9. PROVING THEOREMS BY PATTERN"

RECOGNITION, II

& Theoretzcal questions concernmg the possibilities of promng theorems by
0 ,ﬁhmes are considered here from the viewpoint that emphasizes the underlying logic.
roof procedure for the predicate calculus is given that contains a few minor peculiar
L catures. A fairly extensive discussion of the decision problem is given, including a
i rtzal solution of the (x) (Ey) (z) satisfiability case, an alternative procedure for the
L) (y) (Ez) case, and arather detailed treatment o fSkolem’s case. In connection with
(%) ( Ey) (z) case, an amusing combinatorial problem is suggested in Section 4.1.

> simple ma,thema,tzcal examples are considered in Section VI.
Asurvey of the decision problerh.
The Decision Problem and the Reduction Proble_m

_ With regard to any formula of the predicate calculus, we are interested in knowing
ether it is a theorem (the problem of provability), or equivalently, whether its
] atlon has any model at all (the problem of satisfiability). Originally. this decision
oblem was directed to the search for one finite procedure which is applicable to all
mulae of the predicate calculus. Since it is known that there can be no such
ripotent procedure, the main problem is to devise procedures effective for classes of
,gnulae which satisfy suitable conditions. |

*“;:‘The complementary problem of reduction is to give effective procedures which
ce broader classes to narrower ones while preserving provability or satisfiability. In
Way, a decision procedure for a smaller class can be made to apply to a larger one.

s far, most work on the reduction problem has been directed to the special case of
ing proeedures which reduce all fromulae of the predicate calculus to members of
e Speelal class( e.g, those in the Skolem normal form). Each sueh class is called a
jction class relative to satisfiability or provablhty according to whether satisfiability
provablhty is preserved by the transformations (Ref. 2, p. 32). It follows

he reduction classes and the procedures employed to obtain them are, being

e First : pubhshed in Bell System Technical Journal, vol 40, pp, 1—41. © 1961 AT&T. Repro-
ggrduced by special permission. |
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concerned with undecidable cases, only of indirect use for the problem of discoveri
positive results on the decision problem. More directly relevant are reduction
procedures which are applicable when the reduced class is not a reduction class and ma
in particular be a decidable class. Some very preliminary results on this more gene
aspect of the reduction problem will be described in Section V.
For both the decision problem and the reduction problem, there is, beyond th
“‘yes or no’’ as to satisfiability, a further question of determining all models and dewsm
transformation procedures which preserve all models. Such questions have been studie¢
to a certain extent (Ref. 3, p. 23), but will be disregarded in what follows.
It is customary to characterize reduction classes and decidable classes in terms o
formulae in the prenex normal form, i.e., with all quantifiers at the beginning
Sometimes, with regard to satisfiability (oor provability), conjunctions (or disjunctio
of formulae in the prenex normal form are considered. We shall call this the exte '
prenex form. o
- In Section V, a procedure will be given for reducing any formula to a finite set
generally simpler formulae in the extended prenex form such that the original form
provable if and only if all formulae in the reduced set are. In this and the next
sections, we shall only be concerned with formulae in the extended prenex fi
Furthermore, we shall give in Section V a proof—decision procedure for the quantifie
free logic, obtained from the propositional calculus by adding equality, funct:
symbols and individual constants. Any theorem in it is called a quantifier-f
tautology, as an extension of the notion of a propositional tautology. We shall make 1
of the fact that we can always decide whether a given formula is a quantlﬁer—f
tautology. |

1.2 4 Brief Formulati'on of the Predicate Calculus
1.2.1 Primitive Symbols

1.2.1.1 Variables x, y, z, etc. (an infinite set).

1.2.1.2 Individual constants (a finite or infinite set).

1.2.1.3 Propositional (Boolean) operations: ~, V , &, o, =.
1.2.1.4 Predicate letters (a finite or infinite set). |

1.2.1.5 Function letters (a finite or infinite set).

1.2.1.6 Equality: = (a special predicate symbol).

1.2.1.7 Quantification symbols: (), (£ ).

1.2.1.8 Parentheses.

1.2.2 Inductive Definition of Terms and Formulae
1.2.2.1 A variable or an individual constant is a term.

1.2.2.2 A function symbol followed by a suitable number of terms is a term.
1.2.2.3 A predicate followed by a suitable number of terms is a formula (and
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tomic formula); in particular, if o, B are terms = (, f) or « = f is a formula (and an
E itomic formula). |

ir o = f is a formula (and an atomic formula).

- 1.2.241If @, ¥, are formulae and « is a variable, then (¢)@, (Ex)@, ~ ¢, ¢ V o0&
@ DY, @ = ¥ are formulae.

:3 Ind_uctwe Definition of Theorems

" ;1 2.3. 1 A quantifier—{ree tautology is a theorem.

- 1.2.3.21f a disj junction D of n alternatives is a theorem, ¢a is one of the alternatives
'd ﬁ is a Varlable, then:
. .{a) If o is a term, then the result of replacmg @o by (Ef)pB in Dis a theorem
f . (b) if o is a variable free in @a but not free in the other alternatives and f is & or does
Y ccur in @a, then the result of replacing @a by () @B in D is a theorem.
'1233Ifch ... Vo is theorem, so is also ¢. |
The above formulatlon is complete only with respect to formulae in the extended

Themaln purpose of the next few sections is to study the decision problem on the
eoretical foundation of the fundamental theorem of logic, an approach initiated by
m4 and Herbrand, ° and recently rev1ved by Church, ®7 and by Klaua and

910

Suppose Mxyz 1s a quantlﬁer—free matrix:

(%) (Ey)z) Mexyz,

(Ex)(y)(E2) ~ Mxyz.
Let now D, be M,V ...V M, and M; be M1ii, i’ being an abbreviation for i + 1
se fundamental theorem, when applied to 1.3.1, states:
3. The following three conditions are equivalent:
1.3.1 is a theorem of the predicate calculus; (b) for some 7, D,isa quantlﬁer—free
tology; (c) 1.3.2 is not satisfiable.

If D, is a quantifier—{ree tautology, then, by 1.2.3.1, both it and the result of
stituting distinct variables for distinct numbers in it are theorems. For example,

fiose the result is:

il n MaabV MabcNV Macd.
*hilve: by 1.2.3.2(b), | o
§ R | MaabV Mabc NV (2)Macz;

MaabN MabcV (Ey)(z)Mayz.

MaabV (Ey)z2)MayzV (Ey)z)Mayz,
(ENa)Mayz V' (Eyfz)Mayz V' (Ey)z)Mayz,
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by 1.2.3.3,
(Ey)fz)Mayz;

WENIM.
Hence, condition (b) implies conditions (a) and (c) in 1.3.3.
On the other hand, if no D, is a quantifier—{ree tautology, then there is, for each D,
some interpretation of the function and predicate symbols on the set 1a,..,n} which
satisfies ~ D,. By a well-known argument, there is then an interpretation on the domain
of all positive integers which satisfies ~ Dy, ~ D, etc. simultaneously. This, however,
means that under the interpretation each finite segment of the infinite conjunction
1.35~ M112 & ~ M123 & ~M134 & ... | o -
is true. But then there is an integer x, viz. 1, such that for every integer y, there is an
integer z, viz. ¥, such that ~ Mxyz. In other words, 1.3.2, the negation of 1.3.1, is true
under the interpretation. Hence, the negation of condition (b) implies the negations of
conditions (a) and (c). | o |
Tf we take 1.3.5 as a model of 1.3.2, it seems natural to regard y as an independent
variable z as a dependent variable and x as an initial variable (the limiting case of a
dependent variable, a function of zero arguments). The general principle of constructing
M, from 1.3.1 may be summarized by saying that each initial variable gets a constant
number, the independent variables taking on all possible positive integers as values and
the dependnet variables always taking on numbers not used before. |
~ In the general case, we must consider a disjunction (for provability) or conjunction
(for satisfiability) of formulae with arbitrary strings of quantifiers. Then we can again
construct the related quantifier—free formulae in the same way, with the numbers in
each clause proceeding independently. a | - .
Thus, if we wish to study the satisfiability problem, we consider any formula of the
form: |

1.3.6 | <p1&...&<p,; (nz1),

where each @, is of the form, withd; 20,e.20,c = 1, ey, dy, €3y eeer de 2= 1t

| (Eyad) (%) .. (x6,) My -..xc,.

One familiar way of obtaining M, M,, etc. for the formula 1.3.7 begins by
replacing the dependent variables (those with the letter y) each with a function
(sometimes called a “‘Skolem function”) of all the preceding independent variables
(those with the letter x), and then dropping all the quantifiers. Let the result be //*. In
particular, the initial (dependent) variables are replaced by distinct constants which
may be viewed as trivial function. Suppose e; + ... + e = D, d,+ ..+d. =qinl3.7.

The Skolem functions are any functions g1, ..., & which, taken together, satisfy the
following conditions: ‘ |

by 1,2.3.2(b),

1.3.8 (a) For each g;, gluy, .o Un) # Uj, ]= 1, ..,myi= 1, ..., q-
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(b) For each gi, g{u1, ..., Um) = &i(v1, .., Um) only when u; = vy, ..., Un = Up.
(c) For any g;, gj, © # J gilter, woos ) # gj(vl, coes Up), for all wy, ..., U, V1, ..oy

vn.

Then we can take the smallest domain which contains the constants for the initial
(dependent) variables (or an arbitrary constant when there is no such initial variable)
and is closed with respect to the Skolem functions. Once such an (enumerable) domain
is available, we can some-how enumerate all the p—tuples of members of the domain.
Then, for each i, M; is simply the result obtained from M* when the 1ndependent
variables are replaced respectively by members of the ith p—tuple.

