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Le module M2207

Organisation

Intervenants : R. Kanawati, L. Saiu, Q. Chateiller.
4 cours, 3 TD,5 TP

Controle continue

Objectifs & Compétences visées

1 Proposer une solution logicielle orientée objet conforme a un cahier
des charges

2 Concevoir une application sous forme d'objets et de relations

3 Développer des applications client-serveur dans un langage orienté
objet
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Introduction

Programmation orientée objet : objectifs

» Les domaines d'applications des logiciels sont de plus en plus
complexes et critiques.

P Systéme d’exploitation, Protocoles réseaux, Jeux, Pilotage de réacteurs nucléaires, Voiture

autonome, . ..

» Plus un systéme est complexe, plus il est susceptible d’effondrement.

» Le colit de développement de logiciel devient trés important.
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Introduction

Programmation orientée objet : objectifs

Qualités requises d'un logiciel

» Simplicité : faciliter la maintenance.

» Extensibilité : faciliter 'adaptation aux changements du domaine
d’application.

» Décentralisation : faciliter le développement collaboratif.

» Réutilisabilité : augmenter la fiabilité et réduire les colits et les
délais de développement.
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Introduction

Programmation orientée objet : objectifs

Approches

» La modularité : Structurer un logiciel en ensemble de modules.

» Un module = ensemble de fonctions spécifiques pour traiter un
probleme donné

» L’approche Objet : Un objet = Un module autonome qui encapsule
des données et des fonctions de manipulation de ces données.
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Introduction

Limites de la programmation procédurale : exemple

Gestion d'une base d’étudiants

Un étudiant est défini par : prénom, nom, num_étudiant, note.

Solution 1

1| etudiantl=["Max" ,” LeGrand” ,”100100" ,15]
2| etudiant2=["Min” ,” Petit” ,”100101" ,10]

4| etudiants =[]
s| etudiants.append(etudiantl)
6| etudiants .append(etudiantl)

7
s| def setNote(etudiant ,h note):
9 etudiant [3]=note
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Introduction

Limites de la programmation procédurale : exemple

Probleme

employee:[” Alexandre” ,” LeGrand” ,” 10000" ,2000]

#employee (prenom, nom, numero, salaire)

B W N =

setNote (employee ,0)
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Introduction

Limites de la programmation procédurale : exemple

Approche objet

1| class Etudiant:

2

3 def __init__(self b prenom,h nom,num, note=0):
4 self.prenom=prenom

5 self .nom=nom

6 self . num_etudiant=num

7

8 def setNote(self ,note):

9 self .note=note
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Introduction

Limites de la programmation procédurale : exemple

Approche objet

il class Employee:

2 def __init__(self ,prenom,nom,num, salaire=1200):
3 self.prenom=prenom

4 self .nom=nom

5 self .num=num

6

7 def setSalaire(self h salaire):

8 self.salaire=salaire

9

10| e=Employer (prenom="Alexndre” ,nom="LeGrand" ,

11 num="100",salaire=1200)

12| e.setNote(e,0) # erreur ! opération non définie
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Introduction

Encore mieux !

class Personne:

N

def __init__(self b prenom,h nom,num):
self.prenom=prenom
self .nom=nom
self .num=num

® N o 0O A~ W

def getNum(self):
9 return (self.num)
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Introduction

Encore mieux !

1

2| class Etudiant(Personne):

3 def __init__(self b prenom,h nom,num, note=0):
4 Personne. __init__(self ,prenom, nom,num)
5 self . note=note

6

7 def setNote(self h note):

8 self . note=note
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Introduction

Encore mieux !

1| class Employee(Personne):

2 def __init__(self ,h prenom,nom,num,salaire):
3 Personne. __init__(self ,prenom,nom,num)
4 self.salaire=salaire

5

6 def setSalaire(self 6 salaire):

7 self.salaire=salaire
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Introduction

Encore mieux !

-

class Apprenti(Etudiant , Employee):

2 def __init__(self , prenom,nom,num,note,salaire):
3 Etudiant. __init__(self ,prenom,nom,num, note)
4 self.setSalaire(salaire)
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Définitions

Programme orienté objet

Un ensemble d'objets qui communiquent entre eux par échange de
messages.

est défini par un état et un comportement

Etat : ensemble d'attributs.
Comportement un ensemble de services (fonctions) ( méthodes) que
I'objet peut exécuter.

