled explorations
of automatic differentiation are what allows us to draw a link between Dialectica and differentiation
in logic.

The simple, albeit fundamental claim of this paper is that, behind its different logical avatars, the
Dialectica translation is in fact a reverse differentiation algorithm, where the linearity and involu-
tivity of differentiation have been forgotten. In the domain of proof theory, differentiation has been
very much studied from the point of view of linear logic. This led to Differential Linear Logic [ER06]
(DiLL), differential categories [BCSOG], or the differential A-calculus. To support our thesis with evi-
dence, we will draw a correspondence between each of these objects and the corresponding Dialectica
interpretation.

We would like however to expose immediately the kernel of this correspondence between Dialec-
tica and reverse differentiation. In its most traditional form, Dialectica acts as some elaborate form
of prenexation form on formulas of intuitionnistic arithmetic:

A~ JaVyAp(z,y]

Like the differential transformation of differentiable programming which apply to programs of all
types, Dialectica applies to all formulas. It is however acknowledged [AF98] that its crucial feature
lies in the transformation of implication.

(A = B)ple; o, @: 7] := Ap (@, ¥av) = Bp (i, D)

The variable 15 is functional with two arguments, and in fact it is propagated through a chain
rule through modus ponens, as detailed in Section [2:2.I] The chain rule is the bread and butter
of automatic differentiation. It states that differentiation is non-functorial, meaning that for two
composable functions:

D.(go f) = Df(a)(g) oDgf.

Reverse automatic differentiation consists in propagating differentials by reversing the order in which
the functions were primarily computed. For the composition of two functions f and g, this means that
after computing a and f(a), one will compute Dy, (g) and only after that compute D) (g) o Dy f.
Computationally, this means a continuation-passing style transformation on derivative [WZDT19).
The last ingredient to understand why Dialectica is reverse differentiation consists in the notion
of linear substitution, introduced by Ehrhard and Regnier in their differential A-calculus [ER03].
While the usual application between an abstraction and a value is S-reduced to a substitution, the
application between a differential and a value is Sp-reduced to a linear substitution, summing over
all the linear occurrences of a variable and substituting them:

D(\z.t)v — Az. <g; ~v>

The linear substitution of the composition of two A-terms is computed as follows:

o= (o) (o (5 v

The left term of the sum indicates the linear substitution of a variable in head position, while the
second is the exact translation of the chain rule.

Now let us finally observe the modern Dialectica transformation [dP89][Péd14], where array of
variables are replaced by A-terms. The computational Dialectica applied to the composition of two
A-terms is then computed as follows:




(su)y = M. (s (u®,m)) ® ((s*.2) Tu® >=uy,)

The ® operation denotes a formal sum, and 7 is to be understood as a continuation. The »=
operation corresponds to the bind of a monad handling properly the sums. The transformation (_)*
denotes a functorial differentiation on terms, which is defined mutually with (_),. We hope the
reader sees now that this is nothing but a CPS variant of Equation [I] and as such consists in a
reverse differentiation on A-terms. We acknowledge that this has none of the optimizations that are
usually embedded in differentiable programming and detail more of that in Section 2.1} To ease the
understanding of the reader, we will tackle the computational content of Dialectica only in Section 5]
and we will first explore less specific settings in which the correspondence between Dialectica and
reverse differentiation takes place.

Related works As far as we know, this is the first time a formal connection has been drawn be-
tween Dialectica and reverse differentiation. However, several works around Dialectica are close to
the ones on differentiable programming. Powell [Pow16] formally relates the concept of learning with
realizers for the Dialectica translation. His definition of learning algorithm relates to the concept of
approximation. Differentiation being just the best linear approximation, our work merely formalizes
this relation with linearity. More generally, Dialectica is known for extracting gquantitative infor-
mation from proofs [Koh08], and this relates very much with the quantitative point of view that
differentiation has brought to A-calculus [BM20]. Herbelin also notices at the end of its paper real-
izing Markov’s rule through delimited continuations that this axiom has the type of a differentiation
operator [HerI(]. We explore the possible consequences of formally relating reverse differentiation
and Dialectica to proof mining and Herbelin’s work in the conclusion. Finally, reverse differentiation
has also been explored through the categorical concept of lenses [CGGT22|, which are known to be
related to Dialectica categories [dP91].

Outline and Contributions

e We begin this paper in Section[2.1] by reviewing the functorial and computational interpretation
of differentiation, mainly brought to light by differentiable programming. In particular, we
recall Brunel, Mazza and Pagani’s result that reverse differentiation is functorial differentiation
where differentials are typed by the linear negation.

e Section [2.2] provides a simple explanation of Dialectica in terms of differentiation that we
believe to be new. Specifically, Section shows that unification in Dialectica agrees to a
chain rule, while Section [2.2.2] shows that the types of existential variables in the Dialectica
interpretation are the one of functorial reverse derivatives.

e In Section [3| we consider a differential storage category (that is, a categorical model of Intu-
itionnistic DiLL) £, and construct a reverse differentiation functor from the co-Kleisli category
of L to the Dialectica category over it. We show that this reverse differentiation functor is
right-adjoint to a forgetful functor between £y and L.

e In Section [] we relate the Dialectica transformation acting on LL and DiLL. We build a
Dialectica transformation from LL to DiLL, which preserves provability and factorizes the
Dialectica transformation on A-calculus when only intuitionnistic formulas of LL and DilLL are
considered.

e In Section [5| we prove a contravariant logical relation between terms of the differential -
calculus and the two transformation over A-terms realizing witness and counter types of the
Dialectica transformation. We then define a translation over terms typed by counter types that
allows translating directly terms which underwent the Dialectica translation into differential
A-calculus.



2 Background material

2.1 Differentiable programming

We give here an introduction to Automatic Differentiation (AD) oriented towards differentiable pro-
gramming and higher-order functional programming. Our presentation is free from partial derivatives
and Jacobians notations, which are traditionally used for presenting AD. We refer to [BPRS17] for
a more comprehensive introduction to automatic differentiation.

Notation 1. We write Dy(f) for the differential of f at ¢. We denote by — - — the pointwise
multiplication of reals or real functions. In the rest of the paper, we will freely make use of the linear
logic notation for arrows : E — F' is the type of a possibly non-linear map, while £ — F' is the
type of a linear map.

Forward and reverse differentiation Let us recall the chain rule, namely for any two differentiable
functions f: E—F and g : F — G and a point : F we have

Di(gof) :+ E—G
= Dyy(g) o Di(f)

When computing the value of Di(g o f) at a point v : E one must determine in which order
the following computations must be performed: f(t), D¢(f)(v), the function Dy« (g) and finally
Dy (9)(D(f)(v)). The first two computations are independent from the other ones.

In a nutshell, reverse differentiation amounts to computing first f(¢), then g(f (%)), then D« (g)(v)),
then computing D;(f) and lastly the application of Dy« (g) to (D¢(f)(v)). Conversely, forward dif-
ferentiation computes first f(t), then D;(f), then g(f(¢)), then the function D) (g) and lastly
applies D) (g) to D¢(f). This explanation naturally fits into our higher-order functional setting.
For a diagrammatic interpretation, see for example [BMP20].