~ The satisfiability problem of 1.3.7 is then reduced to that of the infinite
conjunction:

139 M, &M, &...

Similarly, the satisfiability problem of 1.3.6 can be handled by reducing each ¢;
separately and then taking the conjunction of the n infinite conjunctions of the form
1.3.9. |

It is customary to use the positive integers as the domain, fix some enumeration of
the p—tuples, and specify the Skolem functions in a natural manner. One familiar
enumeration of the p—tuples is the following:

1.3.10 (ay,...,a,) precedes (b, ..., b,). if either

(a) they are permutations of each other but (a1,...,a,) precedes (by, ..., b,) in the
lexicographic order; or -

(b) max(a;,...,a,) = max(by, ..., b,), Za; =Zb; but (ai,...,a,), rearranged
according to nondecreasing magnitude, precedes (b, ..., b,), similarly rearranged, in the
lexicographic order; or |

(c) max(ay,...,a,) = max(by, ..., b,), but Za; < Tb;; or

(d) max(as,...,a,) < max(by, ..., b,).

‘The Skolem functions are usually chosen by going through the infinite conjunction
1.3.9 from left to right and using each time the smallest unused integer for the next
functional expression not yet evaluated. Thus, e. g., ¥1, ..., Vi , In 1.3.7 get the constant

values 1, ..., d;, and M, is:
ML ...d1 . 1d, .. (di+dy) . (g—d.+1)...ql ... L

Fach time a functional expression gets a Value, the value is substltuted in all later
occurrences of the same expression.

In this way we arrive at a form of the fundamental theorem of logic as a
generalization of 1.3.3. |

It is natural to observe that the infinite conjunction 1.3.9 can be d1v1ded into
sections (Ref. 4, p. 138):
1.3.11 The first section is the set of those M;’s in n which the p—tuples replacing the
independent variables are made p of integers in the set {1, ..., d1 }, or the set {1} if d,
= (; the (n + 1)th section is the set of those M;’s not belonging to the nth section in
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which the p-tuples are made up of integers which occur in the union of the first n

sections.
The notion has been used by Skolem in explaining some decision procedures (see

Section II below).
1.4 Special Cases of the Decision Problem

The principal known decidable classes are, with regard to satisﬁab_fility: tlr;
followmg g
I. The monadic case. The class of all formulae which contain only monadi
predicate letters and no function symbols.
I1. The EA satisfiability case (the AE provability case). The class ot all formula
in the prenex form with prefixes of the form (Ey)... (Eym) (%1) ... (24), m, 10 0, and 't
function symbols [or the form (y1) ... (ym) (Exy) ... (Ex) for provability]. .
III. The conjunctive satisfiability case. Every formula in the prenex form with.
matrix which is a conjunction of atomic formulae and their negations. (Equivalently, th
disjunctive provability case.) |
IV. The Skolem case. Every formula in the prenex form with no functlon symbe],'
such that it has a prefix ending with (Ey,)...(Ey,), n > 0, and every atomic formul
occurring in the matrix contains either one of the variables yi, ..., Yo or all the;‘
independent variables. [For provability, (y)... (y,) at the end.] "
V. The EA,E satisfiability case (the AE,A provability case). Every formula:
containing mno function symbols in the prenex form with a pref
(Ey1) -- (ED’m)(M)(Xz)(EYO (Eyn)- |
V1. The Ackermann case. For satisfiability, every formula Wthh contains e
function symbols, no equality sign, only a smgle dyadic predicate (G say), and has the
form (x)(Ey)Gxy & (%1)... (Xm) Mx;... Xm, m = 4, M quantifier—{ree. :
In addition to these, two other cases may be mentioned:
VIL. The A,E, A, satisfiability case. Every formula with the prefix (xl)(Ey)(xz)

and with no function symbols.

VIII. The Surdnyi normal form case. For satlsﬁablhty, every formula which has no
equality sign, no function symbols, only dyadic predicate symbols, and has the form
(xl)(xz) (x3) Mx120x & (x1) (2) (Eys), Nxy%,v3, M, N quantifier—{ree.

It may be noted that in all the cases, with the single exception of 111, no functlon
symbols are permitted. Indeed, very little is known about the decision problem’ of
formulae containing function symbols (compare Ref. 3, pp. 98—107). Unless otherwﬁe
stated, we shall always assume that no function symbols occur. .

In what follows, cases I and VI will not be considered. So far as the monadic casé
without equality (a subcase of I) is concerned, it is possible to obtain a de01510n
procedure from one for case I1. Some of the problems suggested by the Ackermann case
are also encountered by the A4, E; A, case, while other implications of thls case seem to
call for a closer examination of certain arithmetic perdicates. |

Formulae under case VIII form a reduction class in the sense that there is an

5 3'-"5‘
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effective procedure by which every formula, possibly containing = and function
symbols, can be reduced to one in the class with satisfiability preserved (Ref. 2, p. 60). It
tollows that there exists no decision procedure for this case. It is, however, desirable to
find some ““semidecision procedure” for the class which is a decision procedure for some
subclass of it that is not specified explicitly in advance. It is thought that such
semidecision procedures are a useful way of extending the range of formulae decidable
by a predetermined finite set of procedures. A brief discussion is included in Section IV
to point to the sort of thing which can be done along this line. It should be of interest to
- design semidecision procedures for case VIII, as well as for other reduction classes.

... The case VII is perhaps the best known unsettled case; it has been mentioned in
yrious connections (see, e.g., Ref. 11, p. 576 and Ref. 12, p. 420). In Section IV a
proc_edure will be given which may be a decision procedur for the whole case but has
only been shown to terminate for certain special cases. A proof of finiteness of the
procedure is wanting. It is thought that, incomplete as the solution is, it is quite
- suggestive for further works on the decision problem. Some rather amusing
- combinatorial problems are also related to the considerations on this case.

| An alternative decision procedure for the much-studied case V will be glven in
. Section III in the equivalent form A,E (for satisfiability).

“ The Skolem case will be examined in considerable detail in Section II, using ideas
~ proposed by Skolem*(p.138) and Church® (p.264). Remarks relevant to machine
~ realizations of the procedure will also be included.

. The Skolem case includes the following special cases:

.. 1Va. The 4, F'satisfiability case. Because every atomic formula has to include some
Varlable and there is only one independent variable.

. IVb. For satisfiability, every formula whose prefix ends with (Ey, ) ... (Ey,), and in
whlch every atomic formula contains at least one of the variables y,...,,.

IVe. For satisfiability, every formula whose prefix is

(By) o (Byad) (1) o (3 (By?) - (Eni2)

- and in which every atomic formula contains either all of x,...,x, or at least one of

e i |

I - IVd. For satisfiability, every formula in the Skolem normal form, i.e., with
ﬂpreﬁx(xl) (%) (Ey1) ...(Ey,), such that-every atomic formula contains at least m

I distinct variables.

- For the extensive literature on the decision problem, the reader is S referred to the

b]bhographles in Refs. 2 and 3. The writer has not been able to study carefully much of

- the relevant literature, and is not certain that the procedures deseribed in Sections II

- and ITI may not turn out to be inferior to existing ones. Recently, the writer noticed that

 ideas along the line of the solution of the E 4 provability case given in Section 3 of Part

- T' are contained in Skolem’s writings (e.g., Ref. 4, p. 135).

- Of the two remaining cases, II and III, some brief comments will suffice.
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1.5  Two Simple Cases |
The EA satisfiability case I has agreeable decision procedures not dependent on

the fundamental theorem of logic (see Ref. 13, p. 13). It is also easy to devise a decision
procedure on the basis of the fundamental theorem. Consider -

This is in fact equivalent to:
1.5.2 | M, &..& M, k= m", or 1 when m = 0.

In fact, this is a limiting case of the fundamental theorem because no Skolem functions - “

are needed, so that the m constants for the initial variables are all we need for fabricating
a model. In other words, either the negation of 1.5.2 is a quantifier—free tautology, and
the negation of 1.5.1 is a theorem; or 1.5.2 has a model, and 1.5.1 has a model too. The
presence of the equal sign is permitted, but the presence of function symbols in 1.5.1
would invalidate the procedure. | |

The conjunctive satisfiability case III was originally solved by Herbrand (Ref: 5,
pp. 44—45). Suppose the matrix is:

or, in different notation: | o
1.5.4 AyyeiAp + By,....By.

Assume first that neither equality nor function symbols occur. If no predicate letter
occurs both on the left side and on the right side, then we can simply choose to make all
predicates occurring on the left side true of all numbers and those on the right false for
all numbers, and then the infinite conjunction corresponding to the given formula is
true under the interpretation. |

Whenever there is one clause on the left and one on the right which contain the
same predicate letter, e.g., A4; is Gabc and B;is Guvw, we compare them and ask whether
it is possible to assign the same integers to their arguments in some M, and M,
respec'tively. If the answer is yes, the original formula can have no model, because the
infinite conjunction must be always false. If the answer is no for every such pair, then the
original formula has a model. |

To compare A; and B;, we examine the three pairs of corresponding variables. If
both variables in some pair are distinct dependent variables, then the two clauses 4; and
B; can never get the same numbers. When this is the case for none of the pairs, we can
decide the question by asking whether there are positive intgegers s, ¢ such that a(s)
= u(t), b(s) =v(t) and c(s) = w(t), where, for each variable a in the original
formula, a(n) is a function giving the number which replaces a in M,. It is possible to
give a scheme to generate such function for each given formula. When there are
solutions for some pair of clauses, the original formula is not satisfiable.

If the formula 1.5.4 contains function symbols but not = , then the comparison of
A; and B; has to take functions into considerations sometimes. We may have to ask
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hether f{a(s)) = g(u(t)), instead of als) = ut), has a solution. In such cases, there is a

i solution only when fand g are the same function, because otherwise we can always give
ifferent values to f{a(s)) and g(u{z)) to avoid the incompatibility of M, and M,.