Dans un modéle objet pur, seules les méthodes d'un objet peuvent
accéder aux attributs de I'état.
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Définitions

Classe

Un modele a partir duquel on fabrique un objet.
Création d'objet = instanciation

Une classe doit fournir au moins une méthode dite constructeur qui
permet de créer des objets.

La méthode constructeur a la syntaxe suivante :

1| def __init__(self, ... ):
2 /x initialisation de |'état de | objet x*/

Le premier argument d'une méthode est self une référence vers I'objet
local.
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Classe : exemple

-

class point:
def __init__(self): # constructeur sans parmétres
self . x = 0 # attribut d’'instance
self.y =0 # attribut d’'instance’
def move(self ,dx,dy):
self.x=self .x+dx
self.y=self.y+dy

N

© 0 N o U A~ W

pl= point() # création d’'un point pl
p2= point() # création d’'un point p2

-
o
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Notation graphique : UML (Unified Modeling Language)

Représentation de classes

Nom de Classe
attributl : type
attribut 2 : type, valeur par défaut

Constructeur(parametres)
methodel(parameters) : type de retour
methode2(parametérs) : type de retour
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Notation graphique : UML

Représentation d'objets

Nom de I'objet: Nom de classe

attribute = value
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UML : Exemple

Point
X : int
y @ int
Point()

move(dx:int, y:int) : void
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UML : Exemple

p2: Point

x=0
y=20
pl: Point
x=0
y=20
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UML

» Caractéristiques
B Principe : s'abstraire du langage de programmation et des détails
d'implantation
B Normalisée par 'OMG (Object Management Group)
» Utilisations :
B esquisse : communiquer avec les autres sur certains aspects
B plan : le modele sert de base pour le programmeur
B Génération de code
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Classes : fonctions prédéfinies

isinstance(objet,classe)

Renvoie True si objet est instancié a partir de la classe classe

pl = point ()
isinstance (pl, point)
isinstance (pl, Etudiant)

w N e

issubclass(classel,calsse2
Renvoie True si classel est une sous-classe de la classe2.

-

issubclass (Etudiant , Personne)
isinstance (Personne , Etudiant)

N
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Types d'attributs

Attribut d'instance

Attribut défini dans la méthode constructeur.
La valeur d'un attribut d’instance est propre a chaque instance.

L'acces a I'attribut d'instance est donnée par :
nomObjet.nomAttribut

Attribut de classe

Attribut défini au niveau de la classe

La valeur est partagée par tous les objets instanciés a partir de
la classe.

L'acces a I'attribut de classe est donnée par :
nomDeClasse.nomAttribut
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Les attributs

Attributs : exemples

-

N

o o b

class CompteBancaire:

decouvert=0 +#attribut de classe

def __init__(self h solde=0):
self.solde=solde # attribut d'objet

def retirer(self , montant):

def

if (self.solde—montant>=CompteBancaire.decouvert):

self .solde=self.solde—montant
else:
print "solde insuffisent”

setDecouvert(self ,seuil):
CompteBancaire.decouvert= —seuil
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Attributs : exemples

cl = CompteBancaire(1000)
c2 = CompteBancaire (800)

c2.retirer (1000) +#solde insuffisant
cl.setDecouvert (300)
c2.retirer (1100) #succes

o A W N e
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Les attributs

Protection d’attributs

> En Python tous les attributs sont des attributs publiques : accessibles
a partir d'autres classes : L'encapsulation n'est pas respectée !

» Exemple : c.solde = 10 000

> il est possible de brouiller I'accés a un attribut en le nommant comme
suit : __nomAttribut

» Un attribut brouillé est renommé automatiquement a
_NomClasse_NomAttribut
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Les attributs

Gestion des attributs d'instance

Acces en lecture

nomObjet.nomAttribut

Fonction prédéfinie : getattr(objet,attribut)
Exemple : getattr(c,"solde")
Attention le nom de |'attribut est passé comme un str

Si |'attribut n’existe pas la méthode
__getattr__(self,att) sera appelée

L’'ensemble des attributs d'instance sont regroupés dans un attribut
spéciale : __dict__ de type dictionnaire
Exemple : c._dict__["solde"]

c._dict__.keys() # retourne une liste des attributs
définis
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Les attributs

Gestion des attributs d'instance

Acces en écriture

nomObjet.nomAttribut = valeur

Fonction prédéfinie : setattr(objet,attr,val)

Attention : Si I’attribut n’existe pas il sera crée !!