These two techniques have different efficiency profiles, depending on the dimension of E and F
as vector spaces. Reverse differentiation is more efficient for functions with many variables going
into spaces of small dimensions. When applied, they feature important optimizations: in particular,
differentials are not propagated through higher-order functionals in the chain rule but they are
propagated compositionally. What we will present in Section [5.1] is devoid of any optimization and
is thus extremely inefficient. Algorithmic efficiency is not the purpose of this paper. Our goal is
instead to weave links with Dialectica and as such we do not prove any complexity result.

Functorial Differentiation Consider f : R” — R™ differentiable. Then for every a € R™, one has
a linear map D, f : R™ — R™ and the forward differential transformation has type
B(f)' R® x R™  — R"xR™
' (CL,.%‘) = (f((l),Daf~l‘)
where — - — stands for the scalar product.
In backward mode, their transformation also acts on pairs, but with a contravariant second

component, encoded via a linear dual (—)". The notation (—)" is borrowed from LL, where the
(hence linear) negation is interpreted denotationally as the dual on R-vector spaces:

[A+] = L([A].R).
Thus, an element of AL is a map which computes linearly on A to return a scalar in R.

[ R*xR™ — R™xRY
D) Fd 2 oo 02



This encodes backward differentiation as, during the differentiation of a composition g o f, the
contravariant aspect of the second component will make the derivative of g be computed before the
derivative of f. The functorial presentation of differentiation in functional programming was explored
by Eliott [EIIL§], while Brunel, Mazza and Pagani [BMP20| refined the functional presentation by
Wang and al. [WZD™719] using a linear negation on ground types.

Higher-order differentiation Indeed, when one considers more abstractly a function f : £ — F
between (topological) vector spaces, one has for any point a : F a forward differential:

Dof :E—F

and a reverse differential:

, F/ S El
(Daf) { (eF — (LoDuf)

The general type of a reverse differential is thus :
(D f)Y:E=F — FE.

This is to be related with the type of witness variable in the Dialectica transformation, see Sec-
tion What Dialectica does can be understood as a refinement over the dual type, to allow the
propagation of reverse differentials. Let us insist on the fact that the type of derivative enforces the
order of their evaluation. For two functions f : F—F and g : F—G, differentials (D.f)" : F' — E’
and (Dy(e)g)" : G' —o F' can only be computed in reverse order (D.f)" o (Dfeyg)' : G' — E’ D

Composing higher-order differentials On finite dimensional vector spaces, one has R™" ~ R™, which
gives the impression that one could compose the reverse derivatives of composable functions f :
R™ —R™ and g : R™ — RP. However, this reasoning does not lift to higher-order.

The fact that the first member is covariant while the second is contravariant makes it impossible
to lift this transformation to higher-order. Indeed, when one considers more abstractly a function
f+ E—F between (topological) vector spaces , one has:

J ExF — FxFE
g(f)-{ (a,0) = (f(a),(Dof))

Consider the functorial reverse differential B( ): FxG —Gx F'. If G and F are not self-
dual,there is no way to define the composition of %( f) with g(g) Said otherwise, at higher-order,
the functorial reverse differentials of two composable programs/functions are not composable. Thus
we would like to argue that higher-order differentiation is achieved using two distinct differential
transformations. This is the case in the differential A-calculus for forward AD or the Dialectica
Transformation for reverse AD, as we show in Section

2.2 Dialectica

In this section we show that already in its historical version, Dialectica is well explained trough the
concept of reverse differentiation. This intuitions will be made formal when linearity enters the game
in the following sections.



(t=u)p:=t=u (A= B)pld;e), ii; ¥ := Ap(il, $iiv) = Bp (i, v)
J_D =1 (VZA)D[lT7Z,f] = AD[ﬁZ,f]
Tp:=T (32.A)plz; u, x] := Apld, ¥z]

Figure 1: Dialectica interpretation of HA

2.2.1 Dialectica acting on formulas of HA

In this section, we examine Dialectica as a logical transformation acting on intuitionistic arithmetic.
Godel’s Dialectica transforms a formula A of Heyting Arithmetic (HA) into a formula Ap (@, ¥), where
Ap is a formula of HA® parametrized by a witness sequence i and a counter sequence ¥ of variables
of System T. The need for higher-order terms is a staple of realizability, where logical implications
are interpreted as some flavour of higher-order functionsﬂ The interpretation of formulas is detailed
in Figure [1| where the “;” symbol denotes the concatenation of sequences of variables.

Theorem 1. If Fya A then Fyae 3. VZ. Apld, Z].

The most involved case of the above transformation is largely acknowledged to be the one for
implication. It can be explained as the least unconstructive way to perform a skolemization on the
implication of two formulas which already went through the Dialectica transformation [Koh08| 8.1].
It is also presented as a way to “extract constructive information through a purely local procedure”
[AF98, 3.3]. This second intuition corresponds to the one of differentiation: extracting at each point
the best local approximation of a function.

Let us notice that in the Dialectica transformation, the witness sequences for function types
verify the chain rule. Consider two implications (A = B) and (B = C) and their composition
(A = (), through the Dialectica interpretation:

(A= B)plo1;¢1, ur;v1]:= Ap(ur,tp1 us v1) = Bp(P1 u1,v1)
(B = C)plp2; 2, ug; v2]:= Bp(uz, 2 ug va) = Cp(d2 uz,va)
(A= C)plos; s, ug; vs]:= Ap(us, Y3 uz vs) = Cp(psus,vs)

The Dialectica interpretation of the composition provides a solution to the system below in the
general case.

(A= B)plo1; 91, ur;v1], (B = C)pld2; 2, ug; v2] F (A = C)plps; ¥z, us; vs)

This solution amounts to the following equations:
uz =u1  P3uzvz =tYPrurvr V3 =v2  Pauz =¢P1u1 U2 =Prur V2 =Prui vy

which can be simplified to:

B3 us = 2 (P1u3) Y3 uz vz = Yo (1 u3) (1 u3zv3)

IThe only case where we would have an ambiguity would be for functions acting on self-dual space E/ = E. This is
famously the case for finite dimensional vector spaces or Hilbert spaces, but is otherwise very scarce in mathematics
and is in particular false on spaces of differentiable functions C*(R"™,R).

2Dialectica was the first of its kind, giving rise to its nickname as the functional interpretation, but other realiz-
abilities are no less functional.




W(L) = C(L)=0 WE=u) = Clt=u)=10
W(T) = C(T)=0 W(AVB) = N;W(A);W(B)
W(AAB) = W(A;W(B) C(AvB) = C(A);C(B)
CAAB) = CA;C(B) CA=B) = WA)xC(B)
W(A = B) = (W(A) = W(B)) x (W(A) = C(B) = C(A4))

Figure 2: Types of Dialectica realizers

While the left equation represents the traditional functoriality of composition, the right equation
is exactly the chain rule. Said otherwise, we would like to assert the following.

Thesis 1. The pair (d_;, 7,[7) of sequences of variables witnessing the Dialectica interpretation of an
implication represents sequences of functions ¢ and their differential .

However, many functional transformations satisfy the chain rule [AAKMI0]. We will strengthen
our claim and show that Dialectica is indeed reverse differentiation.

