
.

Programmation orientée objet en Python
Module M2207

Rushed Kanawati

A3 - LIPN UMR CNRS 7030
Université Paris 13

rushed.kanawati@lipn.univ-paris13.fr

February 10, 2017

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 1 / 61

Plan

1 Organisation du module

2 Introduction

3 Définitions

4 Les attributs

5 Méthodes

6 Exceptions

7 Relations entre classes

8 Classes abstraites et interfaces

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 2 / 61

Organisation du module

Le module M2207

Organisation

I Intervenants : R. Kanawati, L. Saiu, Q. Chateiller.

I 4 cours, 3 TD, 5 TP

I Contrôle continue

Objectifs & Compétences visées

1 Proposer une solution logicielle orientée objet conforme à un cahier
des charges

2 Concevoir une application sous forme d’objets et de relations

3 Développer des applications client-serveur dans un langage orienté
objet

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 3 / 61

Introduction

Programmation orientée objet : objectifs

Contexte

I Les domaines d’applications des logiciels sont de plus en plus
complexes et critiques.

I Système d’exploitation, Protocoles réseaux, Jeux, Pilotage de réacteurs nucléaires, Voiture

autonome, . . .

I Plus un système est complexe, plus il est susceptible d’effondrement.

I Le coût de développement de logiciel devient très important.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 4 / 61

Introduction

Programmation orientée objet : objectifs

Qualités requises d’un logiciel

I Simplicité : faciliter la maintenance.

I Extensibilité : faciliter l’adaptation aux changements du domaine
d’application.

I Décentralisation : faciliter le développement collaboratif.

I Réutilisabilité : augmenter la fiabilité et réduire les coûts et les
délais de développement.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 5 / 61

Introduction

Programmation orientée objet : objectifs

Approches

I La modularité : Structurer un logiciel en ensemble de modules.

I Un module = ensemble de fonctions spécifiques pour traiter un
problème donné

I L’approche Objet : Un objet = Un module autonome qui encapsule
des données et des fonctions de manipulation de ces données.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 6 / 61

Introduction

Limites de la programmation procédurale : exemple

Gestion d’une base d’étudiants

Un étudiant est défini par : prénom, nom, num étudiant, note.

Solution 1

1 e t u d i a n t 1 =[”Max” , ” LeGrand ” , ” 100100 ” , 1 5]
2 e t u d i a n t 2 =[”Min” , ” P e t i t ” , ” 100101 ” , 1 0]
3

4 e t u d i a n t s =[]
5 e t u d i a n t s . append (e t u d i a n t 1)
6 e t u d i a n t s . append (e t u d i a n t 1)
7

8 d e f s e t N o t e (e t u d i a n t , note) :
9 e t u d i a n t [3]= note

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 7 / 61

Introduction

Limites de la programmation procédurale : exemple

Problème

1 employee =[” A l e x a n d r e ” , ” LeGrand ” , ” 10000 ” , 2 0 0 0]
2 #employee (prenom , nom , numero , s a l a i r e)
3

4 s e t N o t e (employee , 0)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 8 / 61

Introduction

Limites de la programmation procédurale : exemple

Approche objet

1 c l a s s E t u d i a n t :
2

3 d e f i n i t (s e l f , prenom , nom , num , note =0) :
4 s e l f . prenom=prenom
5 s e l f . nom=nom
6 s e l f . n u m e t u d i a n t=num
7

8 d e f s e t N o t e (s e l f , note) :
9 s e l f . note=note

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 9 / 61

Introduction

Limites de la programmation procédurale : exemple

Approche objet

1 c l a s s Employee :
2 d e f i n i t (s e l f , prenom , nom , num , s a l a i r e =1200) :
3 s e l f . prenom=prenom
4 s e l f . nom=nom
5 s e l f . num=num
6

7 d e f s e t S a l a i r e (s e l f , s a l a i r e) :
8 s e l f . s a l a i r e=s a l a i r e
9

10 e=Employer (prenom=” A l e x n d r e ” ,nom=” LeGrand ” ,
11 num=” 100 ” , s a l a i r e =1200)
12 e . s e t N o t e (e , 0) # e r r e u r ! o p é r a t i o n non d é f i n i e

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 10 / 61

Introduction

Encore mieux !