Les deux approches précédentes passent par un appel implicite a

la fonction prédéfinie __setattr__(self,att,val)

nomObjet._dict__["nomAttribut"] = val
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Les attributs

Gestion d’attributs de classes

Méme principe que pour les attributs d'instance.

Les attributs de classes et les méthodes (d'instance ou de classes)
sont dans le dictionnaire : NomClasse._dict__.

class MathTools:
pi=3.141592
def isPair(n):
return (n%2==0)
isPair = staticmethod(isPair)

print Mathtools. __dict__

{'-_module__": '"__main__", ’'pi’': 3.141592, 'isPair’': <
staticmethod object at 0x1006ed670>, '__doc__': None}
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Les attributs

Attributs : autres fonctions prédéfinies

hasattr(objet,att)

Retourne True si objet possede un attribut att.

Cette fonction fait appel a getattr et retourne False en cas de lever
d’exception.

delattr(objet,name)

Effacer I'attribut name de I'instance désigné par objet

1| class A:

2 def __init__(self  at):
3 self.at=at

4 a=A(5)

5| b=A(6)

6 delattr(a,at)

7l print b.at

g print a.at
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Méthode d'instances

Une méthode qui s’exécute dans I'espace d'un objet.
A self comme premier argument.
Appel : nomObjet.nomMethod ()

class CompteBancaire:
def __init__(self h solde=0):
self.solde=solde

def retirer(self , montant):
if (self.solde—montant>=0):
self.solde=self.solde—montant
else:
print

"solde insuffisent”

c=CompteBancaire (2000)
c.retirer (1000)
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Méthodes de classe

» Une méthode qui peut s'exécuter sans instancier la classe (pas de
création d’'objet)

» Souvent utilisée pour programmer des services génériques.

» Une méthode statique n'a pas self comme premier argument

> Elle doit étre déclarée statique explicitement en utilisant I'instruction
staticmethod :
nomMethode= staticmethod (nomMethode)
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Méthodes de classe : Exemple

1| class MathTools:

2 def isPair(n):

3 return (n%2==0)

4 isPair = staticmethod(isPair)
5

6

print MathTools.isPair (5)
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Comparaison d'objets

9| pl= point() # création d’'un point pl
10| p2 = point() # création d’'un point p2

13 print pl=—p2 # False

il class point:

2 def __init__(self): # constructeur sans
3 self . x = 0 # attribut d'instance

4 self.y =0 # attribut d'instance’

5 def move(self ,dx,dy):

6 self .x=self . x+dx

7 self.y=self.y+dy

8

parametres
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Comparaison d'objets

1| class point:

2 def __init__(self):

3 self.x =0

4 self.y =0

5 def move(self ,dx,dy):

6 self.x=self .x+dx

7 self.y=self.y+dy

8 def __cmp__(self  other):
9 if (self.x—=other.x) and (self.y=—other.y):
10 return 0

11 else:

12 return 1

13

14| pl= point ()

15| p2 = point ()

16

17

18| print pl=—p2
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Comparaison d'objets

Permet de comparer deux objets (par nécessairement de la méme
classe)

Valeurs de retour : { -1, 0, 1}
-1 si l'objet est plus petit que |'autre.
0 si objets égaux
1 si I'objet est plus grand que |'autre

Fonction utilisée implicitement par la fonction prédéfinie cmp ()
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Autres fonctions de comparaison

ot <
po_le_: <
> _eq_: =
> _gt >
> _ge_: >
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Affichage d'objet

permet de retourner une chaine de caracteres pour afficher une
représentation de |'objet (avec I'instruction print).

1| class Personne:

2 def __init__(self 6 prenom,nom,num):

3 self.prenom=prenom

4 self .nom=nom

5 self .num=num

6

7 def __str__(self):

8 """ afficher plus joliment notre objet”"”
9 return "{} {}, numero: {}".format(

10 self.prenom, self.nom, self.num)
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Exceptions

Séparer la détection d'une anomalie de son traitement.