2.2.2 Witness and counter types

The witness and counter sequences @ and ¢ can actually be typed by sequences of types of System
T, giving a better understanding of the transformation. The type W(A) is called the witness type
of A while the type C(A) is called its counter type. The formula Ap then acts as an orthogonality
test between these two types. They are detailed in Figure

Remember that if a function has the type f : A — B, its differential is usually presented with
the type Df : A—= A — B, the second arrow in D f representing a linear map from A to B, that is
the differential of f at a point. Here, the second projection of the witness type of an arrow is slightly
different. Indeed, the second arrow in this projection is contravariant, as the second component of
W(A = B) is W(A) = C(B) = C(4)

That is, as explained in Section if C(A) were to represent the dual of A, the second projection
of the witness of an arrow has the type of a reverse differential. The type W(A = B) = (W(A) =
W(B)) x (W(A) = C(B) = C(A)) is thus the type of a pair of a function and its reverse differential.
We will show that the dynamical theory of the terms typed by witness and counter types also agree
with reverse differentiation. This necessitates linear implications, which will be done in Section [4
The interpretation of Dialectica as a reverse differentiable programming language will be performed
in Section 5.1l

3 Differential categories results in Dialectica Categories

The Dialectica transformation was studied from a categorical point of view by De Paiva and Hyland
[dP89]. They have been used as a way to generate new models of LL [dP89, [Hed14]. Our point of
view is quite orthogonal. We suggest instead that they may characterize specific models of LL.

Definition 2 ([dP89]). Consider C a category with finite limits. The Dialectica category 2(C) over C
has as objects subpairs a C (A, X) of objects of C, and as arrows pairs (f, F) : « C (A, X)—3 C (B,Y)
of maps

f: A — B

F: AxY — X

such that if (a; F(a;y)) € a then (f(a);y) € 5. Consider

(f.F): aC(AX) — BC(BY)
and (9,G): BC(BY) — ~C(C2)



two arrows of the Dialectica category. Then their composition is defined as

(9:G) o (f, F) := (9o f,(a,2) = G(f(a), F(a, z)).

The identity on an object o C (A, X) is the pair (id 4, (_).2) where (_).2 is the projection on the
second component of A x X.

In our point of view, objects o of Z(C) generalize the relation between a space A and its tangent
space. Arrows (f, F) represents a function and its reverse map F, according to the typing intu-
itions developed in Section Composition is exactly the chain rule. Therefore, it is natural to
investigate the relationship between Dialectica categories and differential categories. The various
axiomatizations for differentiation in categories [BCS06l [CC14], all encode forward derivatives. To
encode reverse derivatives in these structures one must use some notion of duality. Therefore we
will restrict to the narrow setting of categorical models of DiLL. Indeed, the linear duality at stake
allows making use of the intuitions developed in Section 2.1}

Consider L a categorical model of DiLL as formalized by Blute, Cockett, Seely and Fiore. We refer
to [BCLS20] for an overview of the different variations within definitions of differential categories.
We have a monoidal closed category (£,®,1) endowed with a biproduct ¢, a strongly monoidal
comonad ! and a natural transformation 0 satisfying the appropriate commutative diagrams [Fio07]:

(Ldaﬂ):(ﬁ,@)%(ﬁ,(» 0:ld!—\.

Let us denote (_)* the hom-functor: A +— L£(A,1). Consider f € £L(!A, B) a morphism of the
coKleisli category £;. The morphism fod € L(A®!A, B) traditionally interprets the differential of
the function f. Through the embedding B— B+ and the monoidal closedness of £ one constructs
a morphism:

fode L(A® B+, Ah).
Composing with the dereliction dg. € L(!(B*), B+) and the strong monoidality of !, one gets a

morphism:

D(f) e £((A x BY), A1)

Proposition 3. Suppose that the category L, has finite limits. Then one has a functor from the
co-Kleisli £, to the Dialectica category over it Z(Ly):

Ly — @(ﬁl)
R:{ A — AxAt

fo= (5D

Proof. If f is a morphism from A to B in £, then f € L(!A, B) and 3(]‘) is a morphism from
Ax Bt to At in L, so (f, E(f)) is indeed a morphism from A x A+ to B x B+ in 2(L)). If f is the
identity on A in £y, that is f = da € L(1A, A), then the comonad equation for d [Fio07, Definition
4.2.2] ensures that E(f) is indeed the projection on the second component. Finally, if f € L(!A, B)
and g € L(!B, (), then the second monad rules guarantees that

golfopuod=godo(fod®!f)o(l®m)

where m is the composition of the biproduct diagonal and the comonad strong monoidality. See
the litterature [Fio07] for explicit handling of annihilation operators and coproducts in this formula,
which is nothing but the categorical restatement of the chaine rule. The above formula then exactly

corresponds to the composition in £y of D(g) and (f o 7.1, g(f)), modulo the strong monoidality
of I O

We have an obvious forgetful functor:



D(Ly) — L
U: ¢ aCAxX - A
(f, F) = f
which is left adjoint to R, both forming a co-reflection on £;. However, the Dialectica category

over Ly is in no way equivalent to Ly, as if no linearity condition is imposed several operators other
than differentiation can verify the chain rule.

u
—

@(ﬁr) €L Eg

~_
R

Remark 1. The fact that objects of Dialectica categories generalize the relation between a manifold
and its tangent space is noticed in by de Paiva and da Silva in a recent paper [dPdS21], remark 4.1].

Example 4. For the co-kleisli of a differential storage categories to admit finite limits, it is enough
that is admits all equalizers, as it always has finite products and a terminal objects. This include any
category of complete spaces where functions are continuous. This exclude models with only bounded
non-linear maps [KTT6] but include Kéthe spaces [Ehr02)( equalizers are double orthogonal of the
equalizer in Set) or convenient models [BETT2].

This setting can surely be relaxed, and there might be broader relations between Dialectica
categories and differential categories, for example with reverse derivative categories [CCG™20].

4 Dialectica is reverse differentiation in linear logic

We now study the differential connection between Dialectica and LL from a syntactic point of view.
After its original presentation by Godel, Dialectica has been refined as a logical transformation
acting from MELL to the simply-typed A-calculus with pairs and sums, by looking at the witness
and counter types [dP89).

This presentation allows removing a lot of historical accidental complexity, including the need for
sequences of variables. We will not detail here the action of this translation on terms of A-calculus,
as we will give in the next section the refined computational version of the Linear Dialectica by
Pédrot. These works are type-oriented, working directly on witness types and terms of A-calculus.
They are distinct from works applying Dialectica directly on formulas of LL [FO11]. Formulas of LL
are constructed according to the following grammar.

AB:==0|1|L|T|A®B|A&B|ABB|A®B|IA|?4

We define as usual the involutive negation (—)*, & being the dual of @, ® the dual of % and !
the dual of ?. As per the standard practice, we define the linear implication A — B := A+ % B,
from which the usual non-linear implication can be derived through the call-by-name encoding
A = B :=!A — B, where the exponential formula !A represents the possibility to use A an
arbitrary number of times.

Figure [3| defines the witness and counter interpretations of LL connectives into intuitionistic
types. While this refinement was introduced by de Paiva [dP89], we incorporate to the translation
one of the tweaks made by Pédrot [Péd14], namely the fact that W(0) := 1. This is justified by the
irrelevance of dummy terms. We refer the reader to the literature for more details on dummy terms
and computability conditions in the Dialectica translation.

As expected, the interpretation of the intuitionistic arrow factorizes through the call-by-name
translation of LJ into LL, i.e. we have

W(lA — B) = W((!A® BH)1) = (W(A) = W(B)) x (C(B) = W(A) = C(4))
which through cartesian closedeness is isomorphic to W(A = B) as defined in Figure



W(0) = 1 C(0) = 1

W(1) = 1 C(1) = 1

W(AL) = C(A) C(AY) = W(A)

W(A®B) = WA)+W([B) CA®B) = C(A)xC(B)

W(lA) = W(A) C(14) = W(A) = C(A)
WA®B) = W(A)x W(B)

a
=~
®
=
|

W(A) = C(B)) x (W(B) = C(4))

Figure 3: Witness and counter types for LL formulas into A *-calculus [dP89, [Péd14].