% When the equals sign also occurs, we have to list all the equations among A;,...,4,,
if there is any, and complete the list by using transitivity. If there are none, we need only
‘o proceed as before, except that we can also reject satisfiability on the ground of, e. g.,
aving an equation z = v among By, ..., B,, and u(p) = ©(p) has a solution in p. In the
‘general case, we must compare A; and B;, which have the same predicate letter, ina more
‘complicated manner. One way to do this is to give an effective survey of all the equalities
ebtainable in M, ..., M,, for every t. And then the question of comparing Gabc and
Guvwis reduced to the following: whether there are p, g. ¢ such that, with the help of the
$qualities obtainable from M, ..., M,, we have alp) = u(q), b(p) = 1{q), dp) = wlq).
‘Bince these considerations are only subsidiary for the main purpose of the paper, details
for this and other steps sketched above will not be supplied.

0.2 The skolem case

Outline of a General Method

- Thesubcase IVb, where every atomic formula contains at least one of the last string
of dependent variables, is particularly simple. Thus, in every M, each such variable
“always gets replaced by some new number so that no atomic formula in M, can have
“occurred in any of M;,...,M, _ . Hence, a formula of such a _form is satisfiable if and
only if ~ M, is not a quantifier—free tautology.

Inthe general Skolem case, we make use of the definition of sections given above

o ’1 43 11 Let (af, ..., at) be the p—tuple which replaces the dependent variables in M to

3 ’GiVen any member M; of the nth section, the only related instances in the nth
ction are those M, for which(a}, ..., a¥) is a permutation of (ai, ..., a;,), and the only
ated instances in the (n + 1) th section are those M, for which (a/, ..., ) include only
timbers occurring in M; and at least one number not in the set {a,..., a}.

Hence, it is possible to get a decision procedure by determining Whether there
:;"‘fsts any set of possibilities which includes models for the instances of the first section,
3 Well as models for all related instances M, any M; for every model for M; in the set.
| When the formulaisin the Skolem normal form or the form of IVe, somewhat more is

’ﬁ 1 It M belongs to the (n + 1)th section, then it can have common atormc formulae
iith only at most one M, in the nth section.

This is so because each atomic formula in M; either contains a new number not
ccurring in any member of the nth section, or otherwise contains all of {a, ...., @]} with
t least one number (say @) which appeared for the first time in one specific member
say M;) of the nth section. In the first case the atomic formula in M; does not occur in
ny member of the nth section. In the second case, M, can contain no common atomic
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formula with any member of the nth section except possibly M, since a) does not occur
in any of the other members of the nth section.
Detailed considerations will be confined to the treatment of a simple special case.

2.2 An Explicit Procedure for a Special Case

We consider a very simple special case in which the matrix contains no equals sign
(and of course no function symbols), and a single dyadic predicate G:

2.2.1 (x) (y) (Ez) Mxyz.
As an illustration, we use the negation of Example (2) of Part I:'

222 (x)(y)(Ez) [(Gxy & Gyx & ~ Gxz & ~ Gzy & ~ Gzz) V (Gxz & Gzy &
Gzz & ~Gxy & ~Gyx)]. X - |

In an alternative notation, the matrix is:
2.2.3 | Cxy, Gyx — Gxz, Gzy, Gzz;
Gxz, Gzy, Gzz - Gxy, Gyx.

We construct a truth table of all the possibilities which can satisfy the above matrix:

2.2.4 - Gxy  Gyx Gxz Gzx Gyz Gzy Gzz
t t f f f
f f t t t

The blanks may take either t or f as values. Hence, there are eight rows in all.

For the prefix (x) (y) (Ez), the numbers to substitute for (x, y,2)in My, M, M5, M,,
etc., are (1,1,2), (1,2,3), (2,1,4), (2,2,5), etc. In order to decide whether a formula of the
form 2.2.1 has a model, we ask whether it is possible to make M112, M123, M214, etc.,
simultaneously true, or, in other words, whether we can find for each M, one row from
the above table according to which M, is true, such that these infinitely many rows are all
compatible in the sense that the same atomic formula always gets the same truth value (t

or f). |

Among the number triples we can distinguish two classes, those in which x and y

get the same numbers, such as (1,1,2), and those in which they get different numbers, -

such as (2,1,4). The conditions under which a model is possible are roughly: (i) to satisfy
Maab, a row in the truth table has to behave in a way that x and y are interchangeable;
(i1) for each row satisfying Mabc, there must be a related row satisfying Mbac; (iii) for
the two types of row, two corresponding patterns of continuation must be possible, e. g.,

A3 — M136

M2 — M123—— M238
s

—— M33(10)
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These conditions can be formalized more exactly and applied, in particular, to show
that 2.2.2 has a model, and therefore its negation is not a theorem. For this purpose, we
assume a formula of the form 2.2.1 for which a truth table T like 2.2.4 is constructed.
When, for example, Gxy in a row R of T gets the same value as Gzz in a row S of T, we
shall use the brief notation R, = S,,.

2.2.5 A row S in the table T'is a uniform row if S,, = S,,, Si: = S,z Sox = Sy

Clearly, for a row to satisfy M112, it is necessary that it be uniform. If there is no
uniform row, then there is no model for the original formula.

2.2.6 A row Sin the table T'is an heir of arow Rin T'if Sisa uniformrowand R,, = S,,.
2.2.7 A row in T is trivial if it has no heir.

Since a row having no heir cannot be continued, we may. cross out all trivial rows
and be concerned only with nontrivial rows. This is not theoretically necessary because
further requirements would cross out trivial rows anyhow, but it makes for efficiency.
2.2.8 A row R in the table T'is an ordinary row if there is a row S such that R, = S,
R,y =S4y, Ri: = 5p2, Rox = 5,y Ry, = sz, R,, = S.,. Rand § are said to be mates of
each other.

~ This is the COIldlthIl under Wthh R and S can satisty (M123, M214) or (M214,
M123) respectively.

In the table 2.2.4 for the formula 2.2.2, it 1s easﬂy verified that only the two

following rows are unifoerm rows or rodinary rows:

Gxy  Gyx Gxz Gzx Gyz Gzy Gzz
a .t t f f f f f

p f f t t t t t

In fact, « and f are the only uniform rows, as well as the only ordinary rows. Each of
a and B is only a mate of itself.
2.2.9 A uniform row Ris permanent if (i) it has an heir which is permanent, and (ii) there
is a permanent ordinary row S such that R,, =S, R, =S, S is said to be a
subordinate of R. -
2.2.10 An ordinary row R is permanent if (1) it has an heir which is a permanent
(uniform) row, (ii) it has a mate that is a permanent ordinary row, and (iii) there are two
permanent ordinary rows P and S such that R,, = P,,, R, = P, R,; = S,,, R;,
= S,x. P and S are asid to be a pair of subordinates of R.

The two definitions 2.2.9 and 2.2.10 embody a simultaneous recursion. Condition
(i1) in 2.2.9 is necessary, if, e.g., R is to satisfy M112 and Sis to satisfy M123. Condition
(iii) in 2.2.10 is necessary if, e.g., R is to satisfy M123, P is to satisfy M136 and S'is to
satisfy M238.
2.2.11 The formula 2.2.1 has a model if and only if its truth table 7'contains a permanent
“uniform row.

"This assertion will be justified in 2.3. We observe first that both o and f are
permanent uniform rows for the example 2.2.2. In fact, we have various models for the
formula, which are determined, in outline, by the following patterns of continuation:
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More exactly, choose. e.g., o as a model of M112. As a continuation of this,
satisfies M123 and M225; since B is its own mate in the sense of 2.2.8, f also satisfies
M214. Similarly, since « is its own mate, as a continuation of f satisfying M123, o
satisfies M136, M317, M238, M329, and M33(10). In this particular case, the model 8
of M214 can be continued in the same way. Moreover, the model f of M225 can be
continued by the row a, and, e.g., the model « of M136 can be continued by the row f,
and so on. -

In the general case, a symmetry argument is needed to show that if a medel of, e.g.,
M123 can be continued, then a model of M214 can also be continued. For example, if
(R, S) satisfy (M123, M124) respectively, and (4, B, C, D) satisfy respectively the
continuation (M136, M317, M238, M329) of M123, then it is easy to see that (B, A, D,
C) satisfy the corresponding extension of M214. This means that condition (ii) of 2.2.10
can be weakened to require a mate that is an ordinary row with a permanent heir.

The decision procedure implicit in the above definitions may be described
explicitly thus: |
2.2.12 The decision procedure:

1. Construct a truth table 7.

2. Find all uniform rows.

3. Cross out all trivial rows.

Let U, be the set of remaining uniform rows, ¥, be the set of remaining ordinary
rows. Each time, assume U, and V, are given and continue the following four steps:

4.. Eliminate every uniform row from U, which has no subordinate row in V,, thus
obtaining U, from U, and V.

5. Eliminate from V, every ordinary row which has no mate or no pair of
subordinate rows in V, , thus obtaining V, . from V.

6. Eliminate every uniform row from U, +; which has no heir in U,,,, thus
obtaining U, , from U, . ;.

7. Eliminate every ordinary row from V,.; which has no heir in U, ,, thus
obtaining V, ., from V,,; and U,+,.

8. The steps 4 through 7 are repeated until one of two things happens: either at
some stage we obtain an empty U; and an empty V;, then we stop and conclude that the
original formula 2.2.1 has no model; or else after a whole round of the steps 4 and 7, we
find U, +, and V,, , remain the same as U, and V,, then we stop and conclude that the
original formula 2.2.1 has model.

In practice, it is more efficient to perform, if possible, each of the steps 4 through8
repeatedly, before going to the next step.

The procedure is clearly finite, since Uy and V), are finite, and each round of steps 4
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through 8 must reduce the size of U, or V, if the procedure has not come to a stop yet.
Moreover, the final sets U; and V; must be both empty or both nonempty.

2.3 Justification of the Procedure

As a Skolem case, the formula 2.2.1 must not contain Gxx and Gyy. It is, however,
not obvious that we are justified in not including two columns Gxx and Gyy in the truth
tables such as 2.2.4. For a model constructed on the basis of such reduced tables, it is
not evident that, for some positive integer a, Gaa might not be compelled to take on the
value t at one place, and the value f at another. However, we can prove the following:
2.3.11n every model obtained on the basis of a truth table not including columns for Gxx
and Gyy, for every number a, Gaa is never compelled to take on two different values.