Exception : Rappel

Une exception est levée pour signaler une anomalie lors de |'exécution
d'une instruction.
Division par zéro, conversion de type impossible, indice inexistant

On peut forcer la levée d'une exception en utilisant I'instruction :
raise

-

if var < 0:
raise Exception

N
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Exceptions

Exceptions & Objets

Exception : Rappel
Si une exception est levée, I'exécution d’'une méthode s'arréte et on

retourne |'exception a |'appelant

L'appelant peut traiter I'anomalie génératrice de |'exception si |'appel
est fait dans un bloc try/catch

try:
instructionl
instruction?2

except exception:
actions
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Exceptions

Exceptions prédéfinies

ZeroDivisionError : division par zéro
ValueError : valeur inacceptable

IndexError : Acceés a un indice inexistant
TypeError : type d'argument incorrect
OSError : erreur provoqué ar un appel systeme

MemoryError : épuisement de la mémoire

Exceptions utilisateur

Les exceptions sont des objets.
On peut définir de nouvelles exceptions en spécialisant la classe
Exception
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Traitement des exceptions

» Chaque type d’exception peut avoir un traitement différent

i try:
3 instructuctions

5| except ExceptionTypel

6 actions
7| except ExceptionType2:
8 actions

| finally :
11 actions a prendre dans le cas par défaut
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Exceptions & Objets

» Utiliser les exceptions afin de vérifier la bonne utilisation des
méthodes.

» Exemple : vérifier que les parametres d’entrée d'une méthode ont les
bon types et les bonnes valeurs

» Vérification simplifiée par I'instruction assert

v

Syntaxe : assert Expression[, Arguments]

» Exemple : assert (Temperature 0),"trop froid !!”

Fonctionnement : Si condition est évaluée a False, alors lever
AssertionError

v
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-

assert : Exemple 1

Instanciation d'objets

Exceptions

class CompteBancaire:

self.banque=banque
self . titulaire=titulaire
self.solde=solde

def __init__(self 6 banque, titulaire hsolde):
assert isinstance(banque,str) and
assert isinstance(titulaire ,str) and
assert isinstance(float(solde), float) and solde>=0

len (banque)>0

len(titulaire)>0
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Exceptions

assert : Exemple 2

Interdir la création dynamique d'attributs

1| classe A:

2

3

4 def __setattr__(self  name,value):

5 if name not in self.__dict__.keys():
6 pass

7
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Relations entre classes

Relations entre classes

Deux types de relations

Relation d’utilisation
C'est une relation de type : has-a
Une classe peut avoir des attributs qui sont d'instance d'autres
classes.
Exemple : Une voiture a 4 roues.
Différents types de couplage entre les classes : composition,
agrégation, association, etc.

Relation de spécialisation/généralisation
C'est une relation de type : is—a ou une relation de héritage
A doit hériter de B si A est un cas particulier de B.
On parle de : Super classe/ sous classe ou classe mere / classe
fille.
Exemple : Chat, Lion, Félin, Animale, Chat Angora,
Chien : Quelles relations d'héritage ?
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Relation d'utilisation : UML

Voiture Rou Roue
| o—1

Relation d’association
Adresse
‘ Personne }—15 Adresse ‘
n

N
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Relations entre classes

Relation d'utilisation : Exemple

Problem : un segment est défini par deux points

il import math

2| class Point:

3 def __init__(self, x=0, y=0):

4 self.x = float(x)

5 self.y = float(y)

6

7| def __str__(self):

8 return " (%s ; %s)” % (self.x, self.y)

10 def move(self, dx, dy):

11 self .x= self.x+dx
12 self.y= self/y+dy
13
14 def distance(self, autre):
15 dx2 = (self.x — autre.x) *x 2
16 dy2 = (self.y — autre.y) =*x 2
17 return math.sqrt(dx2 + dy2)
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Relations entre classes

Relation d'utilisation : Exemple

Problem : un segment est défini par deux points

il class Segment:

2 def __init__(self, el, e2):

3 assert isinstance(el,Point) and isinstance(e2,Point)
4

5 self . extremitel = el

6 self.extremite2 = e2

7

8 def __str__(self):

9 return "[%s — %s]” % (self.extremitel , self.extremite2)
10

11 def move(self, dx, dy):

12 self.extremitel .move(dx, dy)

13 self.extremite2.move(dx, dy)

14
15 def longueur(self):
16 return self.extremitel .distance(self.extremite2)
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Relation d’héritage

