Programmation orientée objet en Python
Module M2207

Rushed Kanawati

A3 - LIPN UMR CNRS 7030
Université Paris 13
rushed.kanawati@lipn.univ-parisi3.fr

February 10, 2017

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 1/61

N
Plan

Organisation du module
Introduction

Définitions

Les attributs

Méthodes

Exceptions

Relations entre classes

Classes abstraites et interfaces

00000000

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 2 /61

Le module M2207

Organisation

Intervenants : R. Kanawati, L. Saiu, Q. Chateiller.
4 cours, 3 TD,5 TP

Controle continue

Objectifs & Compétences visées

1 Proposer une solution logicielle orientée objet conforme a un cahier
des charges

2 Concevoir une application sous forme d'objets et de relations

3 Développer des applications client-serveur dans un langage orienté
objet

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 3/61

Introduction

Programmation orientée objet : objectifs

» Les domaines d'applications des logiciels sont de plus en plus
complexes et critiques.

P Systéme d’exploitation, Protocoles réseaux, Jeux, Pilotage de réacteurs nucléaires, Voiture

autonome, . ..

» Plus un systéme est complexe, plus il est susceptible d’effondrement.

» Le colit de développement de logiciel devient trés important.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 4 /61

Introduction

Programmation orientée objet : objectifs

Qualités requises d'un logiciel

» Simplicité : faciliter la maintenance.

» Extensibilité : faciliter 'adaptation aux changements du domaine
d’application.

» Décentralisation : faciliter le développement collaboratif.

» Réutilisabilité : augmenter la fiabilité et réduire les colits et les
délais de développement.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 5/ 61

Introduction

Programmation orientée objet : objectifs

Approches

» La modularité : Structurer un logiciel en ensemble de modules.

» Un module = ensemble de fonctions spécifiques pour traiter un
probleme donné

» L’approche Objet : Un objet = Un module autonome qui encapsule
des données et des fonctions de manipulation de ces données.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 6 /61

Introduction

Limites de la programmation procédurale : exemple

Gestion d'une base d’étudiants

Un étudiant est défini par : prénom, nom, num_étudiant, note.

Solution 1

1| etudiantl=["Max" ,” LeGrand” ,”100100" ,15]
2| etudiant2=["Min” ,” Petit” ,”100101" ,10]

4| etudiants =[]
s| etudiants.append(etudiantl)
6| etudiants .append(etudiantl)

7
s| def setNote(etudiant ,h note):
9 etudiant [3]=note

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 7 /61

Introduction

Limites de la programmation procédurale : exemple

Probleme

employee:[” Alexandre” ,” LeGrand” ,” 10000" ,2000]

#employee (prenom, nom, numero, salaire)

B W N =

setNote (employee ,0)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 8 /61

Introduction

Limites de la programmation procédurale : exemple

Approche objet

1| class Etudiant:

2

3 def __init__(self b prenom,h nom,num, note=0):
4 self.prenom=prenom

5 self .nom=nom

6 self . num_etudiant=num

7

8 def setNote(self ,note):

9 self .note=note

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 9 /61

Introduction

Limites de la programmation procédurale : exemple

Approche objet

il class Employee:

2 def __init__(self ,prenom,nom,num, salaire=1200):
3 self.prenom=prenom

4 self .nom=nom

5 self .num=num

6

7 def setSalaire(self h salaire):

8 self.salaire=salaire

9

10| e=Employer (prenom="Alexndre” ,nom="LeGrand" ,

11 num="100",salaire=1200)

12| e.setNote(e,0) # erreur ! opération non définie

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 10 / 61

Introduction

Encore mieux !

class Personne:

N

def __init__(self b prenom,h nom,num):
self.prenom=prenom
self .nom=nom
self .num=num

® N o 0O A~ W

def getNum(self):
9 return (self.num)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 11 / 61

Introduction

Encore mieux !