Take, for example, G22. If Gzz occurs in the original formula, G22 is compelled to
take a fixed value in a model with a row R for M112. In the same model, if Sis the row for
M?225,then R,, = S, = S,,. Hence, it is harmless that S, , and S,, are compelled to take
the same value as both R,, and S, (oor S,,). In all other cases, the values for G22 can
always be given the value of R,, because there is no other place where G22 is
independently compelled to take a certain turth value.

For the same reason, if neither an atomic formula nor any one obtainable from it by
permuting the variables occurs, we may leave out the columns for them. For example, if
Gzz does not occur, we can leave it out. If neither Gxy nor Gyx occurs, we can leave both
of them out.

On the other hand, if e.g., Gxy and Gzy occur but Gyx does not, we still must
include a column for Gyx. Otherwise, since we do not record the value of Gyx, it may
happen that R satisfies M112, with R,, = t, and S satisfies M214 with S,, = f. Then no
row P can satisfy M123, because P, is compelled to take both the value t and the value f,
and this is not recorded without a column for Gyx.

To prove 2.2.11, we remark first that there are three types of instances illustrated
by M112, M123, M214. For the first kind, an M, of the form Maab, the only M, j > i,
which have common atomic formulae with M, are Mbbc, Mabd, Mbae, because these
are the only ways in which both the independent variables x and y can be replaced by
numbers occurring in M;, and having only one of the two arguments from M,; yields no
common atomic formula. Similarly, if Miis Mabc, a < b, there are only five M, j > i
which have common atomic formula with M. By the symmetry argument precedmg
2.2.12, the mate Mbae is also taken care of.

- Hence, if there is any permanent uniform row, we canfind a model for all instances
- M,, M,, etc., such that each has some common atomic formula with an earlier one, or,
in other words, all those occurring on an infinite tree beginning at M. This does not
exhaust all the instances. For example, M, , and M 5 [i.e., M34(15) and M43(16)] are
not included. Since, however, they contain no common atomic formulae with the
instances already interpreted, we can take two permanent ordinary rows which are mates
- and get a model for another sequence of instances. In this way, it is seen that, if there is a
permanent uniform row in the table 7, then one can so interpret the predicate G in the
domain of the positive integers that the whole sequence M;, M,, etc., are
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simultaneously satisfied.

The converse is quite obvious. If there is no permanent uniform row, then no
interpretation of M112 can be continued indefinitely, and there is an i. such that M, &
... & M is true under no interpretation. |

24 Questions of Efficiency

When doing an example by hand, there are shortcuts we find natural to use. These
may be viewed as more refined methods which can be mechanized by additional efforts.
We give some informal illustration of the type of quick method we tend to use.

Consider the negation of Example (3) given in Part 1.1

24.1 (x)(y)(Ez){[Cxy & (~GyzV ~Gzz)]
| V [(Gxy & Hxy) & (~HxzV ~ Hzz)]}.
In the alternative notation, the matrix of the above formula is:
24.2 Gxy + 'Gyz\; Gxy + Gzz; Gxy, Hxy + Hxz; Gxy, Hxy + Hz.
The truth table for this is: o . -

3  Gxy Hxy Gyx Hyx Hxz Hx Gyz Gzy Gzz Hzz

2.4
o ot f
p t f
Y t t ~ f
) t

t | | = f

Although the formual contains two predicates instead of Just one, it is easy to see
that the procedure described above can be extended to cover the case in a very straight—
forward manner. | |

Since there are many blanks in the table, it is essential for efficiency that we do not
expand the table by filling in the blanks (there would be 224 rows), until we are
compelled to do so. In other words, we try to carry out the decision procedure by
treating each row containing blanks as a single row and make expansion only when we
are not able to eliminate them as single rows. | |

We observe that for every row, in particular, every uniform row, Gxy gets the value
t. It follows that row 8, or more exactly, all the 27 rows obtainable from p are trivial by
2.2.7, since an heir of f must have Gxy take the value of Gzz in B, which is f. Hence we
may delete row f altogether. '

In order that row , or any specification R of «, be permantnt (uniform or
ordinary), it is necessary, by 2.2.9 and 2.2.10, that there is a subordinate row S, such that
Gxy gets the same value in Sas Gyz in R, or Rg,, = Sg,,. But this is impossible because
Rg,, 1s f in every row obtainable from o, but Sg,, is  in every row. Hence, we can delecte
row « altogether, and be concerned only with the rows y and 6. |

Since Hxy gets t in all the remaining rows and Hzz gets the value f in J, every row
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obtainable from 6 has no heir, and the whole row 6 can be deleted.

However, no permanent ordinary row can be obtained from 7 alone bacause, by
2.2.10, for any such row R there must be a subordinate row P such that Ry, = Prxys
but in row 7, Hxz is always f and Hxy is always t. Hence, there can also be no permanent
uniform row, and, by 2.2.11, the formula 2.4.1 has no model. Therefore, Example (3) in
Part I,* the negation of 2.4.1, is a theorem. '

Another method of deciding 2.4.1 is the following. We begin with M, which is a
disjunction of conjunctions, and choose M;, M,, etc., which contain common atomic
formula with M, in the hope that M; & M; & M; & ... as multiplied out into a
disjunction of conjunctions will include in each conjunction some atomic formula and
its negation. The process may have to be continued.

As we observed before, only M,, M5, M, can have common atomic formulae with
M, . Of these three, on account of the special structure of 2.4.1, M3 has no common part
with M,. Hence, we need to consider, to begin with, only M, M,, M,:

(1) (11) () (@)
M112 G111+ G12; G1l1 + G22; Gl1, H11+ H12; Gl1,H11 -+ H22
M123 G12 -+ G23; G12 -+ G33; G12,H12 + H13; G12,H12  H33
M225 G222+ G25; G22 -+ G55; G22,H22 + H25, G22,H22 + H55

By the row for M123, (i) of M112 can be deleted because (i) contains ~ G12 (i.e.,
after ), while each clause in the row for M123 contains G12. It can be seen then that
“every row in column(i) can be deleted in the same way, Similarly, (ii) of the row for
M112 can be deleted because it contains ~ G22, while each clause in the row for M225
contains G22; therefore, the whole column (ii) can be deleted eventually, and we need
only consider the columns (iii) and (iv). But then (iii) of the row for M112 can also be
deleted because it contains ~ H12, and all the remaining columns of the row for M123
contain H12. Finally, we have only column (iv) left. Now, however ~ H22 occurs in the
row of M112 and H22 occurs in the row for M225. Hence, the conjunction of the three
rows of column (iv) is a contradiction, and 2.4.1 has no model.

2.5  The Inclusion of Equality

The decision procedure in 2.2 can be extended to deal with cases where the equal
sign occurs in the given formula:

2.5.1 (%) () (Ez) Mxyz, with = occurring.

Additional considerations are needed to take care of the special properties of = .
First we bring Mxyz into a disjunction of conjunctions of atomic formulae and their
negations, in the usual manner. Then we modify the resulting matrix to take care of the
properties of =. (a) Each conjunction that contains an inequality of the form v # v, v
being x or yor z, is deleted. (b) In each conjunction, a clause of the form v = vis deleted.
(c) Within each conjunction, if u = vis a clause with distinct variables u and v, we add
also, as new clauses (if not occurring already), v = u and the result of replacing any
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number of occurrences of u by v(oor v by u) in each clause of the conjunction; this is
repeated for every equality until no new clause is generated. (d) Repeat the steps (a) and
(b) on the result obtained by step (c); in addition, any conjunction which contains both
an atomic formula and its negation is deleted.

- We now construct the truth table on the basis of the new matrix (in a disjunctive
normal form). Uniform rows, ordinary rows and permanence can be defined in a similar
manner as before, except that a uniform row has to satisfy the additional condition that
x = yand y = x both get the truth value ¢ (not only that they just get a same value). In
this way, we can obtain a decision procedure for all formulae of the form 2.5.1.

It is believed that the same type of consideration can be used to extend all the cases
considered in this paper to include also the equal sign. In the next two sectings, equality
will be left out and attention will be confined to formulae not containing the equals sign
(nor, of course, function symbols).

9.3 The A,E satisfiability case

We give an alternative treatment of this case which, it is conjectured, is in general
more efficient than the method of Schiitte' " as reformulated by Klaua.® The method
will be explained with the special case when only one dependent variable and only one
dyadic predicate G occur:

3.1 (x) (y) (Ez) Mxyz.

The main difference between this case and the case solved in 2.2 above is that Gxx
and Gyy are permitted to occur in Mxyz. As a result, for example, M123 may contain
common atomic formula with any Mabc in which a or b is one of 1, 2, 3.

As an example, we choose arbitrarily the following;:

3.2  (9)(W(E)[ ~GCxx & (Gxy > ~Gyx) & Gxz & (Gzy = Gay)].
The matrix may be rewritten as:

3.3 Gxz + Gxx, Gxy,Gzy; Gxz,Gxy + Gax,Gyx;
Gxz + Gax,Gyz,Gzy.

The truth table is:

3.4 Gxx Gxy Gyx Gyy Gxz Gyz Gzx Gzy Gazz

f f t f
f f t f

t f t

The problem is, as before, to decide whether there is a model that satisfies M, , M,,
etc., simultaneously. The conditions are rather similar to those in 2.2 except that for any
tworows R and .S which, say, satisfty Mabc and Mdefin a model, there must be two rows
which satisfy Mcfg and Mfch in the model. There is also a related requirement for a row
satisfying M, because the number 1 is never used to replace a dependent variable. The
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various conditions may be stated:

3.5 A row R is uniform if R,y = Ry, = R,x = R,), Rz = Rz, Rx = R,,.

3.6 A row S is an heir of a row R if S is uniform and R,, = S,,.

3.7 Two rows R and S form a parallel pair if R, = Sy, Rey = Sy

Ry = Syy» Ry = Sexs Rz = Syzy Ryy = Sizy Rox = Spy Roy = Six

Two rows of a parallel pair are said to be mates of each other.