1 c l a s s Personne :
2

3 d e f i n i t (s e l f , prenom , nom , num) :
4 s e l f . prenom=prenom
5 s e l f . nom=nom
6 s e l f . num=num
7

8 d e f getNum (s e l f) :
9 r e t u r n (s e l f . num)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 11 / 61

Introduction

Encore mieux !

1

2 c l a s s E t u d i a n t (Personne) :
3 d e f i n i t (s e l f , prenom , nom , num , note =0) :
4 Personne . i n i t (s e l f , prenom , nom , num)
5 s e l f . note=note
6

7 d e f s e t N o t e (s e l f , note) :
8 s e l f . note=note

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 12 / 61

Introduction

Encore mieux !

1 c l a s s Employee (Personne) :
2 d e f i n i t (s e l f , prenom , nom , num , s a l a i r e) :
3 Personne . i n i t (s e l f , prenom , nom , num)
4 s e l f . s a l a i r e=s a l a i r e
5

6 d e f s e t S a l a i r e (s e l f , s a l a i r e) :
7 s e l f . s a l a i r e=s a l a i r e

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 13 / 61

Introduction

Encore mieux !

1 c l a s s A p p r e n t i (E t u d i a n t , Employee) :
2 d e f i n i t (s e l f , prenom , nom , num , note , s a l a i r e) :
3 E t u d i a n t . i n i t (s e l f , prenom , nom , num , note)
4 s e l f . s e t S a l a i r e (s a l a i r e)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 14 / 61

Définitions

Définitions

Programme orienté objet

Un ensemble d’objets qui communiquent entre eux par échange de
messages.

Un objet

est défini par un état et un comportement

I Etat : ensemble d’attributs.

I Comportement un ensemble de services (fonctions) (méthodes) que
l’objet peut exécuter.

I Dans un modèle objet pur, seules les méthodes d’un objet peuvent
accéder aux attributs de l’état.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 15 / 61

Définitions

Définitions

Classe

I Un modèle à partir duquel on fabrique un objet.

I Création d’objet = instanciation

I Une classe doit fournir au moins une méthode dite constructeur qui
permet de créer des objets.

I La méthode constructeur a la syntaxe suivante :

1 d e f i n i t (s e l f , . . .) :
2 /∗ i n i t i a l i s a t i o n de l ’ é t a t de l ’ o b j e t ∗/

I Le premier argument d’une méthode est self une référence vers l’objet
local.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 16 / 61

Définitions

Classe : exemple

1 c l a s s p o i n t :
2 d e f i n i t (s e l f) : # c o n s t r u c t e u r s a n s p a r m è t r e s
3 s e l f . x = 0 # a t t r i b u t d ’ i n s t a n c e
4 s e l f . y =0 # a t t r i b u t d ’ i n s t a n c e ’
5 d e f move (s e l f , dx , dy) :
6 s e l f . x=s e l f . x+dx
7 s e l f . y=s e l f . y+dy
8

9 p1= p o i n t () # c r é a t i o n d ’ un p o i n t p1
10 p2= p o i n t () # c r é a t i o n d ’ un p o i n t p2

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 17 / 61

Définitions

Notation graphique : UML (Unified Modeling Language)

Représentation de classes

Nom de Classe

attribut1 : type
attribut 2 : type, valeur par défaut

Constructeur(paramètres)
methode1(parametèrs) : type de retour
methode2(parametèrs) : type de retour