1

2| class Etudiant(Personne):

3 def __init__(self b prenom,h nom,num, note=0):
4 Personne. __init__(self ,prenom, nom,num)
5 self . note=note

6

7 def setNote(self h note):

8 self . note=note

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 12 / 61

Introduction

Encore mieux !

1| class Employee(Personne):

2 def __init__(self ,h prenom,nom,num,salaire):
3 Personne. __init__(self ,prenom,nom,num)
4 self.salaire=salaire

5

6 def setSalaire(self 6 salaire):

7 self.salaire=salaire

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 13 / 61

Introduction

Encore mieux !

-

class Apprenti(Etudiant , Employee):

2 def __init__(self , prenom,nom,num,note,salaire):
3 Etudiant. __init__(self ,prenom,nom,num, note)
4 self.setSalaire(salaire)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 14 / 61

Définitions

Programme orienté objet

Un ensemble d'objets qui communiquent entre eux par échange de
messages.

est défini par un état et un comportement

Etat : ensemble d'attributs.
Comportement un ensemble de services (fonctions) (méthodes) que
I'objet peut exécuter.

Dans un modéle objet pur, seules les méthodes d'un objet peuvent
accéder aux attributs de I'état.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 15 / 61

Définitions

Classe

Un modele a partir duquel on fabrique un objet.
Création d'objet = instanciation

Une classe doit fournir au moins une méthode dite constructeur qui
permet de créer des objets.

La méthode constructeur a la syntaxe suivante :

1| def __init__(self, ...):
2 /x initialisation de |'état de | objet x*/

Le premier argument d'une méthode est self une référence vers I'objet
local.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 16 / 61

Classe : exemple

-

class point:
def __init__(self): # constructeur sans parmétres
self . x = 0 # attribut d’'instance
self.y =0 # attribut d’'instance’
def move(self ,dx,dy):
self.x=self .x+dx
self.y=self.y+dy

N

© 0 N o U A~ W

pl= point() # création d’'un point pl
p2= point() # création d’'un point p2

-
o

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 17 / 61

Notation graphique : UML (Unified Modeling Language)

Représentation de classes

Nom de Classe
attributl : type
attribut 2 : type, valeur par défaut

Constructeur(parametres)
methodel(parameters) : type de retour
methode2(parametérs) : type de retour

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 18 / 61

Notation graphique : UML

Représentation d'objets

Nom de I'objet: Nom de classe

attribute = value

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 19 / 61

UML : Exemple

Point
X : int
y @ int
Point()

move(dx:int, y:int) : void

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 20 / 61

UML : Exemple

p2: Point

x=0
y=20
pl: Point
x=0
y=20

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 21 /61

UML

» Caractéristiques
B Principe : s'abstraire du langage de programmation et des détails
d'implantation
B Normalisée par 'OMG (Object Management Group)
» Utilisations :
B esquisse : communiquer avec les autres sur certains aspects
B plan : le modele sert de base pour le programmeur
B Génération de code

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 22 /61

Classes : fonctions prédéfinies

isinstance(objet,classe)

Renvoie True si objet est instancié a partir de la classe classe

pl = point ()
isinstance (pl, point)
isinstance (pl, Etudiant)

w N e

issubclass(classel,calsse2
Renvoie True si classel est une sous-classe de la classe2.

-

issubclass (Etudiant , Personne)
isinstance (Personne , Etudiant)

N

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 23 /61

Types d'attributs

Attribut d'instance

Attribut défini dans la méthode constructeur.
La valeur d'un attribut d’instance est propre a chaque instance.

L'acces a I'attribut d'instance est donnée par :
nomObjet.nomAttribut

Attribut de classe

Attribut défini au niveau de la classe

La valeur est partagée par tous les objets instanciés a partir de
la classe.

