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1 Introduction

1'All known alloys that form quasicrystals do so when the liquid is subjected to a rapid
quench, during which the quasicrystalline phase grows rather quickly. (Representative
cases include AlMn [1], AlLiCu [2], and AlFeCu [3].) While the quasicrystals formed
upon quenching are not as well-ordered as the best annealed samples [4, 5], they
exhibit translational correlations that cannot be explained by simple random accretion
models. [2, 6] In addition, equilibration times for quasicrystals are quite long, owing
to the slow processes involved in the relaxation of phason strains. [7, 8] In order to
understand the origins of long-range quasicrystalline order in quenched samples, it
is necessary to investigate mechanisms for establishing quasicrystalline order in the
absence of the slow bulk relaxation processes required by equilibrium quasicrystal
models. We must determine how, or perhaps whether, quasicrystalline order can be
engendered by nonequilibrium growth kinetics alone.

The problem of the growth of quasicrystals differs from the analogous problem for
crystals in one important respect. In both cases the details of the surface chemistry
of the growing sample — sticking probabilities, diffusion rates, etc. — determine the
growth kinetics and can be quite complicated. For crystals, however, the generation
of long-range order poses no intrinsic conceptual difficulty. One assumes that the -
dynamics favor the formation of rigid unit cells and that the kinetics can be treated
at the level of the aggregation of unit cells. For quasicrystals, on the other hand,
it is quite difficult to see how long-range order can be established even in the most
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simplistic abstract models. The manner in which the growth is to be continued at
certain points may be determined by arbitrarily distant regions, so it would appear
that nonlocal interactions have to be invoked if the growth kinetics are to maintaip
the translational order. Thus while we might aspire to a detailed understa.nding of
the solid-liquid interface that would explain such properties as the macroscopic shape
of the sample and the existence of nonequilibrium facets of a given orientation, we
will content ourselves for now with an understanding of how quasiperiodic order can
be established at all.

The existence of matching rules for quasicrystals, constraints on local configura-
tions that completely determine the structure of the tiling [9], shows that certain qua-
sicrystalline structures are ground states of some Hamiltonians. It is clear that these
quasicrystal states can be reached from arbitrary initial conditions if the appropriate
relaxation and annealing processes are allowed to occur. In most real quasicrystals,
though, the evidence suggests that phason strains, which are variations in the relative
phases of incommensurate Fourier components of the density [10, 11], do not occur
on the time scales of rapid quenches. [7, 8] Though it is possible that some phason
annealing occurs near the surface of the growing cluster, we will ignore such Pprocesses
here in an effort to isolate the role that growth kinetics can play. 7

We consider growth rules that require no relaxation processes whatsoever; i.e.,
accretion rules which do not incorporate any mechanism for repositioning or removing
an atom once it has been attached to the growing cluster. In addition, we imagine
that the growth can be described by models governing the aggregation of geometric
units that represent clusters of atoms and do not worry about the details of the
formation of the units. Recognizing that the interactions between units could be
extremely complex, we allow rules of arbitrary complexity governing the placement
of new units on a growing cluster. The only constraint we require in the interests of
physical plausibility is that the rules must be local: the probability of adding a given
unit at a given surface site must be determined by the local environment of that site.
Though it is not a prior obvious, it turns out that rules of this type can indeed result
in structures with long-range quasicrystalline order.

2 Phason disorder and random accretion models

The observation that some crystalline phases closely related in composition to qua-
sicrystals can be described as packings of icosahedral units suggest that we begin
by investigating simple rules for the accretion of icosahedra, (or decagons, in 2D).
(6, 12] In the simplest case a structure is grown via the attachment of icosahedra
to a cluster according to four rules: (1) The orientations of neighboring units (and
hence all units) are identical. (2) All bonds between nearest neighbor units have the
same length and one of a symmetric set of directions which are defined relative to
the orientation of the units. (For example, icosahedra may be joined along common
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fivefold axes.) (3) Units are not allowed to overlap; i.e., there is a minimum distance
between near neighbors. (4) Sites for the addition of new units are chosen randomly
from the set of possible sites.

Though these rules do produce longer translational correlation lengths than might
have been expected (as measured by the widths of diffraction peaks), they do not
generate sufficient correlations to account for experimental observations. [6] The
disorder appearing in growth models of this type is best described in terms of the
configuration of the phason field in the sample. (Because the model assumes rigid
units and bonds, no conventional strain, or phonon strain, is possible.) A feature of
the simple algorithm just described is that it produces discontinuities, or tears, in the
phason field which are effective in destroying the long-range order. [6]

A useful geometric picture for analyzing phason strain is obtained by mapping the
positions of the units onto a 6D hypercubic lattice (or 5D for the decagonal case). [13]
For simplicity, consider the case of icosahedral units connected by bonds along their
five-fold axes. The position of any icosahedron can then be written as Y"%_, kne,,
where k, are integers and e, are the six vertex vectors of the icosahedron. (Each
bond lies along one of the e,’s.) The e,’s are then mapped onto the basis vectors
of the hypercubic lattice. Note that the mapping of the positions of the units onto
the 6D lattice is unique up to a choice of origin since there is no way to write one
vertex vector as an integer linear combination of the others.! If units are connected
by bonds in symmetry directions other than vertex directions, the bonds can always
be written as unique sums of vertex vectors and the same mapping applied. The only
difference is that neighboring units in physical space are mapped onto 6D lattice sites
separated by an appropriate sum of basis vectors, not to nearest neighbor sites.