If R and S are to satisfy Mabc and Mbae, it is necessary that they form a parallel
pair. In general, for a row satisfying Mabc, there must also be two parallel pairs of
related rows satisfying Macd, Mcae, Mbcf, Mcbg, When a = b, the two parallel pairs
become one. This, plus the requirement that every row in a model must have an heir may
be summarized in the following condition.

3.8 A row R is normal if the following conditions are all satisfied:

3.8.1 It has a normal row as a mate;
3.8.2 Tt has an heir which is a normal row;

3.8.3 There are two normal rows P and S Such that R, = P.., R, = P,;, R, = Py,
R, = P,,,and R, = S,,, R, = Sy, R.; = S)x, R.. = S, Such rows Pand Sare said
to be subordinates of R.

A uniform row is its own mate, although a self-mated row is not always a uniform
row. For a uniform row, 3.8.1 is a redundant condition, and P and S coincide in 3.8.3.
The definition 3.8 of normality is clearly recursive.

In the table 3.4, we observe that, because Gax always takes the value f, Gzz can only
take the value f in order that the row has an heir. Moreover, since Gxx always gets the
value f and Gxz always gets the value t, in order that a row has a mate, Gyy must always
take the value f and Gyz always t. Hence, we need consider only the following eight rows
which result from filling the remaining gaps:

3.9 Gxx Gxy Gyx Gyy Gaz Gyz Gzx  Gzy Gzz
o f f f f t t f f f
B, f f t f t t f f f
p, f t f f t t f f f
a f f t f t t t - f f
b f t f f t t f t f
c f f f t t t t f f
d f t f f t t t f f
e f t f f t 1 t t f

Row e has no mate, beacuse of the columns 5 to 8. Rows ¢ and d have no mate,
because b, the only row satisfying the condition on Gzx and Gzy, does not satisty the
condition on Gxy and Gyx. Neither row a nor row b has subordinates as required by
3.8.3. Hence, we have only the remaining rows «, 8, B, to, consider.
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o 1s the only uniform row, (B, B,) form a parallel pair, and S, is both P and Sin
3.8.3 for all the three rows «, B, f,. Hence, we have, for example:

—(M225, &)
——(M33(10), «)
(M112,0)— 21193 g —(M135, f)
M ’ﬁ)l —(M316, B,)
— | —(M237, B,)
—(M328, ;)

(M214, B,)

In particular, (M124, f,) can be continued in the same way as (M123, 8,). Indeed,
continuation in every branch can be made similarly. In other words, a, f;, B, are all
normal by 3.8. This, however, does not yet secure a model for the formula 3.2. There are,
for example, those instances in which (1, 5), (5, 1), (3, 4), (4, 3), etc., replace (x, y) of

Mxyz; they also have common atomic formulae with the instances shown in the above
graph.

3.10 A formula 3.1 has a model if and only if (a) it has a nonempty table of normal rows,
(b) this table has a nonempty subtable 7" such that:

3.10.1 For every pair (R, .S) in 7", there is a parallel pair (P, Q) in 7" such that Pxx
- Rzza Qxx — Szz

3.10.2 There is a uniform row R in 7" such that for every row Sin 7" there is a parallel
pair (P, Q) in T, for which P, = R,,, Qxx = S,..

There are the additional requirements mentioned after 3.4. In the example under
consideration, the table consisting of all the three normal rows o, 8, B, satisfies the
requirements on 7". Hence, 3.2 does have models. One model for the predicate G is the
relation < among positive integers. That is, however, not the only model, because the
model of G does not have to be transitive. For example, G15 and G51 can be (t, {) or (f. t)
or (f, f).

It can be verified that the conditions in 3.10 are indeed necessary and sufficient.
9.4 The A E A, Satisfiability case

4.1 A Generalized Game of Dominoes

The study of the decision problem of the present case has suggested a related
abstract mathematical problem which can easily be stated in everyday language. The
problem appears to be of interest even to those who are not concerned with questions in
mathematical logic. .

Assume we are given a finite set of square plates of the same size with edges colored,
each in a different manner. Suppose further there are infinitely many. copies of each
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1ind an effective procedure by which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently, an infinite quadrant thereof)
with copies of the plates sub Ject to the restriction that ad joining edges must have the
same color. .

For example, suppose a set consists of the three plates:

3 5 4

1,A2 2| B |3 3l ¢ 1
4 3 - 5

Then we can easily find an infinite solution by the folloWing argument.
The following configuration satisfies the constraint on the edges:

A B C
C A B
B C 4

Now the colors on the periphery of the above block are seen to be the following:

3 5 4
1 1
3 3
2 2
3 5 4

In other words, the bottom edge répeats the top edge, and the right edge repeats the left
edge. Hence, if we repeat the 3 x 3 block in every direction, we obtain a solution of the
given set of three plates. In general, we define a “cyclic rectangle”.

4.1.1. Given any finite set of plates, a cyclic rectangle of the plates is a rectangle
consisting of copies of some or all plates of the set such that: (a) adjoining edges always
have the same color; (b) the bottom edge of the rectangle repeats the top edge; (c) the
right edge repeats the left edge.

Clearly, a snfficient condition for aset of plates to have a solution is that there exists
a cyclic rectangle of the plates. |

What appears to be a reasonable con Jecture, which has resisted proof or disproof so
fam is: |

4.1.2 The fundamental conjecture: A finite set of plates is solvable (has at least one

It is easy to prove the following:
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4.131f4.121s true, we can decide effectlvely whether any glven finite set of plates is
solvable.

Thus, we proceed to build all possible rectangles from copies of the plates of
different sizes, using smaller ones first. If 4.1.2 is true, the process will always terminate
in one of two ways: either at some stage we arrive at a cyclic rectangle and, therefore, the
original set is solvable; or else we arrive at a size such that there is no rectangle of that size
in which adjoining edges always have the same colors. The latter alternative is in fact a
necessary and sufficient condition under which the original set is not solvable. However,
if 4.1.2is not true, it would be possible that a set has a solution, but we can never see this
fact by the latter criterion at any finite stage: there would always be the possibility that
for the next size there exist no rectangles with same—colored adjoining edges.

There is a naturally uneasy feeling about the effectiveness of such a procedure. The
argument is essentially the familiar one that if a set and its complement are both
recursively enumerable, then the set is recursive. It shows that the procedure always
terminates (provided 4.1.2 is true) but gives no indication in advance as to how long it
might take in each case.

If 4.1.2 is proved, it seems likely that it would be proved in a stronger form by
exhibiting some simple recursive function f'with the following property. For any set of
plates with m distinct colors and n distinct plates, if the set is solvable, there is a cyclic
square of the size k£ x k, where k = f(m, n). If that happens, or even if we have not
exhibited such a function fbut 4.1.2 can be proved by fairly elementary arguments, we
would have some estimate in advance of how long the procedure takes in each case.

As it is, we can make the testing procedure quite systematic even though we do not
know whether 4.1.2 is true. The procedure would be a decision procedure and
presumably quite an efficient one, if 4.1.2 is true. If 4.1.2 should turn out to be false,
then the procedure would only be a semidecision procedure. In fact, it is possible to
show that the procedure does work in several classes of cases, e.g., when a set has unique
solution apart from translations, or whenever either horizontally or vertically no color
can be followed by different colors. But we shall not delay over such partial results.

If 4.1.2 should be false, then there would be two possibilities: either the set of all
solvable finite sets of plates is not recursive, or it is recursive but requires a more
complex decision procedure.

The problem can clearly be generahzed to higher dimensions: for example, to cubes
with colored surfaces instead of squares with colored edges.

We return now to the A, FE; A; satisfiability case.

4.2 Preliminary Definitions and an Example

The general form of the case is:

4.2.1 () (EY) (2) Mxyz,

where M is a quantifier—{ree matrix containing neither function symbols nor the
equality sign. From the fundamental theorem, it follows that 4.2.1 is satisfiable
(solvable) if and only if each finite subset of the infinite set of matrices Miij (i, j = 1, 2,
...) is solvable (not contradictory). Since the second number is always the successor of
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the first, we shall write Mij for Mii'j.

We illustrate the general case by considering the special case where Mpxyz contains
only a single dyadic predicate G. The negation of Example (4) given in the introduction
of Part I' will be the concrete example: -

4.2.2 (%) (Ey)(2) [~ Gxx & Gxy & (Gyz > Gxz)].
In the alternative notation, the matrix 1s
4.2.3 Gxy, Gxz + — Gxx; Gxy + - Gyz, Gxx.
The truth table is:
4.2.4 Gxx Gxy Gyx Gyy Gxz Gz Gyz Gzy Gzz
f t t t
f t t f
f t f f

Since there are five blank columns, there are altogether 3 X 2> or 96 rows. The
problem now is to decide whether we can choose one row for each matrix Myj(ij = 1, 2,
...) such that , taken, together, all the matrices come out true. This really involves both
the problem of finding the pieces and the problem of putting them together. Thus, if j1s
distinct from i and 7/, any row can satisfy Mij alone, if we substitute i, 7', jfor x, y, z in the
truth table; but a row can satisfy Mijwhen jis i or 7’ only in case certain related columns
get the same truth values. This is the problem of finding the pieces. When there are such
pieces, there is the harder problem of putting them together. For example, if there are
rows satisfying M11 and M12 separately, there may yet be no pair of rows which satisty
M11 and M12 simultaneously because the common atomic formulae in both matrices
must get identical values.

Since the putting—together part is quite complex, it seems natural to combine small
pieces into blocks first. For this purpose, we consider row pairs and row quadruples (i.e.,
pairs of pairs).

