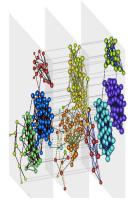
Multiplex networks analysis



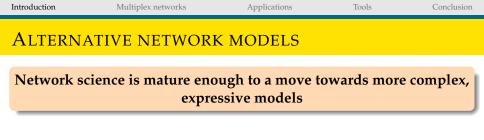
Rushed Kanawati

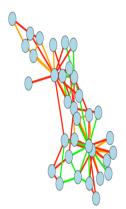
A³, LIPN, CNRS UMR 7030 USPN

http://kanawati.fr

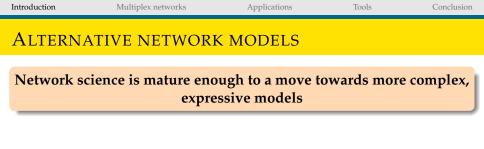
kanawati@univ-paris13.fr

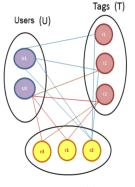
source: muxviz





Multi-relationnal networks



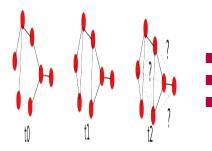


Multi-relationnal networks

K-partite networks

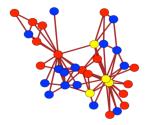
Resources (R)

Network science is mature enough to a move towards more complex, expressive models



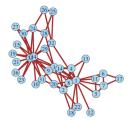
- Multi-relationnal networks
- K-partite networks
- Dynamic networks

Network science is mature enough to a move towards more complex, expressive models



- Multi-relational networks
- K-partite networks
- Dynamic networks
- Heterogeneous networks

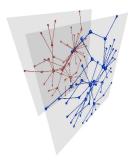
Network science is mature enough to a move towards more complex, expressive models



- Multi-relational networks
- K-partite networks
- Dynamic networks
- Heterogeneous networks
- Attributed networks

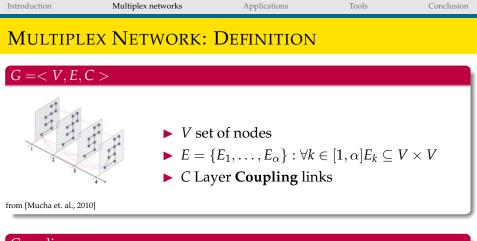
Introduction	Multiplex networks	Applications	Tools	Conclusion
ALTERN	ATIVE NETWORF	K MODELS		

Network science is mature enough to a move towards more complex, expressive models



- Multi-relational networks
- K-partite networks
- Dynamic networks
- Heterogeneous networks
- Attributed networks

A powerful model : Multiplex Network

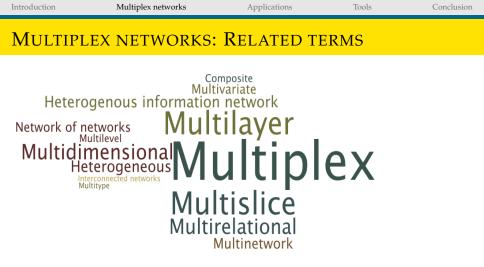


Coupling

- Ordinal Coupling : Diagonal inter-layer links among consecutive layers.
- **Categorical Coupling** : Diagonal inter-layer links between all pairs of layers.
- Generalized coupling ? Ex. Decay functions

Notations

- ► $A^{[k]}$ Adjacency Matrix of slice $k : a_{ij}^{[k]} \neq 0$ si les nœuds $(v_i, v_j) \in E_k$, 0 otherwise.
- $m^{[k]} = |E_k|$. We have often $m \sim n$
- Neighbor's of v in slice k: $\Gamma(v)^{[k]} = \{x \in V : (x, v) \in E_k\}.$
- All neighbors of $v : \Gamma(v)^{tot} = \bigcup_{s \in \{1,...,\alpha\}} \Gamma(v)^{[s]}$
- Node degree in slice *k*: $d_v^k = \parallel \Gamma(v)^{[k]} \parallel$
- Total degree of node $v: d_v^{tot} = ||\Gamma^{tot}(v)||$