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 18 / 61

Définitions

Notation graphique : UML

Représentation d’objets

Nom de l’objet: Nom de classe

attribute = value

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 19 / 61

Définitions

UML : Exemple

Point

x : int
y : int

Point()
move(dx:int, y:int) : void

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 20 / 61

Définitions

UML : Exemple

p1: Point

x = 0
y = 0

p2: Point

x = 0
y = 0

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 21 / 61

Définitions

UML

I Caractéristiques

� Principe : s’abstraire du langage de programmation et des détails
d’implantation

� Normalisée par l’OMG (Object Management Group)

I Utilisations :

� esquisse : communiquer avec les autres sur certains aspects
� plan : le modèle sert de base pour le programmeur
� Génération de code

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 22 / 61

Définitions

Classes : fonctions prédéfinies

isinstance(objet,classe)

I Renvoie True si objet est instancié à partir de la classe classe

1 p1 = p o i n t ()
2 i s i n s t a n c e (p1 , p o i n t) # r e t u r n s True
3 i s i n s t a n c e (p1 , E t u d i a n t) # r e t u r n s F a l s e

issubclass(classe1,calsse2

I Renvoie True si classe1 est une sous-classe de la classe2.

1 i s s u b c l a s s (E t u d i a n t , Personne) # r e t u r n s True
2 i s i n s t a n c e (Personne , E t u d i a n t) # r e t u r n s F a l s e

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 23 / 61

Les attributs

Types d’attributs

Attribut d’instance

I Attribut défini dans la méthode constructeur.

I La valeur d’un attribut d’instance est propre à chaque instance.

I L’accès à l’attribut d’instance est donnée par :
nomObjet.nomAttribut

Attribut de classe

I Attribut défini au niveau de la classe

I La valeur est partagée par tous les objets instanciés à partir de
la classe.

I L’accès à l’attribut de classe est donnée par :
nomDeClasse.nomAttribut

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 24 / 61

Les attributs

Attributs : exemples

1 c l a s s CompteBancaire :
2 d e c o u v e r t=0 #a t t r i b u t de c l a s s e
3

4 d e f i n i t (s e l f , s o l d e =0) :
5 s e l f . s o l d e=s o l d e # a t t r i b u t d ’ o b j e t
6

7 d e f r e t i r e r (s e l f , montant) :
8 i f (s e l f . s o l d e−montant>=CompteBancaire . d e c o u v e r t) :
9 s e l f . s o l d e=s e l f . s o l d e−montant

10 e l s e :
11 p r i n t ” s o l d e i n s u f f i s e n t ”
12

13 d e f s e t D e c o u v e r t (s e l f , s e u i l) :
14 CompteBancaire . d e c o u v e r t= − s e u i l

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 25 / 61

Les attributs

Attributs : exemples

1 c1 = CompteBancaire (1000)
2 c2 = CompteBancaire (8 0 0)
3

4 c2 . r e t i r e r (1000) #s o l d e i n s u f f i s a n t
5 c1 . s e t D e c o u v e r t (3 0 0)
6 c2 . r e t i r e r (1100) #s u c c è s

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 26 / 61

Les attributs

Protection d’attributs

I En Python tous les attributs sont des attributs publiques : accessibles
à partir d’autres classes : L’encapsulation n’est pas respectée !

I Exemple : c.solde = 10 000

I il est possible de brouiller l’accès à un attribut en le nommant comme
suit : nomAttribut

I Un attribut brouillé est renommé automatiquement à
NomClasse NomAttribut

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 27 / 61

Les attributs

Gestion des attributs d’instance

Accès en lecture

I nomObjet.nomAttribut

I Fonction prédéfinie : getattr(objet,attribut)

� Exemple : getattr(c,"solde")

� Attention le nom de l’attribut est passé comme un str
� Si l’attribut n’existe pas la méthode

getattr (self,att) sera appelée

I L’ensemble des attributs d’instance sont regroupés dans un attribut
spéciale : dict de type dictionnaire

� Exemple : c. dict ["solde"]

� c. dict .keys() # retourne une liste des attributs

définis

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 28 / 61

Les attributs

Gestion des attributs d’instance

Accès en écriture

I nomObjet.nomAttribut = valeur

I Fonction prédéfinie : setattr(objet,attr,val)

� Attention : Si l’attribut n’existe pas il sera crée !!
� Les deux approches précédentes passent par un appel implicite à

la fonction prédéfinie setattr (self,att,val)

I nomObjet. dict ["nomAttribut"] = val

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 29 / 61

Les attributs

Gestion d’attributs de classes

I Même principe que pour les attributs d’instance.