L'acces a I'attribut de classe est donnée par :
nomDeClasse.nomAttribut

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 24 / 61

Les attributs

Attributs : exemples

-

N

o o b

class CompteBancaire:

decouvert=0 +#attribut de classe

def __init__(self h solde=0):
self.solde=solde # attribut d'objet

def retirer(self , montant):

def

if (self.solde—montant>=CompteBancaire.decouvert):

self .solde=self.solde—montant
else:
print "solde insuffisent”

setDecouvert(self ,seuil):
CompteBancaire.decouvert= —seuil

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

25 / 61

Attributs : exemples

cl = CompteBancaire(1000)
c2 = CompteBancaire (800)

c2.retirer (1000) +#solde insuffisant
cl.setDecouvert (300)
c2.retirer (1100) #succes

o A W N e

R. Kanawati (LIPN) Programmation orientée objet en Python

February 10, 2017

26 / 61

Les attributs

Protection d’attributs

> En Python tous les attributs sont des attributs publiques : accessibles
a partir d'autres classes : L'encapsulation n'est pas respectée !

» Exemple : c.solde = 10 000

> il est possible de brouiller I'accés a un attribut en le nommant comme
suit : __nomAttribut

» Un attribut brouillé est renommé automatiquement a
_NomClasse_NomAttribut

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 27 / 61

Les attributs

Gestion des attributs d'instance

Acces en lecture

nomObjet.nomAttribut

Fonction prédéfinie : getattr(objet,attribut)
Exemple : getattr(c,"solde")
Attention le nom de |'attribut est passé comme un str

Si |'attribut n’existe pas la méthode
__getattr__(self,att) sera appelée

L’'ensemble des attributs d'instance sont regroupés dans un attribut
spéciale : __dict__ de type dictionnaire
Exemple : c._dict__["solde"]

c._dict__.keys() # retourne une liste des attributs
définis

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 28 / 61

Les attributs

Gestion des attributs d'instance

Acces en écriture

nomObjet.nomAttribut = valeur

Fonction prédéfinie : setattr(objet,attr,val)

Attention : Si I’attribut n’existe pas il sera crée !!

Les deux approches précédentes passent par un appel implicite a

la fonction prédéfinie __setattr__(self,att,val)

nomObjet._dict__["nomAttribut"] = val

R. Kanawati (LIPN) Programmation orientée objet en Python

February 10, 2017

29 / 61

Les attributs

Gestion d’attributs de classes

Méme principe que pour les attributs d'instance.

Les attributs de classes et les méthodes (d'instance ou de classes)
sont dans le dictionnaire : NomClasse._dict__.

class MathTools:
pi=3.141592
def isPair(n):
return (n%2==0)
isPair = staticmethod(isPair)

print Mathtools. __dict__

{'-_module__": '"__main__", ’'pi’': 3.141592, 'isPair’': <
staticmethod object at 0x1006ed670>, '__doc__': None}

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

30 / 61

Les attributs

Attributs : autres fonctions prédéfinies

hasattr(objet,att)

Retourne True si objet possede un attribut att.

Cette fonction fait appel a getattr et retourne False en cas de lever
d’exception.

delattr(objet,name)

Effacer I'attribut name de I'instance désigné par objet

1| class A:

2 def __init__(self at):
3 self.at=at

4 a=A(5)

5| b=A(6)

6 delattr(a,at)

7l print b.at

g print a.at

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 31/61

© N o O » W N -

Méthode d'instances

Une méthode qui s’exécute dans I'espace d'un objet.
A self comme premier argument.
Appel : nomObjet.nomMethod ()

class CompteBancaire:
def __init__(self h solde=0):
self.solde=solde

def retirer(self , montant):
if (self.solde—montant>=0):
self.solde=self.solde—montant
else:
print

"solde insuffisent”

c=CompteBancaire (2000)
c.retirer (1000)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

32 / 61

Méthodes de classe

» Une méthode qui peut s'exécuter sans instancier la classe (pas de
création d’'objet)

» Souvent utilisée pour programmer des services génériques.