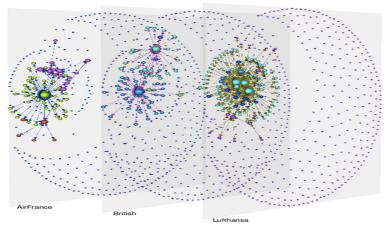
Recommended readings

S. Mikko Kivelä et. al.. Multilayer Networks. arXiv:1309.7233, March 2014

Applications

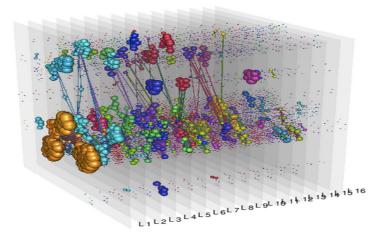
POWER OF MULTIPLEX MODEL

Multi-relational networks



European airports network

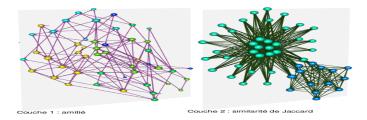
Dynamic networks



Academic collaborations per year

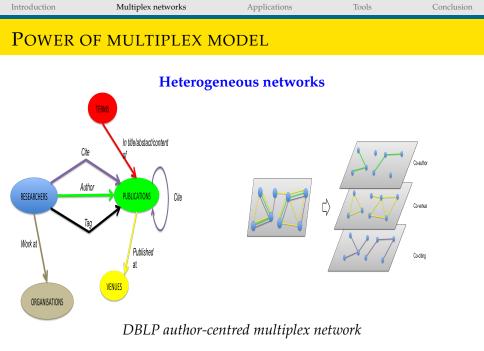
Introduction Multiplex networks Applications Tools Conclusion
POWER OF MULTIPLEX MODEL

Attributed networks

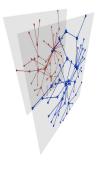


Teenage friendship network- Behavioral attributs : Sport practice level, Alcohol, Tobacco & Cannabis consumption

Proximity graphs can be defined overs nodes using attribute-similarity masures



. . .



Need of generalization of usual measures : Degree Neighbourhood Centralities Paths and distances Clustering coefficient

New layer-oriented questions to answer :

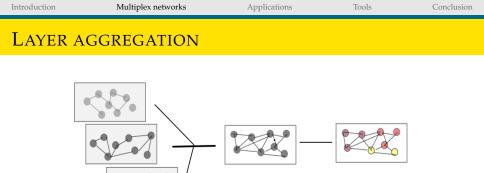
Which layers determine the centrality of a user

Which layers are relevant to measure the similarity of two nodes How one layer influence the evolution of another

Transformation into a monoplex centred problem

- ► Layer aggregation approaches.
- Hypergraph transformation based approaches
- Ensemble approaches

2 Generalization of monoplex oriented algorithms to multiplex networks.



Introduction	Multiplex networks	Applications	Tools	Conclusion
LAYER A	GGREGATION			
			-	

Aggregation functions

$$\begin{split} A_{ij} = \begin{cases} 1 & \exists 1 \leq l \leq \alpha : A_{ij}^{[l]} \neq 0 \\ 0 & \text{otherwise} \end{cases} \\ A_{ij} = \parallel \{d : A_{ij}^{[d]} \neq 0\} \parallel \end{split}$$

$$A_{ij} = \frac{1}{\alpha} \sum_{k=1}^{\alpha} w_k A_{ij}^{[k]}$$
$$A_{ij} = sim(v_i, v_j)$$

Principle

- A k-uniform hypergraph is a hypergraph in which the cardinality of each hyperedge is exactly k
- Mapping a multiplex to a 3-uniform hypergraph H = (V, E) such that :

 $\mathcal{V} = V \cup \{1, \dots, \alpha\}$ (u, v, i) $\in \mathcal{E}$ if $\exists l : A_{uv}^{[l]} \neq 0, u, v \in V, i \in \{1, \dots, \alpha\}$

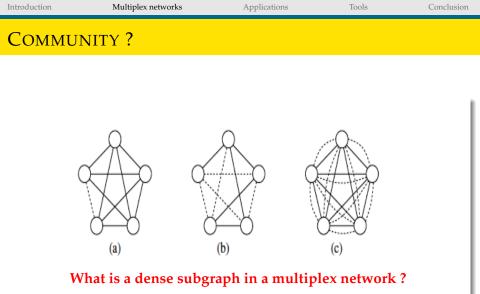
Apply hypergraphs analysis approaches (Ex. tensor-based approaches)

Introduction	Multiplex networks	Applications	Tools	Conclusion	
Multiplex: Node neighborhood					
Some options					
$\blacktriangleright \Gamma^{mux}(v) =$	$\cup_{k=1}^{\alpha}\Gamma^{k}(v)$				
$\blacktriangleright \Gamma^{mux}(v) =$	$\cap_{k=1}^{\alpha}\Gamma^k(v)$				
$\blacktriangleright \Gamma^{mux}(v) =$	${x \in \Gamma(v)^{tot} : sim}$	$(x,v) \ge \delta \} \ \delta \in [0]$, 1]		
$\blacktriangleright \Gamma^{mux}(v) =$	${x \in \Gamma(v)^{tot} : \frac{\Gamma(v)}{\Gamma(v)}}$	$\sum_{\substack{tot \cap \Gamma(x)^{tot} \\ tot \cup \Gamma(x)^{tot}}}^{tot \cap \Gamma(x)^{tot}} \ge \delta \}$			
▶		~ /			

Introduction	Multiplex networks	Applications	Tools	Conclusion
PATHS, S	HORTEST DISTA	NCE		
Some option	ns			
Path in	an aggregated netw	ork		
► d _{average}	$= \frac{\sum_{\alpha=1}^{m} d(u,v)^{[\alpha]}}{m} \forall u,v \in$	$\in V \text{ and } (u,v) \notin V$	E_i .	