I Les attributs de classes et les méthodes (d’instance ou de classes)
sont dans le dictionnaire : NomClasse. dict .

1 c l a s s MathTools :
2 p i =3.141592
3 d e f i s P a i r (n) :
4 r e t u r n (n%2==0)
5 i s P a i r = s t a t i c m e t h o d (i s P a i r)
6

7 p r i n t Mathtoo l s . d i c t
8

9

10 { ’ m o d u l e ’ : ’ m a i n ’ , ’ p i ’ : 3 . 1 4 1 5 9 2 , ’ i s P a i r ’ : <
s t a t i c m e t h o d o b j e c t a t 0 x1006ed670 >, ’ d o c ’ : None}

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 30 / 61

Les attributs

Attributs : autres fonctions prédéfinies

hasattr(objet,att)

I Retourne True si objet possède un attribut att.

I Cette fonction fait appel à getattr et retourne False en cas de lever
d’exception.

delattr(objet,name)

I Effacer l’attribut name de l’instance désigné par objet

1 c l a s s A :
2 d e f i n i t (s e l f , a t) :
3 s e l f . a t=a t
4 a=A(5)
5 b=A(6)
6 d e l a t t r (a , a t)
7 p r i n t b . a t # a f f i c h e 6
8 p r i n t a . a t # A t t r i b u t e E r r o r : A i n s t a n c e has no a t t r i b u t e ’ a t

’
R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 31 / 61

Méthodes

Méthode d’instances

I Une méthode qui s’exécute dans l’espace d’un objet.
I A self comme premier argument.
I Appel : nomObjet.nomMethod()

1 c l a s s CompteBancaire :
2 d e f i n i t (s e l f , s o l d e =0) :
3 s e l f . s o l d e=s o l d e # a t t r i b u t d ’ o b j e t
4

5 d e f r e t i r e r (s e l f , montant) :
6 i f (s e l f . s o l d e−montant>=0) :
7 s e l f . s o l d e=s e l f . s o l d e−montant
8 e l s e :
9 p r i n t ” s o l d e i n s u f f i s e n t ”

10

11

12 c=CompteBancaire (2000)
13 c . r e t i r e r (1000)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 32 / 61

Méthodes

Méthodes de classe

I Une méthode qui peut s’exécuter sans instancier la classe (pas de
création d’objet)

I Souvent utilisée pour programmer des services génériques.

I Une méthode statique n’a pas self comme premier argument

I Elle doit être déclarée statique explicitement en utilisant l’instruction
staticmethod :
nomMethode= staticmethod(nomMethode)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 33 / 61

Méthodes

Méthodes de classe : Exemple

1 c l a s s MathTools :
2 d e f i s P a i r (n) :
3 r e t u r n (n%2==0)
4 i s P a i r = s t a t i c m e t h o d (i s P a i r)
5

6 p r i n t MathTools . i s P a i r (5)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 34 / 61

Méthodes

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 35 / 61

Méthodes

Comparaison d’objets

1 c l a s s p o i n t :
2 d e f i n i t (s e l f) : # c o n s t r u c t e u r s a n s p a r a m è t r e s
3 s e l f . x = 0 # a t t r i b u t d ’ i n s t a n c e
4 s e l f . y =0 # a t t r i b u t d ’ i n s t a n c e ’
5 d e f move (s e l f , dx , dy) :
6 s e l f . x=s e l f . x+dx
7 s e l f . y=s e l f . y+dy
8