D4.1 Two rows P, Q in the truth table T form a basic row pair (P, Q) if, for some z,
they can simultaneously satisfy Mii' and Mii respectively. More explicitly, the
conditions are: | ~ -

- 1 Pyy=Pyz=sz=Pzzapxy=szaPyx=sz;
11 Qxx = sz = Uzx — sza 'Qxy = sza 'ny = Qyz;

ili. Pex = Qx> Pry = Oxys Pyx = Uy Py, = Qyy-

In the table 4.2.4, it is easy to verify that there are only two basic row pairs (2, B) and
(7, 0):

4.2.5 Gxx Gxy Gyx Gyy Gxz Gax Gyz Gzy Gzz
o f t f f t f £ f f
B f t f f f f f t f
Y f ot f t ot f t t t
0 f t f t f f f t f

Obviously basic row pairé are necessary for building a model of 4.2.1. In fact, given
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any formula 4.2.1, if its truth table 7' contains no basic row paris, then it has no model
and, indeed, the conjunction of M11 and M2 is a contradiction.

We shall consider pairs of row pairs, called row quadruples, which are useful in
chaining row pairs together.

D4.2. Given any two row quadruples (4, B; C, D) and (P, Q, R, S), ifC=P,D
= (), then the former is a predecessor of the latter and the latter is a successor of the
former.

D4.3 Four rows P, Q, R, S form a basic row quadruple (P, Q; R, S) if, for some 1,

they satisfy simultaneously Mii', Mii, M ii", Mi'i, respectively, or, more explicitly, if:
i. (P, Q) and (R, S) are basic row pairs; ~

ii. P,y = Ryx;

iii. (P, Q; R, S) has a successor which is a basic row quadruple.

In the table 4.2.4, there is only one basic row quadruple, viz. (2, B; a, B). The
quadruple (a, B; 7, 6) satisfies i and ii, but not 1. It is easy to see that, given any formula
4.2.1, if its truth table T contains no basic row quadruples, then it has no solution and,
indeed, the conjunction of M12, Ml11, M23, M22, M34, M33 is a contradiction.

Clearly, if a row R satisfies Mij in a model, then there must be one row S which
satisfies Mji, one basic row quadruple (A, B; C, D) which satisfies Mii', Miv, Mi'i",
M;'i, and one basic quadruple which satisfies Mjj, Mjj, Mj ', Mjj . In particular, when

jis i, we get the basic row pairs which occur in some basic quadruple.

D4.4 Two rows R, S form an ordinary row pair (R, S) if
1, Rxx — Szza sz = Szy9 sz - Sy29 Rzz ='Syy9' : -
ii. There is a basic quadruple (4, B; C, D) such that A, = Ry, A,y = Ryy, Apx
= Ryx, 4y, = Ryy;

iii. There is a basic quadruple (P, Q; K, L) such that P,y = Sex» Pzy = Sxp» Pyx
= Spxs Pyy = Syy-

In the table 4.2.4, since the only basic quadrupleis (2, B; a, B), it is relatively simple
to find all the rows which do occur in ordinary row pairs. Since every row which is to
satisfy some Mijin any solution must occur as one row in some ordinary row pair, we
tabulate all such rows together and, from now on, confine our attention to them. It
happens in this example that all these rows have in common five columns:

Gxx Gxy Gyx Gyy Gzz
f t f f f

Therefore, we only have to list the remaining columns:

4.2.6 Gxz Gzx Gyz Gzy ordinary
| pairs
o t f t f (o, P)

B f f f t B, )
0, t t t t (51,451)
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0, f f f f (05, 03)
04 t f f t (03, 03)
04 t f t f (04, 05)
Os f t f t (05, 04)
P t f t t (06, 07)
04 t t f t (07, 0¢)

In fact, if only the four columns have to be considered, there are 12 rows in the
original table 4.2.4, and the two rows (R, S) in each ordinary row pair satisfy the
condition: Ry, = Sy, R.x = S,,. Hence, it is easy to get the above table. Briefly, the
" Lelevant information for the example is the nine ordinary pairs given above and the basic
quadruple (2, B; o, B). |

‘Thus far we have been concerned only with rather elementary properties of the
rows in the truth table. The more involved part is to design a scheme of extending
recursively the construction of models. In order to explain how this is done, we

introduce a chart.

4.2.7 Chart for (x)(Ey)(z) Mxyz:
- Basic Pairs Cyclic Pairs Common Row Pairs
(Mii', Miz) (Mii", Mi'i) (Mi(i"” + k), M(i' + k)i)
(12, 11) — (13,21) — (14, 3] . (15,41) — (16,51) ——---

N ,
(2l3, 22) 1 (24} 32) 4 (251 42) 4 (26, 52) 4 ‘t
(fg4, 33)4 (35} 43) 4 (361 53) 4 S

L b
(45, 44)Z (46, 54) -

(5l6, 55) L. ‘
L

In the chart, the ordinary row pairs satistying (Mij , Mji) are divided into three
classes: basic when i = j, cyclic when i’ = j, common otherwise. The general plan of the
procedure is as follows. The existence of basic row quadruples assures that we can find a
‘model for all the matrices M12, M11, M23, M22, etc. in the first column. Similarly, we
can define cyclic quadruples to give an effective condition for the existence of a model
for all matrices appearing in the second column of the chart, and so on. But in order that
these models can be combined to give a model for all the matrices and therewith for a
given formula 4.2.1, each column must be related to the column on its left in a suitable
* manner. This situation with two infinite dimensions seems to be the chief cause of the

| complexity of the AE, A, case.
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In the chart of 4.2.7, each row pair (R, S) that is not basic is subordinate to a
quadruple (A4, B; C, D) made up of the two row pairs (A4, B), (C, D) onits left with arrows
leading to it. The quadruple is said to be superior to the pair (R, \S).

D4.5 An ordinary row pair (R, S) is a subordinate of a quadruple (4, B; C, D) if

1. Rxx - Axx9 R — Axya R - Ayxa Ryy - Ayya Ryz — sza ny = sza Rzz
= Cpzs

i1. Sxx = Dxxa S = nya Syx — Dyx9 sz = Azxa Szx = sz-
Aquadruple (R, S; P. Q) is subordinate to a row sextuple (4, B; C, D; K, L) if (R, S) is
subordinate to (A4, B; C, D), and (P, Q) to (C, D; K, L).

D4.6 Two rows R, S form a cyclic row pair (R. S) if
i. (R.S) is an ordinary row pair;

. Ry, = S;xs Ryx = Sxzs Ry = Saxs Rz = Sy Rey = S

ObVlously, given 4.1, if its table contains no two rows formlng a cyclic pair, then the
conjunction, briefly Cs, of M12, M11, M23, M22, M13, MZ21 is a contradiction.

In the table 4.2.6, there are, among the nine ordinary row pairs, only one that is
cyclic, (04, 05). Since there are only one basic quadruple, each has only one superior.
This is of course not always the case, it is only due to special features of the example
4.2.2.

In order to find out whether there is any succession of cyclic pairs which will satisty
all rows of the column for cyclic pairs in the chart, we study cyclic quadruples.

D.4.7 Four rows P, (), R, S form a cyclic quadruple (P, Q, R, S) if
i. (P. Q) and (R, S) are cyclic row pairs;
ii. Qrx = Rix, Oy = Ryys Oy = Ry, Q) = Ryy;

iii. There is a basic sextuple (A4, B; C, D; K, L); which is respectively superior to (P,
Q; R, 5);

iv. (P, Q; R, S) has a successor which is also a cyclic quadruple.

Obviously, given a formula 4.2.1, if its table contains no rows that form a cyclic
quadruple, then the conjunction of Cgs, M34, M33, M24, M32 is a contradiction.

The existence of a cyclic quadruple certainly assures that we can satisfy all the rows
of the second column of the chart simultaneously. It assures a bit more: the two pairs (£,
0), (R, S) of a cyclic quadruple are always compatible with any three pairs (4, B), (C, D),
(K, L) which form two basic quadruples, respectively superior to them. Thisis, however,
insufficient to secure that all the rows in the first two columns of the chart can be
simultaneously satisfied, because it is possible that no cyclic quadruple beginning with
(R, S) is subordinate to any quadruple begining with (K, L). In other words, the blocks
might not fit together.

As it happens, this problem does not arise with the example 4.2.2. Slnce there is
only one cyclic pair (04, 0¢), there can be at most one cyclic quadruple, viz, (04, 0s; 04,
d¢). It can be verified by D4.7 that this is indeed a cyclic row quadruple. Since there is
only one basic quadruple («, f; o, B), we see immediately that by using («, p) for (Mi7,
Mii) (i = 1,2, ...) and (04, 05) for (Mii", Mi't) (i = 1, 2, ...), all these matrices (oof the

first two columns of the chart) are simultaneously satisfied. Moreover, this is the only
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possible model for the two initial infinite columns of matrices.
We shall first define common row quadruples, settle 4.2.2, and then come back to
the more general question.

D.4.8 Two ordinary row pairs (R, S), (P, Q) form a common quadruple (R, S; P, Q) of
order k[i.e., in the (2+k) th column of the chart] if

i. When k =1, there is a cyclic row sextuple which is superior to (R, S; P, Q), or
when k£ = n + 1, for some positive integer n, there is a common row sextuple of order n
which is superior to (R, S; P, Q).

ii. (R, S; P, Q) has a successor which is a common quadruple of order £.

By this definition, we can successively find the common row quadruples of orders
1, 2, etc. In the actual procedure, we examine each time to determine whether we have
already enough information to decide the original formula. Only when this is not the
case do we find the common quadruples of the next order.