► $path - length(u, v) = \langle r_1, r_2, ..., r_\alpha \rangle$ where r_i number of links in layer *i*

▶ $path_x(u, v)$ dominates $path_y(u, v) \exists j : r_j^x < r_j^y, \forall k \neq j r_j^x \leq r_j^y$



BerlingerioCG11

Approaches

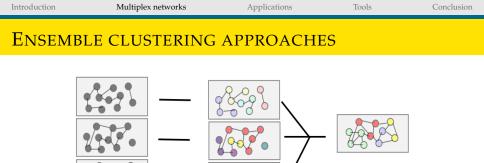
Transformation into a monoplex community detection problem

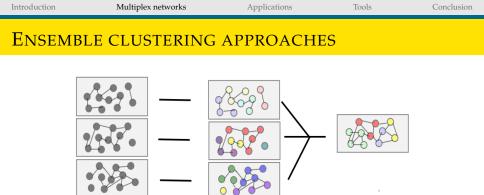
- Layer aggregation approaches.
- Multi-objective optimization approach.
- Ensemble clustering approaches

2 Generalization of monoplex oriented algorithms to multiplex networks.

- Generalized-modularity optimization
- Generalized info-map
- Generalized walktrap
- Seed-centric approaches

- Rank the set of *α* layers according to some *importance criteria* C₁ ← *community*(G^[1])
- 3 for $i \in [2, \alpha]$ do: $C_i \leftarrow optimize(community(G^{[i]}), similarity(C_{i-1}))$
- 4 return C_{α}





Ensemble Clustering

Strehl2003

- CSPA: Cluster-based Similarity Partitioning Algorithm
- HGPA: HyperGraph-Partitioning Algorithm
- MCLA: Meta-Clustering Algorithm

CSPA: Cluster-based Similarity Partitioning Algorithm

- ▶ Let *K* be the number of basic models, C_i(x) be the cluster in model *i* to which *x* belongs.
- Define a similarity graph on objects : $sim(v, u) = \frac{\sum_{i=1}^{K} \delta(C_i(v), C_i(u))}{K}$
- Cluster the obtained graph :

Isolate connected components after prunning edges Apply community detection approach

► Complexity : O(n²kr) : n # objects, k # of clusters, r# of clustering solutions

Introduction	Multiplex networks	Applications	Tools	Conclusion
MULTIPLEX	MODULARI	ΓY		
Generalized m	odularity		mucha2010co	mmunity

$$Q_{multiplex}(P) = \frac{1}{2\mu} \sum_{c \in P} \sum_{\substack{i,j \in c \\ k,l:1 \to \alpha}} \left(\left(A_{ij}^{[k]} - \lambda_k \frac{d_i^{[k]} d_j^{[k]}}{2m^{[k]}} \right) \delta_{kl} + \delta_{ij} C_{ij}^{kl} \right)$$
$$\mu = \sum_{\substack{j \in V \\ k,l:1 \to \alpha}} m^{[k]} + C_{jk}^l$$
$$C_{ij}^{kl} \text{ Inter slice coupling} = 0 \ \forall i \neq j$$

. .

C4.1 C4.1 \

Algorithm 3 General seed-centric community detection algorithm

Require: $G = \langle V, E \rangle$ a connected graph,

- 1: $\mathcal{C} \leftarrow \emptyset$
- 2: $S \leftarrow compute_seeds(G)$
- 3: for $s \in S$ do
- 4: $C_s \leftarrow \text{compute_local_com(s,G)}$
- 5: $\mathcal{C} \leftarrow \mathcal{C} + C_s$
- 6: end for
- 7: return compute_community(C)

- Compute a set of seeds that are likely to be leaders in their communities
 Heuristic : nodes having higher degree centralities than their neighbors
- 2 Each node in the graph ranks seeds in function of its own preference

In function of increasing **Shortest path**

3 Iterate till convergence: Each node modifies its preference vector in function of **neighbor's** preferences

Applying rank aggregation methods.

Introduction	Multiplex networks	Applications	Tools	Conclusion
MuxLic	OD			
Multiplex	degree centrality			[BNL13]
	$d_i^{multiplex} = -$	$\sum_{k=1}^{\alpha} \frac{d_i^{[k]}}{d_i^{[tot]}} log\left(\frac{d_i^{[k]}}{d_i^{[tot]}}\right)$	$\left[\frac{1}{t}\right]$	

Multiplex shortest path

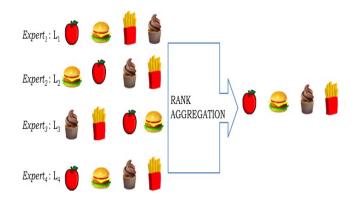
$$SP(u, v)^{multiplex} = rac{\sum\limits_{k=1}^{\alpha} SP(u, v)^{[k]}}{\alpha}$$