' B [IAIAF B I AF B
A e — 761
T/AF B TIAF B TIAF B
—w THIA  AFIA LEA S
H14 A FIA Tk 1A
T+ A
Tr14 ©

Figure 4: Exponential rules of DiLL

Remark 2. The fact that cartesian closedeness is needed to make the Dialectica Translation on LJ
and the one on LL correspond might be related to the operational semantics of the differential A-
calculus. Indeed, while semantically they are equivalent, dynamically the linear logic correspondence
means that the linear argument C(B) is evaluated before the non-linear argument W(A). This is
also what happens for the linear substitution of the differential A-calculus, where the linear variable
is to be substituted before the non-linear variable.

4.1 Differential Linear Logic

Figure [4] recalls the exponential rules of Differential Linear Logic [ER06] (DiLL), presented here
in their intuitionistic version for reasons explained below. DiLL adds to LL rules to differentiate
proofs which are recalled together with the usual exponential rules in Figure @l While LL already
features a dereliction rule, that forgets linear proofs into non-linear ones, DiLL adds in particular
a co-dereliction rules, which linearize a non-linear proof into a linear one. To sum it up, to the
traditional weakening w, contraction ¢, dereliction d and promotion p rules DiLL adds:

e a co-weakening rule w, accounting for the introduction of constant functions,
e a co-contraction rule ¢, accounting for the possibility to sum in the function domains,

a co-dereliction d, accounting for the possibility to differentiate functions

sums of proofs, generated by the cut-elimination procedure,

cut-elimination rules account for the basic rules of differential calculus.

A previously, we argue that witness variables for implications are pairs of a function and its
reverse differential. The description of Ap as an orthogonality relation between witness and counter
types acts as a test for this relation. However, the semantics of DiLL is neither forward nor backward.
Indeed, as DilLL is classical, one can go from forward mode to reverse mode and to reverse mode
to forward mode, as detailled in Section 2.} Syntactically, this is due to the associativity of %,
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W(0) = 0 C(0) = T

W(1) = T C(1) - 0

W(T) = T C(T) = 0

WA®B) = W(A)2W(B) C(A®B) = (W(4)—oC(B))

W(A—B) = (W(A)— W(B)) &(W(B) — C(A))
&(C(B) — C(4))  C(A—B) = W(A)®C(B)

W(A&LB) = W(A) & W(B) C(A& B) C(A) & C(B)

W(A®B) = W(A)a®W(B) C(A®B) = C(A)&C(B)

W(IA) = IW(A) C(1A) —  IW(A) — C(A)

Figure 5: Witness and counter types for ILL formulas into DiLL

the multiplicative disjunction behind the the linear implication. Hence, we need to encode LL in
DiLL through a contravariant translation on arrows and we want to make DiLL act on intuitionistic
formulas in order to force the reverse translation.

We now make the Dialectica translation act on formulas of intuitionistic LL:

AB:=0|1|T|A®B|A&B|A—-B|A®B|IA

While in classical LL the linear implication is encoded through A — B := A+2 B, it is a primitive
connective of the intuitionnistic version. This has a major influence in terms of the execution order
of programs, or equivalently on the composition order of functions [CFMM16]. Accordingly, we will
use intuitionistic LL to enforce the reverse differentiation of functions.

We present the Dialectica translation from LL to DiLL in Figure [5] and prove a basic soundness
result in Proposition[7] This translation hardwires the fact that an implication must be accompanied
by its reverse differential. If the implication depends on an exponential, then some real differentiation
will happen, otherwise the differential part will just hardwire the classicality of implications.

With the translation defined in Figure [5| and through the usual encoding A — B := A+ % B,
one has

W(!A — B) = (C(B) — 'W(A) — C(A)).

As such, the functional translation from LL to DiLL only encodes the differential part of Dialectica.
It corresponds to our running intuition that the second component of W(!A — B) types a reverse
differential, linear in the dual of B and non-linear in A.

Remark 3. While differential, the translation presented in Figure [f]is not specifically reverse. Indeed,
as Differential Linear Logic is classical, one has equivalently:

(IW(A) —0 C(B) — C(A)) = (IW(A) — W(A) — W(B)).

That is, due to the presence and associativity of the %, or equivalently due to the involutive linear
negation reverse and forward derivative are equivalent. It is reverse when one considers only the —o
connective, as in Proposition However, we need DiLL to be classical to make proposition [6] work.
To avoid the confusion above, one could design a reverse intuitionistic DiLL.

Lemma 5. For A a formula of intuitionnistic LL, we have a proof of W(A) - C(A) — L in intuition-

nistic LL.

Proof. The proof is done by induction on the formula A, thanks to the elimination and construction
rules of its connectivesﬂ The only non-trivial case is the one for !A, which uses dereliction and
contraction. O

3We refer to the wiki on Linear Logic for a concise presentation of these rules http://1lwiki.ens-lyon.fr/
mediawiki/index.php/Intuitionistic_linear_logic
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Thanks to the co-structural rule of DiLL, which encode the possibility to differentiate proofs, we
obtain another duality relation between counter and witness types.

Lemma 6. For A a formula of intuitionnistic LL, we have a proof of W(A) — L F C(A) in classical
DiLL.

Proof. The proof is done by induction on the formula A. The case for ®, & and @ are straightforward.
The case for —o however needs to hard-encode the fact that for any formula C' and D, C& D — 1 =
(C—o1l)® (D —ol)and (C — D) — L =C® (D — L). Hence the classicality requirement in
this lemma. The exponential case is the one where differentiation happens, using codereliction and
cocontraction were dereliction and contraction were necessary for Lemma We detail the proof,
keeping use of formulas of Intuitionnistic Linear Logic intentionally.

IW(A) — L, !WZTA) FW(A) - L

TR W(A) — L C(A)

W(A) ~ LWA)FCd) cut
IW(A) — L IW(A) - C(4)
where 7 accounts for the following proof:
IW(A) - IW(A)  IW(A) - IW(A)
IW(A) —o L, IW(A) - L IW(A), 'W(A) F A C WA FWA)
t
IW(A) —o L, W(A),'W(A) F L cu WA F1w(a) ¢ t

IW(A) — L, IW(A), W(A) - L

The soundness statement proposition makes use of the previous lemmas but does not need more
of the decomposition of the arrow via a %, and only uses the fundamental codereliction and cocon-
traction rules.

Proposition 7. If ' - A in ILL, then W(T') F W(A) in classical DilLL.

Proof. The proof is then a straightforward induction on the formula A for any context I'. The only
subtle case concern the case for the implication A = C' — B which makes use of the lemmas [5] and
[6l Suppose we have a proof of I' - C' — D in intuitionnistic LL.

induction hypothesis Lemma,
WO, W(C) F WD) WD)FC(D)—~L Lenna
W(T),W(C)F C(D) — L W(C) — L FC(C)
W(T),C(D) F C(C) o
W(T) F (W(C) — W(D)) & (C(D)) — C(C))
where 7 accounts for the left introduction — and the use of the induction hypothesis. O

4.2 Factorization

The first Dialectica translation we presented in Figure [2| can in fact be modernized as a translation
to and from types of AT *-calculus: this is recalled in Figure @ It factorizes through the linear
Dialectica by injecting LJ into LL via the economical translation.