» Une méthode statique n'a pas self comme premier argument

> Elle doit étre déclarée statique explicitement en utilisant I'instruction
staticmethod :
nomMethode= staticmethod (nomMethode)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 33 /61

Méthodes de classe : Exemple

1| class MathTools:

2 def isPair(n):

3 return (n%2==0)

4 isPair = staticmethod(isPair)
5

6

print MathTools.isPair (5)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 34 /61

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 35 /61

Comparaison d'objets

9| pl= point() # création d’'un point pl
10| p2 = point() # création d’'un point p2

13 print pl=—p2 # False

il class point:

2 def __init__(self): # constructeur sans
3 self . x = 0 # attribut d'instance

4 self.y =0 # attribut d'instance’

5 def move(self ,dx,dy):

6 self .x=self . x+dx

7 self.y=self.y+dy

8

parametres

R. Kanawati (LIPN) Programmation orientée objet en Python

February 10, 2017

35 / 61

Comparaison d'objets

1| class point:

2 def __init__(self):

3 self.x =0

4 self.y =0

5 def move(self ,dx,dy):

6 self.x=self .x+dx

7 self.y=self.y+dy

8 def __cmp__(self other):
9 if (self.x—=other.x) and (self.y=—other.y):
10 return 0

11 else:

12 return 1

13

14| pl= point ()

15| p2 = point ()

16

17

18| print pl=—p2

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 36 / 61

Comparaison d'objets

Permet de comparer deux objets (par nécessairement de la méme
classe)

Valeurs de retour : { -1, 0, 1}
-1 si l'objet est plus petit que |'autre.
0 si objets égaux
1 si I'objet est plus grand que |'autre

Fonction utilisée implicitement par la fonction prédéfinie cmp ()

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 37 /61

Autres fonctions de comparaison

ot <
po_le_: <
> _eq_: =
> _gt >
> _ge_: >

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 38 /61

Affichage d'objet

permet de retourner une chaine de caracteres pour afficher une
représentation de |'objet (avec I'instruction print).

1| class Personne:

2 def __init__(self 6 prenom,nom,num):

3 self.prenom=prenom

4 self .nom=nom

5 self .num=num

6

7 def __str__(self):

8 """ afficher plus joliment notre objet”"”
9 return "{} {}, numero: {}".format(

10 self.prenom, self.nom, self.num)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 39 /61

Exceptions

Séparer la détection d'une anomalie de son traitement.

Exception : Rappel

Une exception est levée pour signaler une anomalie lors de |'exécution
d'une instruction.
Division par zéro, conversion de type impossible, indice inexistant

On peut forcer la levée d'une exception en utilisant I'instruction :
raise

-

if var < 0:
raise Exception

N

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 40 / 61

Exceptions

Exceptions & Objets

Exception : Rappel
Si une exception est levée, I'exécution d’'une méthode s'arréte et on

retourne |'exception a |'appelant

L'appelant peut traiter I'anomalie génératrice de |'exception si |'appel
est fait dans un bloc try/catch

try:
instructionl
instruction?2

except exception:
actions

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 41 /61

Exceptions

Exceptions prédéfinies

ZeroDivisionError : division par zéro
ValueError : valeur inacceptable

IndexError : Acceés a un indice inexistant
TypeError : type d'argument incorrect
OSError : erreur provoqué ar un appel systeme

MemoryError : épuisement de la mémoire

Exceptions utilisateur

Les exceptions sont des objets.
On peut définir de nouvelles exceptions en spécialisant la classe
Exception

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

42 / 61

Traitement des exceptions

» Chaque type d’exception peut avoir un traitement différent

i try:
3 instructuctions

5| except ExceptionTypel

6 actions
7| except ExceptionType2:
8 actions

| finally :
11 actions a prendre dans le cas par défaut

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 43 / 61

Exceptions & Objets

» Utiliser les exceptions afin de vérifier la bonne utilisation des
méthodes.

» Exemple : vérifier que les parametres d’entrée d'une méthode ont les
bon types et les bonnes valeurs

» Vérification simplifiée par I'instruction assert

v

Syntaxe : assert Expression[, Arguments]

» Exemple : assert (Temperature 0),"trop froid !!”