Multiplex neighborhood

$$\Gamma^{mux}(v) = \{ x \in \Gamma(v)^{tot} : \frac{\Gamma(v)^{tot} \cap \Gamma(x)^{tot}}{\Gamma(v)^{tot} \cup \Gamma(x)^{tot}} \ge \delta \}$$

Introduction	Multiplex networks	Applications	Tools	Conclusion
RANK A	CORECATION			

11



[PK12, DKNS01]

- 1 Random walk based approach (Generalization of Walktrap [KM15]
- 2 Generalized infomap [DLAR15]

EVALUATION CRITERIA I

- 1 Multiplex modularity
- 2 Redundancy [BCG11]

$$\rho(c) = \sum_{(u,v)\in \bar{\bar{P_c}}} \frac{\parallel \{k: \exists A_{uv}^{[k]} \neq 0\} \parallel}{\alpha \times \parallel P_c \parallel}$$

 \overline{P} the set of couple (u, v) which are directly connected in at least two layers

Complementarity :
$$\gamma(c) = \mathcal{V}_c \times \varepsilon_c \times \mathcal{H}_c$$

Introduction	Multiplex networks	Applications	Tools	Conclusion
EVALUAT	TION CRITERIA I	[

Variety V_c: the proportion of occurrence of the community c across layers of the multiplex.

$$\mathcal{V}_{c} = \sum_{s=1}^{\alpha} \frac{\|\exists (i,j) \in c/A_{ij}^{[s]} \neq 0\|}{\alpha - 1}$$
(2)

Exclusivity ε_c : number of pairs of nodes, in community c, that are connected exclusively in one layer.

$$\varepsilon_c = \sum_{s=1}^{\alpha} \frac{\|\overline{P_{c,s}}\|}{\|P_c\|} \tag{3}$$

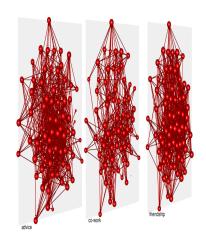
Multiplex networks Applications Tools Conclusion **EVALUATION CRITERIA III** • Homogeneity \mathcal{H}_c : How uniform is the distribution of the number of edges, in the community *c*, per layer. $\mathcal{H}_{c} = \begin{cases} 1 & if & \sigma_{c} = 0 \\ 1 - \frac{\sigma_{c}}{\sigma^{max}} & otherwise \end{cases}$ (4)with $avg_c = \sum_{i=1}^{\alpha} \frac{\|P_{c,s}\|}{\alpha}$ \ **^**

$$\sigma_c = \sqrt{\sum_{s=1}^{\infty} \frac{(\|P_{c,s}\| - avg_c)^2}{\alpha}}$$

$$\sigma_c^{max} = \sqrt{\frac{(max(\parallel P_{c,d} \parallel) - min(\parallel P_{c,d} \parallel))^2}{2}}$$

Introduction	Multiplex networks	Applications	Tools	Conclusion
DATASETS				

Benchmark networks Lazzega Lawyer network #nodes 71 #layer 3

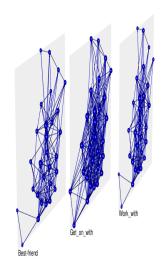


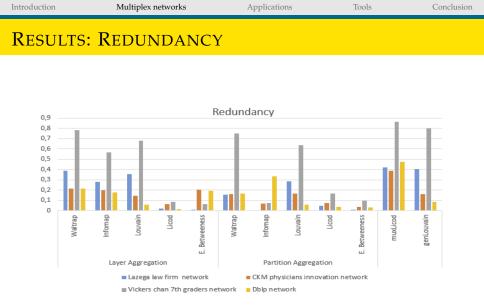
Introduction	Multiplex networks	Applications	Tools	Conclusion
DATASETS				