9 p1= p o i n t () # c r é a t i o n d ’ un p o i n t p1
10 p2 = p o i n t () # c r é a t i o n d ’ un p o i n t p2
11

12

13 p r i n t p1==p2 # F a l s e

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 35 / 61

Méthodes

Comparaison d’objets

1 c l a s s p o i n t :
2 d e f i n i t (s e l f) : # c o n s t r u c t e u r s a n s p a r a m è t r e s
3 s e l f . x = 0 # a t t r i b u t d ’ i n s t a n c e
4 s e l f . y =0 # a t t r i b u t d ’ i n s t a n c e ’
5 d e f move (s e l f , dx , dy) :
6 s e l f . x=s e l f . x+dx
7 s e l f . y=s e l f . y+dy
8 d e f c m p (s e l f , o t h e r) :
9 i f (s e l f . x==o t h e r . x) and (s e l f . y==o t h e r . y) :

10 r e t u r n 0
11 e l s e :
12 r e t u r n 1
13

14 p1= p o i n t () # c r e a t i o n d ’ un p o i n t p1
15 p2 = p o i n t () # c r e a t i o n d ’ un p o i n t p2
16

17

18 p r i n t p1==p2 # True

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 36 / 61

Méthodes

Comparaison d’objets

cmp

I Permet de comparer deux objets (par nécessairement de la même
classe)

I Valeurs de retour : { -1, 0, 1}
� -1 si l’objet est plus petit que l’autre.
� 0 si objets égaux
� 1 si l’objet est plus grand que l’autre

I Fonction utilisée implicitement par la fonction prédéfinie cmp()

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 37 / 61

Méthodes

Autres fonctions de comparaison

I lt : <

I le : ≤
I eq : =

I gt : >

I ge : ≥

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 38 / 61

Méthodes

Affichage d’objet

str

permet de retourner une châıne de caractères pour afficher une
représentation de l’objet (avec l’instruction print).

1 c l a s s Personne :
2 d e f i n i t (s e l f , prenom , nom , num) :
3 s e l f . prenom=prenom
4 s e l f . nom=nom
5 s e l f . num=num
6

7 d e f s t r (s e l f) :
8 ””” a f f i c h e r p l u s j o l i m e n t n o t r e o b j e t ”””
9 r e t u r n ”{} {} , numero : {}” . fo rmat (

10 s e l f . prenom , s e l f . nom , s e l f . num)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 39 / 61

Exceptions

Exceptions

Principe

Séparer la détection d’une anomalie de son traitement.

Exception : Rappel

I Une exception est levée pour signaler une anomalie lors de l’exécution
d’une instruction.

I Division par zéro, conversion de type impossible, indice inexistant
I . . .

I On peut forcer la levée d’une exception en utilisant l’instruction :
raise

1 i f v a r < 0 :
2 r a i s e E x c e p t i o n

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 40 / 61

Exceptions

Exceptions & Objets

Exception : Rappel

I Si une exception est levée, l’exécution d’une méthode s’arrête et on
retourne l’exception à l’appelant

I L’appelant peut traiter l’anomalie génératrice de l’exception si l’appel
est fait dans un bloc try/catch

1 t r y :
2 i n s t r u c t i o n 1
3 i n s t r u c t i o n 2
4 . . .
5 e x c e p t e x c e p t i o n :
6 a c t i o n s

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 41 / 61

Exceptions

Exceptions

Exceptions prédéfinies

I ZeroDivisionError : division par zéro

I ValueError : valeur inacceptable

I IndexError : Accès à un indice inexistant

I TypeError : type d’argument incorrect

I OSError : erreur provoqué âr un appel système

I MemoryError : épuisement de la mémoire

I ...

Exceptions utilisateur

I Les exceptions sont des objets.