Fonctionnement : Si condition est évaluée a False, alors lever
AssertionError

v

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 44 / 61

-

assert : Exemple 1

Instanciation d'objets

Exceptions

class CompteBancaire:

self.banque=banque
self . titulaire=titulaire
self.solde=solde

def __init__(self 6 banque, titulaire hsolde):
assert isinstance(banque,str) and
assert isinstance(titulaire ,str) and
assert isinstance(float(solde), float) and solde>=0

len (banque)>0

len(titulaire)>0

R. Kanawati (LIPN)

Programmation orientée objet en Python

February 10, 2017

45 / 61

Exceptions

assert : Exemple 2

Interdir la création dynamique d'attributs

1| classe A:

2

3

4 def __setattr__(self name,value):

5 if name not in self.__dict__.keys():
6 pass

7

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 46 / 61

Relations entre classes

Relations entre classes

Deux types de relations

Relation d’utilisation
C'est une relation de type : has-a
Une classe peut avoir des attributs qui sont d'instance d'autres
classes.
Exemple : Une voiture a 4 roues.
Différents types de couplage entre les classes : composition,
agrégation, association, etc.

Relation de spécialisation/généralisation
C'est une relation de type : is—a ou une relation de héritage
A doit hériter de B si A est un cas particulier de B.
On parle de : Super classe/ sous classe ou classe mere / classe
fille.
Exemple : Chat, Lion, Félin, Animale, Chat Angora,
Chien : Quelles relations d'héritage ?

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 47 / 61

Relation d'utilisation : UML

Voiture Rou Roue
| o—1

Relation d’association
Adresse
‘ Personne }—15 Adresse ‘
n

N

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 48 / 61

Relations entre classes

Relation d'utilisation : Exemple

Problem : un segment est défini par deux points

il import math

2| class Point:

3 def __init__(self, x=0, y=0):

4 self.x = float(x)

5 self.y = float(y)

6

7| def __str__(self):

8 return " (%s ; %s)” % (self.x, self.y)

10 def move(self, dx, dy):

11 self .x= self.x+dx
12 self.y= self/y+dy
13
14 def distance(self, autre):
15 dx2 = (self.x — autre.x) *x 2
16 dy2 = (self.y — autre.y) =*x 2
17 return math.sqrt(dx2 + dy2)
R. Kanawati (LIPN) Programmation orientée objet en Python 49 / 61

Relations entre classes

Relation d'utilisation : Exemple

Problem : un segment est défini par deux points

il class Segment:

2 def __init__(self, el, e2):

3 assert isinstance(el,Point) and isinstance(e2,Point)
4

5 self . extremitel = el

6 self.extremite2 = e2

7

8 def __str__(self):

9 return "[%s — %s]” % (self.extremitel , self.extremite2)
10

11 def move(self, dx, dy):

12 self.extremitel .move(dx, dy)

13 self.extremite2.move(dx, dy)

14
15 def longueur(self):
16 return self.extremitel .distance(self.extremite2)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 50 / 61

Relation d’héritage

» Principe : définir une nouvelle classe par spécialisation d'une (ou
plusieurs) classes existantes.
> La sous-classe :
B récupeére automatiquement tous les attributs et les méthodes des
supers classes ;
B peut enrichir la description de la classe par I'ajout des attributs
et des méthodes ;
B peut modifier les types des attributs hérités ;
B peut modifier le comportement des méthodes héritées.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 51 /61

Relation d'héritage : UML

Personne
Nom : String
age : int
getAge()
Etudiant Employee
num : str salaire : float
note : float

setSalaire(montant : float)

setNote(note: float)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

52 / 61

Relation d’héritage : syntaxe Python

Héritage Simple

class A(B):

1
2
3

Héritage multiple

class A(B,C,D):

w N e

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 53 / 61

Relations entre classes

Héritage multiple : gestion de conflits

-

class A(B,C,D):

w

A est une sous classe de B,C,D

Si les classes B; C,D ont les mémes attributs, méthodes, la classe A hérite
de I'attribut/méthode, cité en premier (ici de celui de B)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 54 / 61