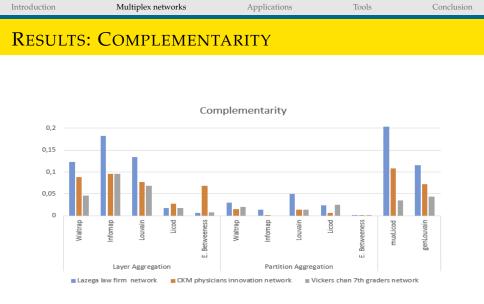
Dataset

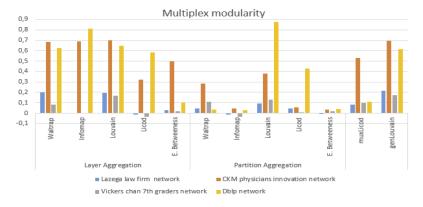
Physicians collaboration network

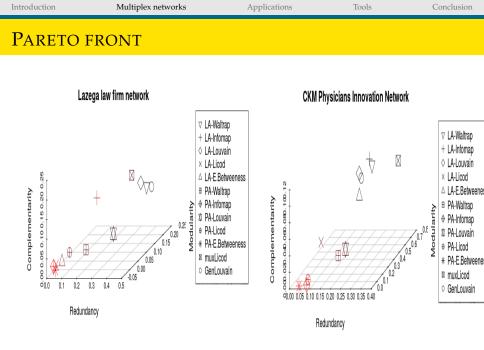
#nodes 246
#layers 3











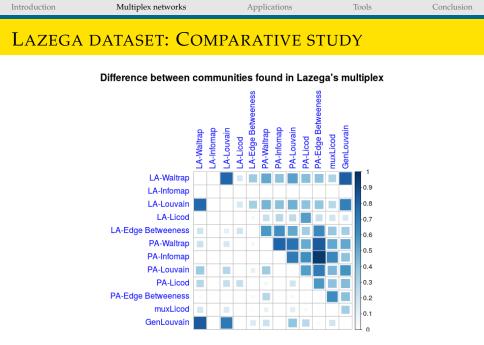
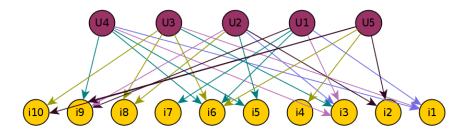
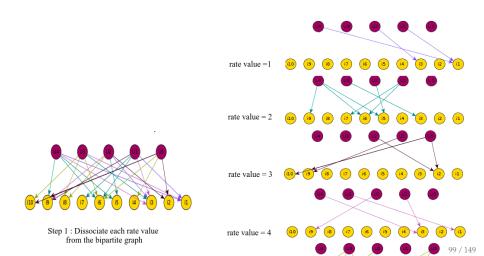


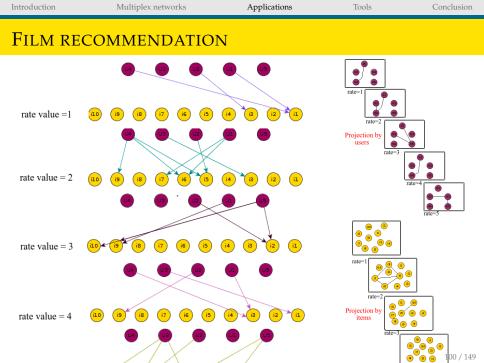
Figure: NMI (lower triangular part), adjusted Rand (upper triangular part).149

- 1 Film recommandation
- 2 Tag recommendation
- 3 Collaboration recommendation
- 4 Ensemble clustering selection

Film rating matrix = bipartite graph







Conclusion Multiplex networks Applications Tools

FILM RECOMMENDATION : MULTIPLEX NETWORK

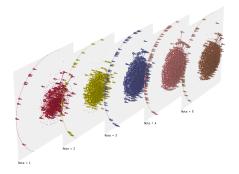


Figure: Movieslens 100k multiplex (Projection by users)

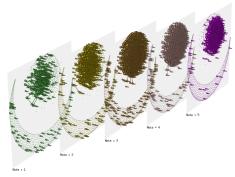


Figure: Movieslens 100k multiplex (Projection by movies)

Introduction	Multiplex networks	Applications	Tools	Conclusion
Film reg	COMMENDATIO	N : RESULTS		
0: 1	1			

Simple approach

Recommend the statistical mode value of links linking clusters of target user to the cluster of target films

	MAE	RMSE	Precision	Recall	F1-measure
GTM	0.9441	1.2549	0.2185	0.2207	0.2195
T. co-clustering	0.9293	1.2562	0.25587	0.2094	0.2303
muxlicod	0.9635	1.2773	0.2274	0.2134	0.2202
LA louvain	0.8352	1.1509	0.3113	0.2521	0.2779
LA walktrap	0.8216	1.1155	0.2642	0.2233	0.2420
PA louvain	0.8713	1.1917	0.2532	0.2032	0.2245
PA walktrap	0.8801	1.2023	0.2705	0.2011	0.2283

Table: Result of the proposed recommendation system with each algorithm in MovieLens 100k dataset (PA : Partition Aggregation, LA : Layer Aggregation