LL
b~ % )

+, X +,X
[ R s
A W = A

12



W(0) =1 C(0) :=1 W(A+B) = W(A)+W(B)

W(1):=1 C):=1 C(A4+B) := C(A)xCB) WA= B):=
W(Ax B) = W(A)xW(B ‘ '
Clar sy s C(l(?)) HAZ B = WA EE)

(W(A) = W(B)) x (W(A) = C(B) = C(4))

Figure 6: A modernized Dialectica [Péd15, 8.3.1]

Definition 8. [Cos92|[Péd15| 8.4.2] The following is called the economical translation.

[A=B]. = !A—B
[A+B]. = AeB [0]e = 0
[AxB]. = A&B [1]e = 1

This translation has some surprising features. While arrows are interpreted in call-by-name,
products and sums are respectively interpreted in call-by-value. Figure presents the factorization
of the translation of of A™*-calculus through the economical translation. We would like now to
recover it through its differential refinement (Figure [5]), as in Figure

L —% €, IpiLL

T l (3)

+,x% +,x%
k) 4) k)
A TR A

Definition 9. The translation from intuitionistic DILL to types of AT X-calculus is defined as follows:

UIA) == A UT) =U(1) = U(0) ==
U(A & B) := U(A) x U(B) UA® B) = L{(A) U(B)
U(A® B) :=U(A) x U(B) U(A — B) :=U(A) = U(B)

Proposition 10. The Dialectica transformation on types factorizes through LL and DiLL as follows:

L —% €, DiLL

[-]e u

+,X —+,X
) - )
A W = A

C

Proof. The proof proceeds by an immediate induction on the syntax of formulas. Note that we used
the same notation for witness and counter types of LL and \*™, but they can easily be discriminated
from the context. Let us show that for any type A of AT *-calculus, U(W([A].)) = W(A) and

UC([A]e)) = C(A).

e Units. All units are mapped to units via the [_]. and witness and counter types on LL. As U
maps all units except Lto 1, and as witness and counter on types of AT are to unit which
are never L, we have U(W([A]p)) = W(A) and U(C([A]p)) = C(A) for A=1or A=0.

e Product ans sum Through [_]., X and + are mapped to the additive connectives of LL, which
are translated as themselves through W, or as their dual via C, and then mapped to to x and
+ again via {. Thus one finds back the interpretation of Figure [6]

13



e Implication. We will detail the computations for the witness case, the counter case being
straightforward. Consider A and B types of the AT *-calculus.

UW([A = Ble)) = U (W([A]e — [B].))

(W('[A]e) — W([Be)) & (C([B]e) — C(![A]e)))

("W([Ale) — W([Be)) & (C([B]e) — 'W([A]e) — C([A])))

= UW([Ale) = UW([B].))) x UW([A]e)) = U(C([B].)) = U(C([A].)))

u
u

O

Remark 4. Our translation seems to be quite different from Dialectica interpretations applied directly
of formulas of second order Intuitionistic Linear Logic [FO11], and not on witness and counter types
with linear types. Indeed, the factorization does not happen in the same order, as formulas of
intuitionistic both in the domain and co-domain of the Dialectica translation are embedded into LL.
Here, in the contrary, we strive to put LL and DiLL as intermediate steps of a factorization between
formulas of intuitionistic logic.

5 Dialectica is reverse differential \-calculus

The previous sections have shown that both on the categorical side (Section [3)) on the typing side
(Section7 the Dialectica transformation corresponds to a reverse implementation of differentiation.
In this section, we tackle the computational side, which was at the center of Pédrot’s work [Péd14].

5.1 An account of the modern Dialectica transformation

As hinted in the previous section, Dialectica can be applied to typed A-terms instead of HA deriva-
tions. In modern terms, one would call it a realizability interpretation into an extended A-calculus
that introduces the ability to observe intensional content from the underlying terms, i.e. the way
variables are used. In its first version [G&d58| [dP89] however, it relied on the existence of dummy
terms at each type and on decidability of the orthogonality condition. The introduction of “abstract
multisets” allows getting rid of the decidablity condition and makes Dialectica preserve S-equivalence,
generalizing the Diller-Nahm variant [Dil74].

We recall the Dialectica translation of the simply-typed A-calculus below. Types of the source
language are inductively defined as

AB:=a|A=DB

where « ranges over a fixed set of atomic types. Terms are the usual A-terms endowed with the
standard [, n-equational theory.

The target language is a bit more involved, as it needs to feature negative pairs and abstract
multisets.

Definition 11. An abstract multiset structure is a parameterized type 9 (—) equipped with the
following primitives.

I'tmi:9MA T'Emg:IMA

o :MA F'Emi®me:MA
F+¢t: A FkFm:MA 'rf:A=MB
FE{t}:MmA F'kEm>=f:9MB
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Types A,B 1= a|A=B|AxB
Terms t,u == x| Xx.t|tu](tu)|tl]|t2

Reduction rules:

Az.t)u —p t{z < u} (t1,t2).i =5 t; t =, (t1,t2)

Typing rules:
I'Ht: A I'~u:B

Mz:AkFz: A 'k (t,u): Ax B
T'z:A+Ft: B I't: A= B 'Fu:A T'Ht:A; x Ay
I'Xz.t: A= B I'tu:B I'Hte: A

Figure 7: Target A\*-calculus

Monadic laws Monoidal laws
{th>=f=ft t>=(z{z})=t tOu=u®t TRt=t®S=t
(t>=f)>=g=t>=(\x. [ x>=g) (t®u)®v=t® (u®v)

Distributivity laws

F3>=f=0 t>= . 0=9
t@u)s>=f=(@>=f)® (us=f)
t>=Xz.(fr®ga)=(t>=f)® (t>=g)

Figure 8: Equational theory of abstract multisets

We furthermore expect that abstract multisets satisfy the equational theory from Figure[§] For-
mally, this means that 9t A is a monad with a semimodule structure over N, or alternatively that it

is the oidification of a semiring.

We now turn to the Dialectica interpretation itself, which is defined at Figure [0] and that we
comment hereafter. We need to define the translation for types and terms. For types, we have
two translations W(—) and C(—), which correspond to the types of translated terms and stacks
respectively. For terms, we also have two translations (—)® and (—),, where z is a A-calculus
variable from the source language. According to the thesis defended in this paper, we call (—)*
the forward transformation, corresponding to the AD forward pass on functions while accumulating

differentials, and (—), the reverse transformation, which computes differentials.
Theorem 12 (Soundness [Péd14]). If I' - ¢ : A in the source then we have in the target
e W) Ft*: W(A)
e W) Ft,:C(A) = MC(X) provided z : X € T.

Furthermore, if £ = u then t* = u® and t, = u,.
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W(a) = aw WA= B) = (W(A)=W(B))x (CB)=W(A) = MC(A))

Cla) = ac C(A=DB) := W(A) xC(B)
x* = oz Az.t)* = (Az.t*, A\wz.tym)
Ty, = Am.{m} (Az.t)y = AIrm.(Az.ty) w172
T, = AT.O ifex#y (tuw)® = (t*.1)u’

(tw)y == Am. (ty (u®,m)) ® ((t*.2) Tu® >=u,)
Figure 9: The computational Dialectica

From [Péd14], it follows that the (—), translation allows observing the uses of « by the underlying
term. Namely, if ¢ : A depends on some variable z : X, then t, : C(A) = M C(X) applied to some
stack m : C(A) produces the multiset of stacks against which = appears in head position in the
Krivine machine when ¢ is evaluated against 7.