In the case of 4.2.2, since (54, Os; Oy, 55) is the only cyclic quadruple, it is easy to
verify, by 4.2.6 and D4.5 that (J,, 0s; d4, 05) is the only common quadruple of order 1.
" Thus, by D4.5, if (R, S) is subordinate to the cyclic quadruple (54, Os; Oy, 55), R,
=(04)xs =1, Roy=(04);x =1 and S.; =(04).x = fo Sox = (04)x. = ¢. By 4.2.6, (R, S)
must be (84, Os). |

From this, it follows that, for every n, there is exactly one common quadruple of
order n, viz. (54, Os5; Oy, 55-). This is an immediate consequence of D4.8 and the above
transition from the cyclic column to the first common column in the chart. Hence, we
have obtained a model for 4.2.2. It is easy to verify that the model for G is just the usual
ordering relation < among positive Integers.

This completes the solution of the example 4.2.2, which, however, is not a
sufficient illustration of the general case. We have to discuss a procedure by
considering more complex situations. “

4.3 The Procedure

One possible procedure is to add one infinite column at a time. Thus, it is possible
to represent all possible solutions of each column by a graph, and to represent the
solutions satisfying all the initial n' columns by a finite set of graphs if it is possible so
to represent all solutions satisfying the initial n columns. Since the common columns
enjoy a measure of uniformity, simultaneous solutions for all the columns would be

assured if suitable repetitions occur. An exact explanation of such a procedure would
" be quite lengthy. In any case, a successful choice of patterns of repetition has not been
found to assure that for every solvable table, such repetition always occurs.
Instead of elaborating the above procedure, we transform the problem to
something similar to the abstract question of 4.1. Thus, given any formula of the form
4.2.1, we can, as in 4.2, construct its truth table and find all the common row pairs in
the table. Among the common row pairs, some are also cyclic row pairs and some are
also basic row pairs. | |
If now we take the common row pairs a, b, ¢, d, etc., as elementary units which are
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to fill up the infinite quadrant as shown it the chart given under 4.2.7, then the
following scheme appears to be feasible. Suppose the points in the infinite quadrant are
to be filled by a;;, i,j= 1,06, ---, then we may consider instead all the 2 x 2 matrices:

(aij i ), for all 7, j=1,2,--

ai'j a,,-,jf

In other words, given the common row pairs, we can form all possible 2 x 2 matrices of
them which satisty the relations of subordination. These 2 x 2 matrices are then the
basic pieces from which we are to obtain an infinite solution subject to the conditions:
(a) consecutive rows or colunms from two matrices are the same; (b) only basic and
cyclic row pairs are permitted in the first two columns.

It can be verified that the problem of finding a model for the original formula is
equivalent to that of finding a way to fill up the infinite quadrant by such derived 2 x 2
blocks of row pairs.

The abstract problem is: given any finite set of 2 X 2 matrices of the form

(i)

to decide whether it is possible to fill up the infinite quadrant with copies of these
pieces. This is not quite the same as the problem of colored plates described in 4.1,
because here what is done amounts to coloring the corners, or imposing connections
between neighboring sides within a same square.

Any set of such 2 X 2 matrices can also be construed as a set of colored plates.
Conversely, given any set of colored plates, we can also find in a systematic manner a
corresponding set of such matrices such that the solvability problems for them are
equivalent. For example, we may replace a colored plate by a block of nine 2 x 2
matrices so that the restriction on neighboring sides no longer operates.

It is possible to use a procedure similar to the one described roughly in 4.1. Some
change is needed to take care of the additional conditions on the first two columns.
Thus, a sufficient condition is to get a cyclic rectangle m X n on which we can attach a
frill of two columns on the left to obtain a rectangle m x (2 + n) such that: (a) the tops
of the first two columns are the same as the bottoms; (b) the additional requirements of
being basic or cyclic are satisfied by the frills.

4.4 Further Problems

The discussions so far seem to have barely scratched the surface of a group of
rather difficult problems, among which the basic one is probably that of measuring the
complexity of formulae in the predicate calculus.

One may measure the complexity of a formula in many different ways. The
“simplest”” model of a formula may be taken as a semantic measure. The quantifier
prefix or graph of a formula may be taken as a syntactic measure. In addition, for
formulae with a same prefix, we may also classify the possible matrices by the truth
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tables. Our knowledge on using these criteria to give detailed classifications seems very
limited. One example of the ignorance is the following open problem (Ref. 2, p. 177):
whether there is any class of formulae which is neither decidable, nor a reduction class.
It appears reasonable to conjecture that there must be such classes, although the first
examples which one will get are likely to be artificial ones.

Some of the reduction classes are, formally speaking, surprisingly simple. For
example, from the Surdnyi normal form given above as case VIII, it follows that, for
satisfiability, one reduction class 1is:

4.4.1 Formulae with prefix (x)(y)(Ez)(w) Mxyzw, where M contains neither function
symbols, nor = nor predicate letters which are not dyadic.

Since each matrix M is effectively determined by a truth table on the atorme
formulae in M, the class may be viewed as a union of a simple sequence of finite classes
Cy, C,, etc., where C, is the subclass of formulae each containing exactly n predicates
(or, equivalently, the first n predicates in some enumeration). There is a sense in which
' the decision problem for each finite set of formulae 1s solvable, and yet usually we as a
matter of fact only solve the problem as a corollary to a solution for some infinite class.

To obtain a semidecision procedure for the class VIII or 4.4.1, we need more
complicated arrangements of triples or quadruples of positive integers than the case
A,E, A;. Take, for example, the class in case VIII. We have to consider not only the
triples (a, b, ¢) with b=d/, but all the triples for the first half of the formula, and
among them those for the A, F case are used simultaneously for the second half of the
formula. |

An example 1s:

442 (DN ~GxyV ~GyzV Gxz) &(x) W Eu)( ~ Gxx & Gyu).

If we use the Skolem function g of the A,FE; case, we can rewrite the above as

4.4.3 (~GxyV ~GyzV Gxz) & (~ Gxx & Gygxy).
_ In general, we are concerned with deeiding the satifiablity of formulae of the form
4.4.4 Mxyz & Nxygxy.

As (x, y, z) runs through all triples of positive integers, we get an infinite sequence {rom
4.4.4, and a semidecision procedure is to decide, for certain cases, whether such an
infinite sequence can be simultaneously satisfied.

For example, we may throw together all permutations of a given triple, and
confine ourselves to the triples (a, b, ¢) witha < b < ¢, assigning each of them a lattice
point:

j(x, Y, z)=(x—1, z— X, z—y),
fl(x, Y Z)=(x+1, x T Y, x+y+z).

The correlation uses all lattice points (, y, z) of nonnegative integers. For instance, (1,
3, 5) gets the point (0, 2, 2).

We might try to create different types of cubes each with eight vertices from (z, J,
k)to (i, j, k) and piece them together. But it is not easy to see how to find a procedure
“analogous to that described in 4.1 which would at the same time take into consideration
the second half of the formula.
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9.5 A proof procedure for the predicate calculus

5.1 The Quantifier Free Logic F

Given the definition of formulae in 1.2, we can define sequents, antecedents,
consequents, as in Ref. 13, p. 5 The sequents in F are those containing no quantifiers
and the rules for F are exactly the same as those for P. (Ref. 13, p. 8), except for
containing not only variables but also functional expressions as terms.

Examplel.l # %', x=x+1->1#x+1
By the rules P2a and P2b (Ref. 13, p. 5), this is a theorem if the following is:

l=2+1 s=x+1-1=4%.

This is a theorem be P7 and P38 (Ref. 13, p. ).

Example 22+ y =(x+19), y#x+y, y=vUDy=0, v=xa+y—>y #x
Ty
By P2a, P2b, and P5b, this is a theorem if the following two sequents are:

La+ty=@+y, y=v, v=a+y Yy=x+ty—-y=x+y
11. x-{_y/:(x—{—y)/’ /U»:x-{_y, y’:x—{—y’—)y/:’vl, y=x+y

1. 15 a theorem by P7 and P8 since we can replace y and x + y by wv.

ii. is also a theorem because we can replace v by (x + 1)’ and then ¥ by x + ¥ in
the first clause of the consequent and the result is a theorem by Pl.

These rules in fact yield a decision procedure for all quantifier—{ree sequents. In
order to see this, we use a more efficient method to speed up applications of P7 and P8.

Given an atomic sequent which contains equality but is not yet a theorem by P1 or
P7. List every pair (a, b) if a = b occurs in the antecedent. Extend repeatedly the set of
pairs by symmetry and transitivity. Join each pair by the equals sign and add all of
them to the antecedent. Now compare each clause in the antecedent with each clause in
the consequent to see whether there is a pair of clauses which can be obtained from
each other by substituting equals for equals; moreover, examine each equality in the
consequent to see whether it can trun into o = a by substituting equals for equals. If
either case occurs, the sequent is a theorem. If neither is the case, then we can find an
interpretation of the functions and predicates so that the antecedents are all true but
the consequents are all false.

5.2 The Rules for Quantifiers.

In the present formulation of the predicate calculus, one emphasis is on
separating out reversible rules of proof which serve to supply decision procedures as
well, because they have the property that not only the premises imply the conclusion
but also conversely.
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' . . . . ; %k
The rules governing quantifiers were giwen in Part 1 .

The justification of the reduction to subproblems (Part I, T2.1) is obvious
because all truth—functional rules are reversible and (x)(Gx & Hx) is a theorem if and
only if (x)Gx and (x)Hx both are.

Usually T2.2 (Part I) is true, but restrictions are necessary, as the following
example would show:

(NEY)[(2)Gyz & Hay].

Although x does not occur in the scope of (z), there is no way to bring (z) out of the
scope of (x) because the variable y ties up the two clauses in the formula. There are
several possible alternatives: one may make exact the restrictions needed, or record the
scope of each quantifier in the usual manner, or use the easy simplification that when a
quantifier governs a formula with two halves joined by a logical connective but the
variable of the quantifier occurs only in one of the two halves, the scope is just that
half.