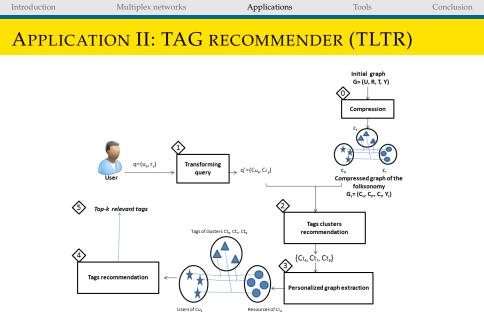


Figure: TLTR model

FOLKSONOMY GRAPHS

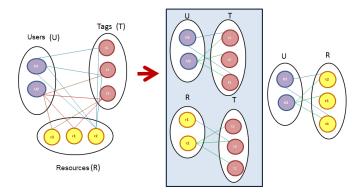


Figure: Tripartite graph projection into three bipartite graphs

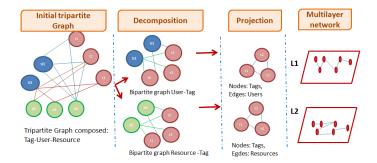


Figure: Tag multiplex network: Steps of transformation

EXPERIMENTS: BIBSOMNOMY DATASET

# Users	# Tags	# Resources	# Edges
116	412	361	24297

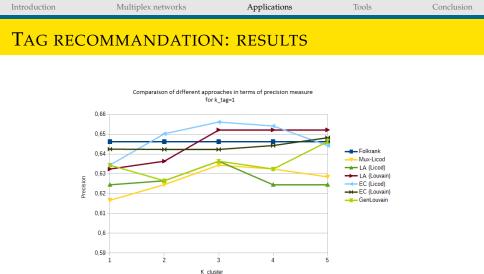
Table: Bibsonomy dataset

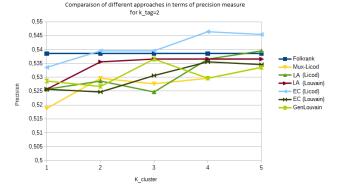
Networks	slices	Nodes	Edges	Density
User	User-Resource	116	901	0,135
	User-Tag	116	985	0,147
Tag	Tag-Resource	412	2496	0,0294
	Tag-User	412	1956	0,0231
Resource	Resource-Tag	361	2814	0,0433
	Resource-User	361	1685	0,0259

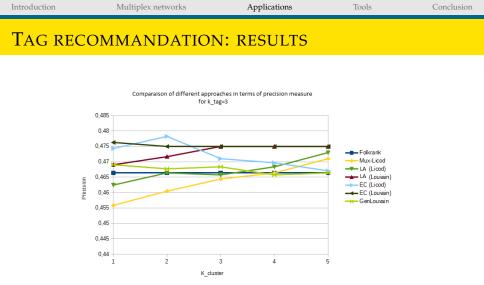
Table: Multiplex networks of Bibsonomy

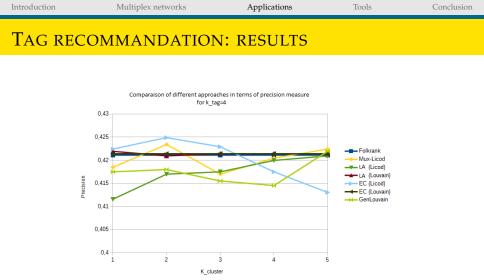
Introduction	Multiplex networks	Applications	Tools	Conclusion
TAG REC	OMMANDATION	N: RESULTS		

Graphs	#Nodes	#Edges	#Users	#Tags	#Resources
G	889	24297	116	412	361
G_c (Mux-Licod)	434	1677	97	154	183
compression in %	51, 18	93,1	16,37	62,62	49,30
G_c (GenLouvain)	16	79	4	6	6
compression in %	98,2	99,67	96,55	98,54	98,33
G_c (LA (Licod))	91	46	13	40	38
compression in %	89,76	99,81	88,79	90,29	89,47
G_c (LA (Louvain))	9	27	3	3	3
compression in %	98,98	99,88	97,41	99,27	99,16
G_c (EC (Licod))	151	993	3	89	59
compression in %	83,08	95,91	97,41	78,39	83,65
G_c (EC (Louvain))	25	187	8	11	6
compression in %	97,18	78,96	93,10	97,33	$98,33_{107/149}$



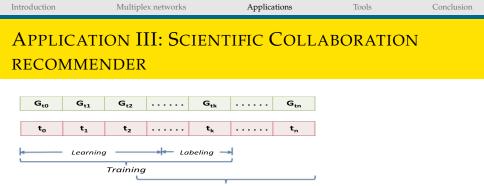


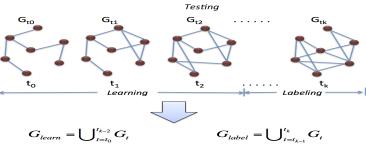




Introduction	Multiplex networks	Applications	Tools	Conclusion
Discussio	N			

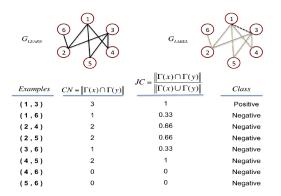
- Multiplex approaches outperform layer aggregation and EC approaches on benchmark networks
- Layer aggregation approaches do well for film recommendation !
- ▶ EC approaches rank first for Tag recommendation !
- Problem what is the Validity of topological community quality indexes ?





Application of supervised machine learning algorithms

• Work of [Hasan & al., 2006]



Introduction	Multiplex networks	Applications	Tools	Conclusion
	DDID			

EXPERIMENTS: DBLP

Years	Properties	Co-Author	Co-Venue	Co-Citation
1970-1973	Nodes	91	91	91
	Edges	116	1256	171
1972-1975	Nodes	221	221	221
	Edges	319	5098	706
1974-1977	Nodes	323	323	323
	Edges	451	9831	993

Table: Basic statistics about the 3-layer DBLP multiplex networks

Years		# Positive	# Negatives
Train/Test	Labeling		
1970-1973	1974-1975	16	1810
1972-1975	1976-1977	49	12141
1974-1977	1978-1979	93	26223

115 / 149

Table: # examples extracted from co-authorship layer (number of unconnected nodes in connected components)