» Principe : définir une nouvelle classe par spécialisation d'une (ou
plusieurs) classes existantes.
> La sous-classe :
B récupeére automatiquement tous les attributs et les méthodes des
supers classes ;
B peut enrichir la description de la classe par I'ajout des attributs
et des méthodes ;
B peut modifier les types des attributs hérités ;
B peut modifier le comportement des méthodes héritées.
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Relation d'héritage : UML

Personne
Nom : String
age : int
getAge()
Etudiant Employee
num : str salaire : float
note : float

setSalaire( montant : float)

setNote(note: float)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

52 / 61



Relation d’héritage : syntaxe Python

Héritage Simple

class A(B):

1
2
3

Héritage multiple

class A(B,C,D):

w N e
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Relations entre classes

Héritage multiple : gestion de conflits

-

class A(B,C,D):

w

# A est une sous classe de B,C,D

Si les classes B; C,D ont les mémes attributs, méthodes, la classe A hérite
de I'attribut/méthode, cité en premier (ici de celui de B)
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Relations entre classes

-

~N o g A~ W N

<]

10
11

Héritage : exemple

Point coloré

class PointColore(Point):

def __init__(self ,x=0, y=0,couleur):
Point. __init__(self, x, y)
self.couleur = nom

def __str__(self): # redéfinition
return "%s:%s" % (Point.__str__(self), self.couleur )
# utilisation de la version de __str__ dans Point

def setCouleur(couleur): # une nouvelle méthode
self.couleur = couleur
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Classes abstraites et interfaces

Classe abstraite

Classe abstraite

Quoi ? : Une classe qui ne peut pas fabriquer des objets !

Pourquoi ? : renforcer I'extensibilité des programmes en factorisant
des attributs et des méthodes communs a différents classes.

Exemple :

un point, un segment, un carré, un rectangle, un cercle, ..., sont
des figures géométriques

On peut déplacer, colorier une figure, calculer sa superficie, son
preimétre, ...

L'exécution des méthodes citées ci-dessus dépend de la nature de
la figure

On peut définir ces méthodes d'une maniére abstraite dans une
classe abstraite !
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Classes abstraites et interfaces

Classe abstraite : Exemple

-

class FigureGeometrique:

N

w

def __init__(self,h centre):
assert (isinstance(centre, Point)
self.centre=centre
raise NotlmplementedError

o o b

s| def move(self dx,dy):

9 self.centre.move(dx,dy)
10

11| def superficie(self):

12 raise NotlmplementedError
13| def perimetre(self):

14 raise NotlmplementedError
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Classes abstraites et interfaces

Classe abstraite : Exemple

1| class Carre(FigureGeometrique):

2 def __init__(self,h centre, cote):

3 assert isinstance(centre, Point)
4 assert isinstance(float(cote),float) and float(cote)>=0
6 try:

7 super. __init__(centre)

8 except:

9 self.cote=cote

10

11 def superficie(self):

12 return (self.cote)=*(self.cote)
13

14 def permimetre(self):

15 return (4xself.cote)
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Classes abstraites et interfaces

Classe abstraite : Exemple

i|class Circle(FigureGeometrique):

)| pi=3.14

3|  def __init__(self centre,brayone):

4 assert isinstance(centre, Point)

5 assert isinstance(float(rayon),float) and float(rayon)>=0
6

7 try:

8 super. __init__(centre)

9 except:

10 self.rayon=rayon

12| def superficie(self):

13 return Circle.pixself.rayonxself.rayon
14

15| def permimetre(self):

16 return (2« Circle . pixself.rayon)
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Classes abstraites et interfaces

Classe abstraite

La détection de I'absence d'une méthode abstraite se fait lors de
I"appel ! trop tard !

Comment obliger une classe qui hérite d'une classe abstraite
d'implementer les méthodes abstraites ?

Solution : utiliser le module abc (Abstract Base Class) qui permet de
déclarer explicitement qu'une classe/ou une méthode est abstraite.
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Classes abstraites et interfaces

Module abc : utilisation

-

import abc

N

4 ©@abc.abstractmethod

5 def __init__(self,h centre):

6 assert (isinstance(centre, Point)
7 self.centre=centre

8 raise NotlmplementedError

10 def move(self ,dx,dy):
11 self.centre.move(dx,dy)

13 Q@abc. abstractmethod
14 def superficie(self):
15 raise NotlmplementedError

17 Q@abc. abstractmethod
18| def perimetre(self):
19 raise NotlmplementedError

2| class FigureGeometrique( metaclass=abc.ABCMeta):
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