I On peut définir de nouvelles exceptions en spécialisant la classe
Exception

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 42 / 61

Exceptions

Traitement des exceptions

I Chaque type d’exception peut avoir un traitement différent

1 t r y :
2 . . .
3 i n s t r u c t u c t i o n s
4 . . .
5 e x c e p t Except ionType1 :
6 a c t i o n s
7 e x c e p t Except ionType2 :
8 a c t i o n s
9 . . .

10 f i n a l l y :
11 a c t i o n s à p r e n d r e dans l e c a s par d é f a u t

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 43 / 61

Exceptions

Exceptions & Objets

I Utiliser les exceptions afin de vérifier la bonne utilisation des
méthodes.

I Exemple : vérifier que les paramètres d’entrée d’une méthode ont les
bon types et les bonnes valeurs

I Vérification simplifiée par l’instruction assert

assert

I Syntaxe : assert Expression[, Arguments]

I Exemple : assert (Temperature 0),”trop froid !!”

I Fonctionnement : Si condition est évaluée à False, alors lever
AssertionError

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 44 / 61

Exceptions

assert : Exemple 1

Instanciation d’objets

1 c l a s s CompteBancaire :
2

3 d e f i n i t (s e l f , banque , t i t u l a i r e , s o l d e) :
4 a s s e r t i s i n s t a n c e (banque , s t r) and l e n (banque)>0
5 a s s e r t i s i n s t a n c e (t i t u l a i r e , s t r) and l e n (t i t u l a i r e)>0
6 a s s e r t i s i n s t a n c e (f l o a t (s o l d e) , f l o a t) and s o l d e >=0
7

8 s e l f . banque=banque
9 s e l f . t i t u l a i r e = t i t u l a i r e

10 s e l f . s o l d e=s o l d e

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 45 / 61

Exceptions

assert : Exemple 2

Interdir la création dynamique d’attributs

1 c l a s s e A :
2
3

4 d e f s e t a t t r (s e l f , name , v a l u e) :
5 i f name not i n s e l f . d i c t . k e y s () :
6 p a s s
7 . . .

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 46 / 61

Relations entre classes

Relations entre classes

Deux types de relations

I Relation d’utilisation

� C’est une relation de type : has-a

� Une classe peut avoir des attributs qui sont d’instance d’autres
classes.

� Exemple : Une voiture a 4 roues.
� Différents types de couplage entre les classes : composition,

agrégation, association, etc.

I Relation de spécialisation/généralisation

� C’est une relation de type : is-a ou une relation de héritage
� A doit hériter de B si A est un cas particulier de B.
� On parle de : Super classe/ sous classe ou classe mère / classe

fille.
� Exemple : Chat, Lion, Félin, Animale, Chat Angora,

Chien : Quelles relations d’héritage ?
R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 47 / 61

Relations entre classes

Relation d’utilisation : UML

Relation d’agrégation

Voiture Roue
Roue

4

Relation d’association

Personne Adresse
Adresse

n,1*

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 48 / 61

Relations entre classes

Relation d’utilisation : Exemple

Problem : un segment est défini par deux points

1 i m p o r t math
2 c l a s s P o i n t :
3 d e f i n i t (s e l f , x=0, y=0) :
4 s e l f . x = f l o a t (x)
5 s e l f . y = f l o a t (y)
6

7 d e f s t r (s e l f) :
8 r e t u r n ”(%s ; %s) ” % (s e l f . x , s e l f . y)
9

10 d e f move (s e l f , dx , dy) :
11 s e l f . x= s e l f . x+dx
12 s e l f . y= s e l f / y+dy
13

14 d e f d i s t a n c e (s e l f , a u t r e) :
15 dx2 = (s e l f . x − a u t r e . x) ∗∗ 2
16 dy2 = (s e l f . y − a u t r e . y) ∗∗ 2
17 r e t u r n math . s q r t (dx2 + dy2)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 49 / 61