LINK PREDICTION: RESULTS

Attributes	Learning:1970-1973 Test:1972-1975		Learning:19 Test:1974	
	F-measure	AUC	F-measure	AUC
Set _{direct}	0.0357	0.5263	0.0168	0.4955
Set _{direct+indirect}	0.0256	0.5372	0.0150	0.5132
Set _{direct+multiplex}	0.0592	0.5374	0.0122	0.5108
Set _{all}	0.0153	0.5361	0.0171	0.5555
Set _{multiplex}	0.0374	0.5181	0.0185	0.5485

Table: Comparative link prediction results applying decision tree algorithm using different types of attributs

Introduction	Multiplex networks	Applications	Tools	Conclusion
Applicat Selection	ion IV: Ensei N	MBLE CLUST	ERING	

Motivation

The quality of a consensus clustering depends on both the **quality** and **diversity** of input base clusterings [FL08, AF09, NCC13, ADIA15].

Problem definition

- Let $\Pi = {\pi_1, \ldots, \pi_n}$ be a set of base partitions
- $\blacktriangleright \ \mathcal{ES}(\Pi) = \Pi^* \subset \Pi : \mathcal{Q}(EC(\Pi^*)) > \mathcal{Q}(EC(\Pi))$
- Q : Quality of the consensus clustering

Introduction	Multiplex networks	Applications	Tools	Conclusion
DIVERSITY				

Clustering Similarity measures

- Purity
- ▶ Rand/ARI
- NMI (Normlized mutual information)
- IV (Information variation) [Mei03]

	Introduction	Multiplex networks	Applications	Tools	Conclusion
	QUALITY				
1	Cluster interna	l quality indexes	[AR14]		

- Silhouette index,
- Calinski-Harabasz index
- Davis-Bouldin index
- Dunn index

. . .

Network-oriented indexes

- Modularity
- Average conductance
- Average local Modularities : L, M, R [Kan15]
- See also [YL12]

Introduction	Multiplex networks	Applications	Tools	Conclusion
Ensemble	SELECTION AP	PROACHES	: LIMITAT	IONS
 Existing a metric dis 	pproaches are defii tances	ned for attribut	te/value datas	sets with

- Use of one quality/diversity measure.
 - Requires the number of clusters to select as input.

Proposed approach: contributions

. . .

- Designed for both networks and attribute/value datasets
- ▶ Use of an *ensemble* of quality/diversity measures.
- The number of selected base clustering is automatically computed.

Introduction	Multiplex networks	Applications	Tools	Conclusion
Ensembi	LE SELECTION A	PPROACH		

The idea

Cluster the set of base clusterings using an ensemble of similarity measures

Apply a **multiplex community detection** algorithm to a multiplex network whose nodes are the set of base clusterings and whose layers are defined by a set of **proximity graphs**, each defined according a to a given similarity measure

From each cluster select the node (i.e clustering) that is ranked first according to an ensemble of quality measures.

Apply ensemble ranking algorithms

Introduction	Multiplex networks	Applications	Tools	Conclusion
Ensemble	SELECTION AP	PROACH		
Algorithm 4 G	raph-based cluster	ensemble sel	ection algorithm	

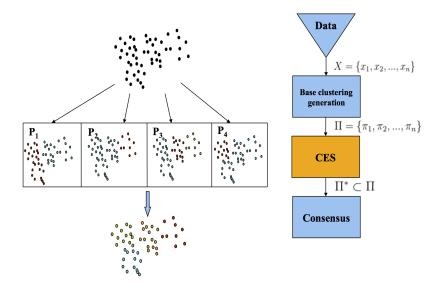
Require: $\Pi = {\pi_1, ..., \pi_r}$ a set of base clusterings **Require:** $S = {S_1, ..., S_n}$ A set of partition similarity functions **Require:** $Q = {Q_1, ..., Q_m}$ A set of partition quality functions 1: $\Pi^* \leftarrow \emptyset$

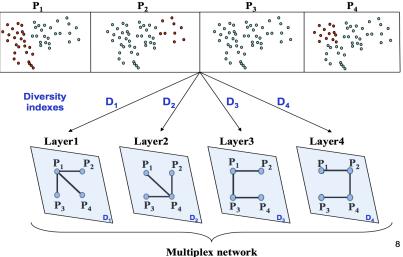
- 2: $MUX \leftarrow Multiplex(\Pi)$
- 3: for all $S_i \in S$ do
- 4: $MUX.add_layer(proximity_graph(\Pi, S_i))$