Relations entre classes

-

~N o g A~ W N

<]

10
11

Héritage : exemple

Point coloré

class PointColore(Point):

def __init__(self ,x=0, y=0,couleur):
Point. __init__(self, x, y)
self.couleur = nom

def __str__(self): # redéfinition
return "%s:%s" % (Point.__str__(self), self.couleur)
utilisation de la version de __str__ dans Point

def setCouleur(couleur): # une nouvelle méthode
self.couleur = couleur

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017

55 / 61

Classes abstraites et interfaces

Classe abstraite

Classe abstraite

Quoi ? : Une classe qui ne peut pas fabriquer des objets !

Pourquoi ? : renforcer I'extensibilité des programmes en factorisant
des attributs et des méthodes communs a différents classes.

Exemple :

un point, un segment, un carré, un rectangle, un cercle, ..., sont
des figures géométriques

On peut déplacer, colorier une figure, calculer sa superficie, son
preimétre, ...

L'exécution des méthodes citées ci-dessus dépend de la nature de
la figure

On peut définir ces méthodes d'une maniére abstraite dans une
classe abstraite !

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 56 / 61

Classes abstraites et interfaces

Classe abstraite : Exemple

-

class FigureGeometrique:

N

w

def __init__(self,h centre):
assert (isinstance(centre, Point)
self.centre=centre
raise NotlmplementedError

o o b

s| def move(self dx,dy):

9 self.centre.move(dx,dy)
10

11| def superficie(self):

12 raise NotlmplementedError
13| def perimetre(self):

14 raise NotlmplementedError

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 57 / 61

Classes abstraites et interfaces

Classe abstraite : Exemple

1| class Carre(FigureGeometrique):

2 def __init__(self,h centre, cote):

3 assert isinstance(centre, Point)
4 assert isinstance(float(cote),float) and float(cote)>=0
6 try:

7 super. __init__(centre)

8 except:

9 self.cote=cote

10

11 def superficie(self):

12 return (self.cote)=*(self.cote)
13

14 def permimetre(self):

15 return (4xself.cote)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 58 / 61

Classes abstraites et interfaces

Classe abstraite : Exemple

i|class Circle(FigureGeometrique):

)| pi=3.14

3| def __init__(self centre,brayone):

4 assert isinstance(centre, Point)

5 assert isinstance(float(rayon),float) and float(rayon)>=0
6

7 try:

8 super. __init__(centre)

9 except:

10 self.rayon=rayon

12| def superficie(self):

13 return Circle.pixself.rayonxself.rayon
14

15| def permimetre(self):

16 return (2« Circle . pixself.rayon)

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 59 / 61

Classes abstraites et interfaces

Classe abstraite

La détection de I'absence d'une méthode abstraite se fait lors de
I"appel ! trop tard !

Comment obliger une classe qui hérite d'une classe abstraite
d'implementer les méthodes abstraites ?

Solution : utiliser le module abc (Abstract Base Class) qui permet de
déclarer explicitement qu'une classe/ou une méthode est abstraite.

R. Kanawati (LIPN) Programmation orientée objet en Python February 10, 2017 60 / 61

Classes abstraites et interfaces

Module abc : utilisation

-

import abc

N

4 ©@abc.abstractmethod

5 def __init__(self,h centre):

6 assert (isinstance(centre, Point)
7 self.centre=centre

8 raise NotlmplementedError

10 def move(self ,dx,dy):
11 self.centre.move(dx,dy)

13 Q@abc. abstractmethod
14 def superficie(self):
15 raise NotlmplementedError

17 Q@abc. abstractmethod
18| def perimetre(self):
19 raise NotlmplementedError

2| class FigureGeometrique(metaclass=abc.ABCMeta):

R. Kanawati (LIPN) Programmation orientée objet en Python

February 10, 2017

61 / 61

	Organisation du module
	Introduction
	Définitions
	Les attributs
	Méthodes
	Exceptions
	Relations entre classes
	Classes abstraites et interfaces