5.2 A higher-order differential account of the modern Dialectica transformation

In particular, every function in the interpretation comes with the intensional contents of its bound
variable as the second component of a pair. We claim that this additional data is essentially the same
as the one provided in the Pearlmutter-Siskind untyped translation implementing reverse AD [PS0S].
As such, it allows extracting derivatives in this very general setting.

Lemma 13 (Generalized chain rule). Assuming ¢ is a source function, let us evocatively and locally
write t' := t*.2. Let f and g be two terms from the source language and x a fresh variable. Then,
writing fog:= Az. f (g x), we have

(fog) w=Xn.(f (g92)° m)>=(g z).

It is not hard to recognize this formula as a generalization of the derivative chain rule where the
field multiplication has been replaced by the monad multiplication. We do not even need a field
structure to express this, as this construction is manipulating free structures, in a categorical sense.

It should be clear by now that the abstract multiset is here to formalize the notion of types
endowed with a sum. By picking a specific instance of abstract multisets, we can formally show that
the Dialectica intepretation computes program differentiation.

Definition 14. We will instantiate 9t (—) with the free vector space over R, i.e. inhabitants of 9t A
are formal finite sums of pairs of terms of type A and values of type R, quotiented by the standard
equations. We will write

{tl = Q.. by Oén}

for the formal sum ¥o<;<,, (o - t;) where a; : R and ¢; : A.

It is easy to check that this data structure satisfies the expected requirements for abstract mul-
tisets, and that ordinary multisets inject into this type by restricting to positive integer coefficients.

We now enrich both our source and target A-calculi with a type of reals R. We assume furthermore
that the source contains functions symbols ¢,1,... : R — R whose semantics is given by some
derivable function, whose derivative will be written ¢’,’,... The Dialectica translation is then
extended at Figure The soundness theorem is then adapted trivially.
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¢* = (p,dam{() = ¢ (@)}) ¢ :=A1.0

Figure 10: Dialectica Derivative Extension

WA+ B) = W(A)+W(B)

C(A+B) := (W(A) - MC(A)) x (W(B) = MC(B))
W(Va. A) = Vaw.Vac. W(A)

C(Va. A) = Jaw.3Jac.C(A4)

Figure 11: Extensions of Dialectica (types only)

Proposition 15. The following equation holds in the target.

(pro...opn)®2a () ={() = (pro...0¢n) ()}

Proof. By Lemma [I3] and the observation that for any two a, 3 : R we have

{0 = axp={0—a}>=xr{()— b}
O

We insist that the theory is closed by conversion, so in practice any program composed of arbitrary
A-terms that evaluates to a composition of primitive real-valued functions also satisfies this equation.
Thus, Dialectica systematically computes derivatives in a higher-order language.

It is well-known that Dialectica also interprets negative pairs, whose translation will be recalled
here. Quite amazingly, they allow to straigthforwardly provide differentials for arbitrary functions
R™ — R™.

Let us write A x B for the negative product in the source language. It is interpreted as

W(A x B) := W(A) x W(B), C(Ax B):=C(A)+C(B).

Pairs and projections are translated in the obvious way, and their equational theory is preserved,
assuming a few commutation lemmas in the target [Péd15].
Writing R™ := R x ... Xx R n times, we have the isomorphism

C(R™) — MC(R™) = R™™.

In particular, up to this isomorphism, Theorem [15|can be generalized to arbitrary differentiable
functions ¢ : R® — R™, and the second component of a such function can be understood as an
(n, m)-matrix, which is no more than the Jacobian of that function.

Proposition 16. The Dialectica interpretation systematically computes the total derivative in a
higher-order language.

The main strength of our approach lies in the expressivity of the Dialectica interpretation. Due
to the modularity of our translation, it can be extended to any construction handled by Dialectica,
provided the target language is rich enough. For instance, via the linear decomposition [dP89],
the source language can be equipped with inductive types. It can also be adapted to second-order
quantification and even dependent types [Péd14]. We sketch the type interpretation for sum types
and second-order in Figure [T1]
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This is in stark contrast with other approaches to the problem, that are limited to weak lan-
guages, like the simply-typed A-calculus. The key ingredient of this expressivity is the generalization
of scalars to free vector spaces, as R = 9t1. The monadic structure of the latter allows handling
arbitrary type generalizations. The downside of this approach is that one cannot apply the trans-
formation over itself, in apparent contradiction with what happens for differentiable functions.

5.3 Relating Dialectica and the differential \-calculus

In this section, we relate the two transformations acting on A-terms in Dialectica with those at stake
in differential A-calculus [ER03|. It was introduced by Ehrhard and Regnier as a syntactic account for
the mathematical theory of differential calculus. To the terms of of A-calculus is added a differential
application Ds-u which represents the term s linearly applied to . Linearity is understood through
the intuition of call-by-name LL: a linear variable is a variable which is going to be computed exactly
one time. It also follows the traditional mathematical intuition, that is head variables - acting as
functions- are linear: one always have

(f+9)(x) = f(z)+g(=)

while f(z +vy) = f(z) + f(y) asks for a special requirement on f.
That is, during the whole computation, a linear argument u should be used only once in Ds - u.
This is why the authors introduced a new reduction rule for this differential application:

ot
(DXz.t) - u —p,, )\z.& - .
ot

The newly introduced & - u is the linear substitution of z by w in ¢. It is an inductively defined
substitution where one chooses to replace a unique linear occurrences of z in ¢. As this supposes
that not all occurrences of z are replaced at the same time, z is still free in the reduced % - u, and
thus (DAz.t).u reduces to a function of z.

The differential A-calculus We recall the syntax and operational semantics of the differential \-
calculus. This extension of A-calculus is enriched with a differential application of a term to a value.
This differential application will reduce to a linear application. Linearity in A-terms is understood
in terms of resources: a variable is linear if and only if it is used exactly once during the reduction of
the term. Thus a variable in head-position is always linear, and linear substitution will track down
the usage of resources in the A-term.

Differential A-calculus also needs to deal with sums of terms. We write simple terms as s, t, u, v,
w while sums of terms are denoted with capital letters S, T, U. The set of simple terms is denoted
A® and the set of sums of terms is denoted A¢. They are constructed according to the following
quotient-inductive syntax.

s, t,u,v € A x| Ax.s|sT|Ds-t
ST,UV ¢ A 0s|S+T

We write Az._; s; for 37, Az.si, (32, 8:)T for 37, 8T, and D(3_; s:) - (32, ¢5) for 32, ; Ds; - t;.
The reduction process in differential A-calculus is the smallest reduction relation following the
two rules:

0+T=T T+0=T S+T=T+S

Ae.s) T —p  s{z«T}
D(Az.s)-t —p, Az (% -t)
which is closed by the usual contextual rules.
We consider moreover the simple terms of differential A-calculus up to n-reduction: in the ab-
straction Azx.s, x is supposed to be free in s. We denote = the equivalence relation generated by £,
Bp and 7.
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| dsU) . (s ou
3y.T_{T ife=y 5 -T(ax T)U+(Ds <8x T>)U

o otherwise

d(Ds-u) .. Js Ju
0 oy (22.7) ) ax'T—D<ax T) ut Ds (ax T)
Ox Ox (8)
90 1 _y ©6) AS+U) .. 8S . oU

Figure 12: Linear substitution [ER03]

The simply-typed A-calculus can be extended straightforwardly to handle this generalized syntax,
in a way which preserves properties such as subject reduction. In particular the differential can be
typed by the rule below.