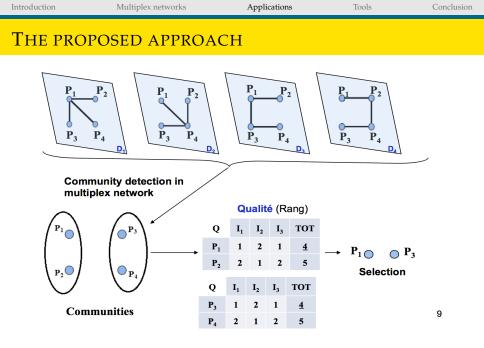
5: end for

- 6: $C = \{c_1, \ldots, c_k\} \leftarrow \text{community}_\text{detection}(MUX)$
- 7: for all $c \in C$ do
- 8: $\hat{\pi} \leftarrow ensemble_Ranking(c, Q)$
- 9: $\Pi^* \leftarrow \Pi^* \cup \{\hat{\pi}\}$
- 10: end for
- 11: return Π^*

THE PROPOSED APPROACH







Introduction	Multiplex networks	Applications	Tools	Conclusion
Ensembi	LE RANKING			
Problem				

- Let *L* be a set of elements to rank by *n* rankers
- Let σ_i be the rank provided by ranker *i*
- **Goal: Compute a consensus rank of** *L*.

Déjà Vu: Social choice algorithms, but ...

- Small number of voters and big number of candidates
- Algorithmic efficiency is required

Algorithms

Borda

Kemeny approaches (commuting Condorcet winner if it exists)

Introduction	Multiplex networks	Applications	Tools	Conclusion
	IT ON SMALL RUTH PARTITI		WITH KNO	OWN
	n of 20 base clust on algorithm	erings applying	a standard La	abel

- Proximity graphs : RNG
- ▶ $S = \{ NMI, ARI, VI \} Q = \{ modularity, Local modularities L, M, R \}$

Table: Evaluation of the proposed graph-based ensemble selection

Dataset	Approach		ARI
Zachary	Ensemble clustering without selection	0.57	0.46
-	Ensemble clustering with selection	0.77	0.69
US Politics	Ensemble clustering without selection	0.55	0.68
	Ensemble clustering with selection	0.68	0.67
Dolphins	Ensemble clustering without selection	0.55	0.39
	Ensemble clustering with selection	0.58	0.59

Introduction	Multiplex networks	Applications	Tools	Conclusion
Experim	ENT II : DBLP (CO-AUTHOR	RSHIP NETW	VORK

- ► Co-authorship network 1970-1977 (GCC) : |*V*| = 643, |*m*| = 886
- Generation of 10, 100 base clusterings
- Proximity graphs : RNG
- ▶ $S = \{ NMI, ARI, VI \} Q = \{ modularity, Local modularities L, M, R \}$

Table: Evaluation of the proposed graph-based ensemble selection

# base clusterings	10
Nodes Compression without selection	18,3%
Nodes Compression with selection	20,9%
Edge compression without selection	17,2%
Edge compression with selection	17,6%
Modularity without selection	0.3734
Modularity with selection	0.43756

EXPERIMENT II : DBLP CO-AUTHORSHIP NETWORK

Table: Evaluation of the proposed graph-based ensemble selection

# base clusterings	100
Nodes Compression without selection	35,1%
Nodes Compression with selection	40,3%
Edge compression without selection	36,2%
Edge compression with selection	38,3%
Modularity without selection	0.4031
Modularity with selection	0.4665

Introduction	Multiplex networks	Applications	Tools	Conclusion
Muxviz				

- ▶ *R* package
- Main features :
 - Visualization
 - Layer compression methods
 - Basic metrics
 - Community detection : Modularity-based, infomap
- ▶ Input : text file per layer + one file for the general structure.

Introduction	Multiplex networks	Applications	Tools	Conclusion
Muna				

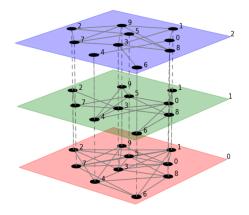
- Available for *R* and *Python*
- Built on top of *igraph*
- Extended set of multiplex network edition functions (similar to igraph)
- Basic metrics : degree, neighborhood
- Extended set of community detection approaches
- ► Topological community evaluation indexes.
- ▶ Limitations :
 - ▶ No visualisation support
 - Simple categorical coupling only.

Introduction	Multiplex networks	Applications	Tools	Conclusion
Pymnet				

- ▶ Pure Python + integration with networkX package.
- ► Can handle general multilayer networks
- ► Rule based generation and lazy-evaluation of coupling edges
- Various network analysis methods, transformations, reading and writing networks, network models etc.
- Visualization support

Introduction	Multiplex networks	Applications	Tools	Conclusion
_				

PYMNET: VISUALISATION EXEMPLE



Introduction	Multiplex networks	Applications	Tools	Conclusion
Conclu	SIONS			

- Multiplex networks provide a rich representation of real-world interaction systems
- A lot of work to reformulate basic network concepts for multiplex settings
 ex. Roles, RandomWalk, PageRank, etc.
- ▶ New tools for multiplex mining : Muna [FK15], muxviz[?], Pymnet
- Community evaluation: still an open problem
- Uncovered topics : Layer selection and compression, Co-evolution models, Dynamics on multiplex networks
- ▶ Ideas under exploration:

Multiplex approach for attributed networks mining **Multiplex of multiplexes** Interactive Multiplex network visualisation. Benchmarking available tools