The test of connectedness of variables and functors (Part I, T2.3) is meant as a
device to simplify the interconnections between quantifiers. In particular, the test
gives a method for ascertaining that certain apparently complex sequents fall under the
AE provability case. In order, however, actually to bring such a set of sequents into the
AFE form, we need in general transformations similar to those used in reducing a
sequent to the miniscope form. Since the process can be tedious, one may prefer an
alternative method of not carrying out the transformation but merely determining a
bound £ such that either the original sequent is a theorem or has a counter-model with

*S4. When the input problem contains quantifiers, the following preliminary simplifications are made:
(i) All free variables are replaced by numbers, distinct numbers for distinct variables. (ii) Vacuous
quantifiers, i.e., quantifiers whose variables do not occur in their scopes, are deleted. (iii) Different
quantifiers are to get distinct variables; for example, if (x) occurs twice, one of its occurrences is replaced by
(z), z being a new variable. This last step of modification is specially useful when occurrences of a same

quantifier are eliminated more than once at different stages.

“S5. After the above preliminary: simplifications, each problem is reduced to as rnany subproblems as
possible in the following manner: (i) Eliminate in the usual manner every truth—functional connective which
is not governed by any quantifiers. (11) Drop every initial positive quantlfler @i.e., universal in the consequent
or existential in the antecedent that is not in the scope of any other quantifier) and treat its variable as free
i.e., replace all its occurrences by those of a new number. (i) and (ii) are repeated for as long as p0551ble As a
final result of this step, each problem is reduced to a finite set of subproblems such that the problem is a
theorem if and only if all the subproblems are ..

“T2.1 The original problem is a theorem if and only if all its subproblems (in the above sense) are.

- “T2.2 We can separate out () and its scope from those quantlflers whose variables do not occur in the
scope of Q. |

“T2.3 If two symbols, each a functor or a Varlable are not connected in  the final matrix, we can always

so transform the original sequent as to separate ‘the two quantifiers which give way to them.”
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no more than £ objects. If this alternative is chosen, a method for calculating the bound
k has to be devised.

In any case, when we have a finite set of atomic sequents and a set of governing
relations among the variables and functors, we should further simplify the matrix, i.e.,
the set of atomic sequents by the familiar methods of dropping repetitions and
immediate consequences. |

If there are two subsets of the set of atomic sequents which contain neither
common variables nor common functors, then they can be separated.
Moreover, each atomic formula that contains neither variables nor functors can be

eliminated by the familiar method of replacing F{p) by F(¢) & H f). In other words, it
can simply be dropped on the ground of the following consideration. E.g., take

Guv, Gl1 - Guk.
This is equivalent to the conjunction of:

Guv,t - Guk;
Guv,f — Guk.

But the second sequent is always true and can be dropped; the ¢ in the first sequent can
be dropped, so that we have |

Guv — Guk.

After all the above steps, we arrive at a finite set of finite sets of atomic sequents
- which, taken together, are equivalent to the original problem. We may consider each
finite set of atomic sequents separately and proceed according to the governing
relations between their variables and functors.

We can view the set as a formula in the prenex form with a matrix in a conjunctive
normal form. Or, if we prefer, we may replace — by + and construe the variables as
universal quantifiers, the functors as existential quantifiers. Then we get a negation of
the formula in prenex form with a matrix in the disjunctive normal form.

In either case, the remaining problem is to be handled by considerations such as
those explained in Sections II through IV.

There is an easily mechanizable procedure by which we can, in theory, not only
prove all provable formulae, but also refute all formulae which have finite
countermodels. All we have to do is test, besides the sequence M;, M,, Mj, etc.,
whether a formula is satisfiable in a domain with one object, or two objects, or etc. For
example, given |

() o) Ez) Mxyz, (1)
if some of M112, M123, --- is contradictory, then the negation of (1) is a theorem; if
relative to some finite domain, (1) can be satisfied, then the negation of (1) is not a

theorem. For example, (1) is satisfiable in a domain with one object if and only if M111
is satisfiable; with two objects, if and only if

() MrylV Mxy2)
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or

(x)[(Mxll\/ Mx12) & (Mx21V Mx22)]

or :

(VI11V M) & (MI21V MI12)] & [(M1V M212) & (M221V M222)]

1S satisﬁable.
9.6 Remarks on mathematical disciplines

Besides the contrast between proving and calculating, there is contrast between
symbol manipulation and number manipulation. There are problems such as proving
trigonometric identities, factorization, differentiation and integration, which all appear
to be mechanizable. In numerical calculations, it appears likely that the process of
choosing one or another method of ealculation can also be mechanized in many cases.

" There is the problem of applying the methods considered so far to deal with
concrete examples.

One example referred to in Part I' (p. 231) is Hintikka’s derivation of a contradic-
tion from his own formal system. '*Here, intuitive understanding is required to select
from the set of all axioms suitable members which are sufficient to produce contradic-
tions. Experience, however, shows that, even after a reasonable selection is made, to
actually give an exact derivation of a contradiction remains quite a dreary affair. In

~ such a case, the sort of procedure discussed in this paper can be useful.

In fact, Hintikka uses five axioms to derive a contradiction. Write briefly:

Hayz for z#a & z#y & zey & yez

The conjunction of the axioms 1s:
(Ex)Eyx #y) & (Ea)(Eb)(E)Ed)»){[y # a = (yea = (Ez)Hayz)] &
[y#b>(yeb= ~ (E2)Hbyz)] & @
[y#co(yec=(y=aV y=b)] & [y#d=(yed=y=d}.

The assertion is that (2) leads to a contradiction. In other words, (2) has no model,
“and its negation is a theorem of the predicate calculus. To decide whether this assertion
is true, we only have to test (2) by essentially the method of Section III because (2) can
be transformed into a formula with EA, E prefix. Such a method yields also a proof or a
refutation of the assertion that (2) gives a contradiction.
In a different direction, we may consider some simple examples in the arithmetic
of positive integers.
First, we consider the example, ' # x. We wish, in other words, to prove, with
the help of induction, that this is a consequence of the axioms: |
f # ],
X FYyo>xFYy.
As a general principle, we try to use induction. Since there is only one variable, we
reduce the problem to: |
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() # L)' =y 2x=9) -1 #1, (3)
()’ # L)y =y ox=1y), ¥ #x—ox" #. (4)

These can be dealt with by the program described in Part I, except that, to avoid
confusion, we use now a, b, c, etc., instead of numerals to replace the positive variables.

We have:
'=1 wu=v-o4 =1,
I'=1-4=1 u =7,
u=v, a =d—-x =1, d=

/

a,
a'=d—-x=1 d=a u="1.
These sequents are all true by substitution: 1 for x in the first two; ¢’ for v and a for vin
the last two.
As a somewhat more complex example, we take the commutaitvity of addition. In

order to prove x + ¥ = y + x, we may use induction either on x or on y. We arbitrarily
take the earliest variable:

1+y=y+1, (5)
xty=y+tx->x+y=y+x. (6)
To prove 1+ y=y+1, we make induction on y:

1+1=1+1,
l+a=a+1->14+d =d + 1.

The first is a theorem by the property of equality. To prove the second, we use
another general principle, viz., when a defined symbol occurs, we make use of the
definition. In this particular case, we make use of the recursive definition of addition,
and try to prove "

ut+l=u, u+v=(@u+9, l1+a=a+1->1+d=d + 1.

In order to derive the consequent from the antecedent, we start from 1 + a’ and
a + 1, use the equalities in the antecedent to transform them, and attempt to find a
chain to join them. Thus, we may try to make all possible applications of the three
equalities in the antecedent:

(1+a)+1—(a+1)+1
l+d<—(+a L (at1) — (@)—ad +]
1+@+1)—1+(1+a)
a+1 @+ ) +1—(1+a)+1
T(;),___ @+ —(Q0+ad—1+da

In general, we may begin two trees simultaneously from both sides of the equality,
do not write down any term which has already occurred in the same tree, and stop when
a common term appears on both trees. When we get to the more complicated situations,
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we have to investigate two additional things. First, it would take too long to search
* through trees, so that it is desirable to organize available informations in forms which
~ are more quickly accessible. Second, we may exhaust two trees and still fail to get a
common term. Then we need to prove some lemma which would join up the two trees.

For example, the above graphs give us a proof of (5). To prove the other induction
hypothesis, viz. (6), we may try to do the same with:

utl=du+v=@w+r), atb=bt+ta—-d +b=>b+d,

| a +b—ry(a+1)+b

b+ a '(b+a)’ (@+b) —a+b—a+(b+1)
b+(a+1) ta+l—-{a+tb)+1

In this way, we have exhausted the applicable cases of the equalities in the antecedent.
Since we have proved the first induction hypothesis (5), we can add it to the
antecedent. Then we get some further extensions:

(@+1)+b—1+a)+b,
b+ (a+ 1)—>b+(1+a),
a+(b+1)—-a+(1+b).

At this stage, we would ask whether any other given theorem can be used to join
up the two trees for a’ + band b + d, or, if not, what a reasonable lemma would be. If
the associative law has been proved, we may observe that the missing link is supplied

by: -
@+ D) +b=a+(1+b) | (7)

Otherwise we should try to make a “reasonable’ selection of some suitable lemma
and prove it. If, for example, we have chosen (7), we would try to establish it by
induction on a or on b.

It is possible that the quantifier—free theory of positive integers, including
arbitrary simple recursive definitions, can be handled mechanically with relative ease,
and yield fairly interesting results. The restriction to quantifier—{ree methods means
that we are concerned only with quantifier—free theorems to be proved without using
quantifiers in, e.g., applying the principle of mathematical induction. It is clear from
works in the literature that this restricted domain of number theory is rather rich in
content. It goes beyond logic in an essential way because of the availability of
(quantifier—ree) mathematical induction.

With regard to the general questions of using machines to assist mathematical
research, there is a fundamental contrast between problem and method. While it seems
natural to choose first the objective (e.g., number theory or geometry) and then look
for methods, it is likely that a more effective approach is to let the methods lead the
way. For example, since the known interesting decidable classes of formulae of the
predicate calculus either do not contain function symbols or do not contain quantifiers,
we are led to the simple examples above: quantifier—{ree number theory or function—
free set theory.
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