I'Fs:A— B I'Ft: A
I'Ds-t:A— B

Linear substitution We recall the rules of linear substitution in Figure The central and most
intricate of them is the one defining linear substitution on an application. This is illustrated for
example in Rule [7] defining linear substitution in an application, which we present here in a simpler

form.
(s u) 0s ou
t=—-t|Ju+|Ds- | —-t))u
ox ox ox
Let us break the intuitions of this formula for the reader unaccustomed to differential A-calculus.
If 2 is linear in s, then so it is in s v. To substitute linearly z by u in s v, we can then substitute
it linearly in s and then apply the result to v. But we can also look for a linear occurrence of z in
v. In that case, for v to remain linear in % - u, we should linearize s before applying it to % - U
Then s will be fed by a linear copy of % - u, and then it will be fed by u as usual. This last case is
exactly the computational interpretation for the chain rule in differential calculus.

Comparing Types Let us compare the types of linearly substituted terms of differential A-calculus
with those of terms which underwent a reverse translation in Dialectica.

Lemma 17. [Bucl(, 3.1] Let T,z : X F¢: AandTHw: X. Then Tz : X %-UIA.

In contrast, in Dialectica, one would have:
W),z : X Ft,: C(A) = MC(X).

This is particularly obvious when t is an abstraction. While (Ay.s), is bound to compute on y
before computing on x, )\z.% - z does the reverse and first waits for y to be substituted before

computing on x.

Relating Dialectica and the differential \-calculus In what follows, we show that Dialectica and
the differential A-calculus behave essentially the same by defining a logical relation between those
two languages. Actually, since we have two classes of objects, witnesses and counters, we need to
define not one but two relations mutually. We will implicitly cast pure A-terms into the differential
A-calculus.
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teaspT = Yuma U ((1u)~p (TU) A (B2 u)=p (A2 (DT -2) U)
tox g T = Yur~a U Art (u,m)<y (M2 T 2 U)

Figure 13: Logical relations for the arrow type

toaX T u<X U
(Am. @) X 0 Am.tm@um) <X T+ U
top T

(A A{E 7)) b= (A\z. 2 T))
Figure 14: Atomic closure conditions

Definition 18. Given two simple types A and X, we mutually define by induction on A two binary
relations
~a C e XNt WA)Y x {T A |-T - A}
<5 C {p: AN |F ¢ C(A) - MC(X)} x
{K: A |FK:X — A}
As is usual, we implicitly close the relation by the equational theory of the corresponding calculi.

e For any atomic type «, we assume given base relations ~,, and <X satisfying further properties
specified below.

e The recursive case for arrow types is defined at Figure

In the remainder of this section, we assume that the atomic logical relations satisfy the closure
conditions of Figure The first two rules ask for the relation to be compatible with the additive
structure of M (—) on the one hand and A? on the other. In the third rule, T' stands a list of types
and all notations are intepreted pointwise. This rule is asking for the compatibility of the return
operation of the multiset monad. We do not need an explicit compatibility with »= because it will
end up being provable in the soundness theorem.

Lemma 19. The closure properties of Figure [[4] generalize to any simple type.
Theorem 20. If I' - ¢ : A is a simply-typed A-term, then

e for all 7 ~p R, t*{I < 7} ~4 t{I’ < R},

. andforallf’wpﬁandx:XGF,

to{T 7} > Az (gt : z>{r « R}.
X

Proof. As usual, the proof goes by induction over the typing derivation. We need to slightly

strengthen the induction hypothesis by proving a generalized form of substitution lemma relating
>= on the left with composition on the right, i.e. for any ¢ % k then

(M.t {T < 7} m3=¢) % Az (g’i - (k z)) {T' « R}

from which the second statement of the theorem is obtained by picking ¢ := Aw. {w} and k := Az. z,
which are always in relation by Lemma The proof is otherwise straightforwardly achieved by
equational reasoning. O
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This theorem is a formal way to state that the Dialectica interpretation and the differential
A-calculus are computing the same thing without having to embed them in the same language. It
makes obvious the relationship between the (—), interpretation and the %—; - — operation. As usual,
the result depends on the intepretation of atomic types and may be degenerate, e.g. if all atomic
types are interpreted as the full relation. Yet, this shows that implication preserves the intended
relation regardless of its subcomponents.

Interestingly, Nf relates two functions going in the opposite direction. While the left-hand
side has type C(A) — MC(X) in A%, the right-hand side has type X — A in the differential A-
calculus. We believe that this is a reflection of the isomorphism between a linear arrow and its linear
contrapositive, since both sides of the relation are actually linear functions.

Remark 5. This distinction in Pédrot’s Dialectica between terms which are to be summed and

other ones strongly relates with Ehrhard’s recent work on deterministic probabilistic coherent spaces
[Ehr21].

5.4 Translating Dialectica into differential \-calculus

In this section, we suggest a translation on counter terms to make the previous logical relation a
translation from Dialectica terms to differential A-calculus. This translation works basically as the
logical relation before, but with an enforced CPS translation to retrieve forward differentiation. We
have been claiming that Dialectica is categorically and logically a reverse differentiation algorithm
where the linearity of arrows has been forgotten. Let us show that when the linearity of counter types
is enforced, then it is exactly a reverse differential calculus. To do so, we define a CPS translation
[-] defined on terms typed by counter witnesses.

Definition 21. Consider a term s of the A*-calculus, typed in some context I' by I"' - s : S. Define
[s] as follows:

o If S = A x B is pair, them then [s] := Ak. ([s.2](k(s.1))),
e Otherwise [s] := \k.ks.
Lemma 22. If s = s’ then [s] = [¢].

This translation is directed by the intuition that a term typed by a counter type s : C(A) can
be translated to a term typed by a linear dual to a witness type W(A) — L, through the rules of
classical DiLL (see Lemmas [5{and @ Taking into account the involutivity of duals in DiLL, we have
thus dor s : C(A = B) = W(A) x C(B):

[s] : W(A) x (W(B) — L) = (W(A) x (W(B) — 1)) — 1) — 1)
= (W(A) - W(B)) — L
= (WA= 1B)).1l— L.

Counsider a pair of a function and its reverse differential (k, k) : W(A = B). The projection on
the first argument of (k, k') interrupts the storage of differentials to compute the function k and the
differentials already stored.

For s is a term of the A\*T-calculus we make [_] distribute over sums and translate s into a term
of the differential A-calculus:

0] := Mk.kO [t ® u] := [t] + [u] [{t}] := [t]-

Theorem 23. Consider ¢ a simply-typed A-term, a term of the A\* *-calculus u, and a variable = such
that in some context I we have I';z : X F¢: Band I' - w : 9 C(B). Then

[us=t, [T 9] =5 Az ([[uﬂ (W - z>>
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Proof. Let us prove the result by induction on the typing derivation of ¢, for any variable x and
counter witness u. We will make a heavy use of the monadic and monoidal laws on M () recalled
1n Section [5.1| ﬂ As the operator ® is associative and commutative, we will denote ®;u’ the term
ul ® ... ® u™ for n € N*. For readability issues, when the substitution [I" < 7] does not play a role
in the proof we will omit it.

e The variable case is straightforward. If £ := x, then as u is a term of pure A-calculus we have
by the monadic laws:
[u>=2.] = [u>=An{r}] =4 [u].