Relations entre classes

Relation d’utilisation : Exemple

Problem : un segment est défini par deux points

1 c l a s s Segment :
2 d e f i n i t (s e l f , e1 , e2) :
3 a s s e r t i s i n s t a n c e (e1 , P o i n t) and i s i n s t a n c e (e2 , P o i n t)
4

5 s e l f . e x t r e m i t e 1 = e1
6 s e l f . e x t r e m i t e 2 = e2
7

8 d e f s t r (s e l f) :
9 r e t u r n ”[% s − %s] ” % (s e l f . e x t r e m i t e 1 , s e l f . e x t r e m i t e 2)

10

11 d e f move (s e l f , dx , dy) :
12 s e l f . e x t r e m i t e 1 . move (dx , dy)
13 s e l f . e x t r e m i t e 2 . move (dx , dy)
14

15 d e f l o n g u e u r (s e l f) :
16 r e t u r n s e l f . e x t r e m i t e 1 . d i s t a n c e (s e l f . e x t r e m i t e 2)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 50 / 61

Relations entre classes

Relation d’héritage

I Principe : définir une nouvelle classe par spécialisation d’une (ou
plusieurs) classes existantes.

I La sous-classe :

� récupère automatiquement tous les attributs et les méthodes des
supers classes ;

� peut enrichir la description de la classe par l’ajout des attributs
et des méthodes ;

� peut modifier les types des attributs hérités ;
� peut modifier le comportement des méthodes héritées.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 51 / 61

Relations entre classes

Relation d’héritage : UML

Personne

Nom : String
age : int

getAge()

Etudiant
num : str
note : float

setNote(note: float)

Employee

salaire : float

setSalaire(montant : float)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 52 / 61

Relations entre classes

Relation d’héritage : syntaxe Python

Héritage Simple

1 c l a s s A(B) :
2 . . .
3 # A e s t une s o u s c l a s s e de B

Héritage multiple

1 c l a s s A(B, C ,D) :
2 . . .
3 # A e s t une s o u s c l a s s e de B, C ,D

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 53 / 61

Relations entre classes

Héritage multiple : gestion de conflits

1 c l a s s A(B, C ,D) :
2 . . .
3 # A e s t une s o u s c l a s s e de B, C ,D

Si les classes B; C,D ont les mêmes attributs, méthodes, la classe A hérite
de l’attribut/méthode, cité en premier (ici de celui de B)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 54 / 61

Relations entre classes

Héritage : exemple

Point coloré

1 c l a s s P o i n t C o l o r e (P o i n t) :
2 d e f i n i t (s e l f , x=0, y=0, c o u l e u r) :
3 P o i n t . i n i t (s e l f , x , y)
4 s e l f . c o u l e u r = nom
5

6 d e f s t r (s e l f) : # r e d é f i n i t i o n
7 r e t u r n ”%s :% s ” % (P o i n t . s t r (s e l f) , s e l f . c o u l e u r)
8 # u t i l i s a t i o n de l a v e r s i o n de s t r dans P o i n t
9

10 d e f s e t C o u l e u r (c o u l e u r) : # une n o u v e l l e méthode
11 s e l f . c o u l e u r = c o u l e u r

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 55 / 61

Classes abstraites et interfaces

Classe abstraite

Classe abstraite

I Quoi ? : Une classe qui ne peut pas fabriquer des objets !

I Pourquoi ? : renforcer l’extensibilité des programmes en factorisant
des attributs et des méthodes communs à différents classes.

I Exemple :

� un point, un segment, un carré, un rectangle, un cercle, ..., sont
des figures géométriques

� On peut déplacer, colorier une figure, calculer sa superficie, son
preimètre, ...

� L’exécution des méthodes citées ci-dessus dépend de la nature de
la figure

� On peut définir ces méthodes d’une manière abstraite dans une
classe abstraite !