On the other hand, by n-equivalence we have
A ful(2 - 2) = (e ul) = )

If ¢t equals another variable y # x, then similarly through the distributivity laws:
[us=y,] =g [u>=Ir.2] =0

and through the laws of differential A-calculus [ER03]
9y
Az.Ju] 9 %)= Az Ju0 =5 Az.(0u) = Az.0 = 0.

e Let us tackle the abstraction case and suppose
t=Xys: A= B

for some variable y # x and some A-calculus term s. This case is more intricate as, while
(M\y.s). is destined to compute on y before computing on z, % -t first linearly substitutes
x with t before computing on y.

As u has type MM (C(A = B)) = M (W(A) x C(B)), u reduces to a possibly empty sum @®;{u}
with u’ : W(A) x C(B) in the context I'. Indeed, M is a monad over the types of the A\*-
calculus, and as such one does not construct pairs of 9 types. By the definition of (Ay.s)s,
by application of monadic laws and as x is free in u:

[®{u'} >=(y.5)a] = [£:0-8)au'] = [ (Ag.s0)u1u.2]
= 3 [l 1 /a2 = L 2) >l 1)L

On the differential A-calculus side:
ONy.s ; oN\y.s
el (B 2) = (0 (%)

S Az (k. [ 2] (k1)) (agi.s z> .

%

As 8/51;45 sz = )\y.g—; - z, we have:
O0Ay.s _ i 0s i
Az.Ju] < . > = ;)\zﬂu 2] (M. (333 'Z) u.1)

= ;Az.[[ui.Q]](<§i : z> [u’.1/y)).

I\
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As z is free in u, one has

(52-2) i - (2lald..)

and the induction hypothesis concludes the case:

ZAZ [ 2] ( ( z) wi1/y)) ZAZ [ui 2]]( ['1/4] z)
;Z:[[u 2] >=(s[u’.1/y])).

e Let us study the application case for the reverse transformation. Suppose that ¢t = (s)v, where
s: A= Band v: A. Then

[u>=((s)0)a[l' 4= 7]] = [u>= (. (s0(0%, 1) ® ((s°2)m0° 3=10,)))]

We have s = )\y s’ for some term s’ of the pure )\ calculus. As such, s*2 = AwAy. 5 7 and
Sg = A ()\y s )7r 17.2 by the soundness theorem [12| Thus, thanks to the dlstrlbutlwty laws

(Definition [TT)):
[ua=((s)0)o [T < 1*]
(AT ((Ay.s;)v°m) @ ((Ay( Lm)0®) 3= [T - 7°]
= [us=(Am.((\y.s,,)v*m)[[ < r ]]] 4 Ju 3= . ((My-(s3,7m))v®) =0, [T ?H]
(. (s = 1 =

= [ud>=(7.(s,m) [0,y = v 0°]] 4 [us=Am.((s,m) [0,y < r*,0°]) 3=, [T « r¢])]

As z is free in u, and by induction hypothesis on s’:

[us=(rr(s,m) [T,y %, 0%]] = Azl (W . Z)

" —
= Az[[uﬂ(()\yas[a’;_r] : z> v)
By the monadic laws on 3= and by the induction hypothesis on v, we have:
3= Mr.((,m) [T,y < 7, 0*)) 3=, < r4])]

=

= [(w>=Ar((s,m) [T,y < 5, 0%])) 3= 0, [T 7

= Xz [(u3= A ((sym) [0,y  °, o)) <W>

By induction hypothesis on s’ we then have:

[us=Am.((s,7))) »>=v, [T,y 77’ v*])]
= Az A2 [u] (W . Z/> /4] (W Z)

Jy ox
! 7] ov 7
= Az.[u] <()\y.as [Fa; ] 9 [Fa: ] Z)U)>
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We conclude the case by computing the the other hand of the equation:

re[u] (W - z)

= xe (P Toy s (2020 e 7))

~efu H((<as[r « 7] Z) o)+ ((Ay'as[raz 7] av[rai 7] Z> o)

= Ao [u] (( ) ((Ay g; gz-z>v)> 0« 7]

6 Conclusion and perspectives

In this paper we related the different interpretations of Godel’s Dialectica with logical differentiation.
We demonstrated that Dialectica is basically reverse differentiation without the linear types, and
can be refined with them through differential linear logic. We draw three possible outcomes from
this.

6.1 Logical axioms and differentiation

Godel’s Dialectica interpretation is known for giving a realizer to Markov’s principle
——dg P —dJx——P (MP)

Herbelin proposed another way to realize MP based on statically bound exceptions [Her10]. At the
end of his paper, he recalls that MP amounts to double-negation elimination on positive formulas.
On these, double-negation is in fact a linear negation followed by a non-linear negation, i.e. MP can
be reduced to 7P — P for any positive formula P.

Herbelin makes the striking remark that the above type is exactly the one of differentiation.
Semantically ?P is indeed interpreted as the space of non-linear functions on P+, and, in a classical
setting, P = P+ — 1 is interpreted as the space of linear functions on the space PL+. Hence MP
turns non-linear maps on P into linear ones.

Herbelin’s paper thus breaks down differentiation into smaller computational steps with con-
trol operators which could have a mathematical meaning in terms of approximation. Delimited
continuations are also used in differentiable programming for propagating reverse differentials of
function variables [WZD™19|. Exploring the realizability relation between semi-classical axioms and
functional mathematical transformations is an exciting perspective.

6.2 Automatic differentiation and reduction strategies

The Dialectica interpretation explored in this paper is fundamentally call-by-name on the arrow, as
we can see in its factorization through LL or in its categorical semantics. This suggests that the
call-by-name interpretation of functions and their derivative might implement some kind of reverse
derivative. Indeed, in some denotational semantics of DiLL, non-linear functions f can be seen as
functions f acting on distributions [Sch66, [KerI8]. These come as traditional arguments, encoded
through diracs, or as differentiated arguments:

f(6a)—f(a)  f(Do(-)a) —= Do(f)a.
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Giving the priority to the evaluation of f (call-by-name) relates to backward differentiation, while
giving the priority to Do(_)a (call-by-value) relates to forward differentiation. An exploration of the
L-calculus [CMM10] adapted to DiLL could lead to the formalization of such principles.

6.3 Proof mining and differentiation

Proof mining [KohO§| consists in applying logical transformations to mathematical proofs, in order
to extract more information from these proofs and refine the theorem they prove. This has been
particularly effective in functional analysis, where logicians were able to transform existential proofs
into quantitative proofs. For instance, from unicity proofs in approximation theory one gets an
effective modulus of uniqueness, i.e. a characterization of the rate of convergence of approximants
towards the best approximation.

While metatheorems in proof mining guarantee the existence of constructive proofs, applying the
Dialectica transformation to proofs might boil down to applying a reverse differentiation procedure to
the “e” function. For example, extracting a quantitative rate of convergence from a unicity statement
Ve In|Gula,b)| < n=|a—0b| < e would correspond to differentiating the function € — 7. Exploring
the consequences of metatheorems in proof mining over logical differentiation could lead to fruitful
results.
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