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 56 / 61

Classes abstraites et interfaces

Classe abstraite : Exemple

1 c l a s s F i g u r e G e o m e t r i q u e :
2

3 d e f i n i t (s e l f , c e n t r e) :
4 a s s e r t (i s i n s t a n c e (c e n t r e , P o i n t)
5 s e l f . c e n t r e=c e n t r e
6 r a i s e Not ImplementedEr ror
7

8 d e f move (s e l f , dx , dy) :
9 s e l f . c e n t r e . move (dx , dy)

10

11 d e f s u p e r f i c i e (s e l f) :
12 r a i s e Not ImplementedEr ror
13 d e f p e r i m e t r e (s e l f) :
14 r a i s e Not ImplementedEr ror

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 57 / 61

Classes abstraites et interfaces

Classe abstraite : Exemple

1 c l a s s C a r r e (F i g u r e G e o m e t r i q u e) :
2 d e f i n i t (s e l f , c e n t r e , c o t e) :
3 a s s e r t i s i n s t a n c e (c e n t r e , P o i n t)
4 a s s e r t i s i n s t a n c e (f l o a t (c o t e) , f l o a t) and f l o a t (c o t e)>=0
5

6 t r y :
7 s u p e r . i n i t (c e n t r e)
8 e x c e p t :
9 s e l f . c o t e=c o t e

10

11 d e f s u p e r f i c i e (s e l f) :
12 r e t u r n (s e l f . c o t e) ∗(s e l f . c o t e)
13

14 d e f permimetre (s e l f) :
15 r e t u r n (4∗ s e l f . c o t e)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 58 / 61

Classes abstraites et interfaces

Classe abstraite : Exemple

1 c l a s s C i r c l e (F i g u r e G e o m e t r i q u e) :
2 p i =3.14
3 d e f i n i t (s e l f , c e n t r e , r a y o n e) :
4 a s s e r t i s i n s t a n c e (c e n t r e , P o i n t)
5 a s s e r t i s i n s t a n c e (f l o a t (rayon) , f l o a t) and f l o a t (rayon)>=0
6

7 t r y :
8 s u p e r . i n i t (c e n t r e)
9 e x c e p t :

10 s e l f . rayon=rayon
11

12 d e f s u p e r f i c i e (s e l f) :
13 r e t u r n C i r c l e . p i ∗ s e l f . rayon ∗ s e l f . rayon
14

15 d e f permimetre (s e l f) :
16 r e t u r n (2∗ C i r c l e . p i ∗ s e l f . rayon)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 59 / 61

Classes abstraites et interfaces

Classe abstraite

Problem

I La détection de l’absence d’une méthode abstraite se fait lors de
l’appel !! trop tard !

I Comment obliger une classe qui hérite d’une classe abstraite
d’implementer les méthodes abstraites ?

I Solution : utiliser le module abc (Abstract Base Class) qui permet de
déclarer explicitement qu’une classe/ou une méthode est abstraite.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 60 / 61

Classes abstraites et interfaces

Module abc : utilisation

1 i m p o r t abc
2 c l a s s F i g u r e G e o m e t r i q u e (m e t a c l a s s=abc . ABCMeta) :
3

4 @abc . a b s t r a c t m e t h o d
5 d e f i n i t (s e l f , c e n t r e) :
6 a s s e r t (i s i n s t a n c e (c e n t r e , P o i n t)
7 s e l f . c e n t r e=c e n t r e
8 r a i s e Not ImplementedEr ror
9

10 d e f move (s e l f , dx , dy) :
11 s e l f . c e n t r e . move (dx , dy)
12

13 @abc . a b s t r a c t m e t h o d
14 d e f s u p e r f i c i e (s e l f) :
15 r a i s e Not ImplementedEr ror
16

17 @abc . a b s t r a c t m e t h o d
18 d e f p e r i m e t r e (s e l f) :
19 r a i s e Not ImplementedEr ror

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 61 / 61

	Organisation du module
	Introduction
	Définitions
	Les attributs
	Méthodes
	Exceptions
	Relations entre classes
	Classes abstraites et interfaces