Given a network of units placed on the 6D lattice, their positions in real space
are given by projecting occupied 6D lattice sites onto the appropriate 3D subspace.
The orthogonal complement of this subspace is called “perp-space”. For any perfect
quasicrystalline configuration of units, the perp-space projections of all of the occupied
6D lattice sites lie within a bounded region. Conversely, it can be shown that the
diffraction pattern generated by any infinite structure that is bounded in perp-space
contains Bragg peaks at the quasicrystalline reciprocal space positions.

The destruction of quasicrystalline order by static phason fluctuations occurs
when fluctuations in the phason variable (the projection onto perp-space) become
unbounded, or grow as some strictly positive power of the sample size. [14] Note that
small fluctuations about a uniform phason strain would still produce Bragg peaks and
hence translational order, but would destroy icosahedral symmetry and hence will be
thought of as disordered for present purposes. A tear in the phason field begins to

For some symmetries the natural choice of bonding vectors includes subsets for which 3 e, = 0.
The mapping of the structure into hyperspace can still be performed, but points in hyperspace that
differ by bonds corresponding to one of the degenerate sums must be identified.
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form when neighboring units in real space find themselves separated in perp-space
by an amount larger than a bond length. When this occurs, the parts of the sam.
ple on opposite sides of the tear evolye essentially independently and are unlikely to
fluctuate in just the right way $0 as to close off the tear later. At large length scales
the structure tends to look like a tree of strips separated by tears, with each strip
executing a random walk in perp-space. Thus large phason fluctuations are generally
produced.

To improve agreement with experiment the rules can be revised in a variety of
ways. Approaches that have been considered include allowing some annealing near
the surface of the growing cluster in a way that favors a higher density of nearest-
neighbor bonds [12], disallowing any configurations containing certain near-neighbor
distances [6,15], and limiting the probabilities for selecting sites on the basis of
their distance from the origin [15]. These approaches have achieved some success,
particularly when the second and third are combined, and it is likely that further
refinements can be made. There is no general understanding, however, of the origin
of the phason fluctuations or uniform phason strains that arise in these models.

Rather than review the results obtained for random growth models here, we will
address the issue from a different point of view. In an effort to understand the
intrinsic barriers to perfect quasicrystal formation, if there are any, we will study the
problem of whether physically plausible growth rules can eliminate phason disorder
altogether. Surprisingly, it turns out that this is possible even without resorting to
surface annealing or to rules that refer to distance from the origin. At least for the
canonical example of the Penrose tilings, certain local rules for tile aggregation have
been shown to ensure perfect quasicrystalline order out to arbitrarily large distances.
These rules show that the intrinsic limits imposed by the locality requirement are
far less severe than may have been anticipated. Their structure and the effects of
- deviations from them provide a logical starting point for the study of quasicrystal
growth in general.

[

3 Local rules for growing Penrose tilings

This section is concerned with a set of local rules that result in the growth of defect-
free 2D Penrose tilings. The Penrose tilings [16] are selected because they exhibit
several properties in a particularly simple way while retaining all of the essential
complexities of quasicrystal structure. Complications specific to various icosahedral J
structures or tilings of other symmetries are better addressed once the Penrose case
is understood.

Before considering the growth algorithm for Penrose tilings in detail, a few words
should be said about some subtleties of the problem and the precise sense in which
perfect growth is achieved. Note that there may be a distinction between the results
that are sufficient from the point of view of the Physics of quasicrystal growth and
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those required by certain mathematical criteria.

First, the meaning of the locality constraint must be made explicit. In general,
the addition of a unit to the growing cluster involves three steps: random selection
of a surface site, classification of the site, and selection of the appropriate type and
position of a unit to be added at the site. Locality requires that the classification
of the selected site require only information about some finite environment around
the site and that there be an upper bound on the size of the environment needed.
In addition, the action to be taken at the selected site should be determined by the
classification of that site alone. (Note, however, that it is perfectly acceptable for
the specified action to be “Do nothing at this type of site.” It is easy to prove that
Penrose tilings cannot be grown by local rules if one insists that some tile must be
added at any surface site that happens to be chosen. [17]) The growth rules discussed
below are prescriptions for assigning probabilities (possibly 0) to the various actions
that might be taken at a site. The rules are local in the sense that the classification
of surface sites and consequent assignment of probabilities is determined completely
by the local environment of each site.

Second, the extent to which the growth rules result in perfect Penrose tilings must
be made clear. The rules discussed in this section are based on the classification of
surface sites into three types: forced, unforced, and marginal. (Marginal sites were
referred to as “corner sites” in Ref. [18].) At forced sites, the probability of adding
a particular tile in a specific orientation is unity (p; = 1). At unforced sites, the
probability of adding anything at all is zero (p, = 0). At marginal sites, a specified
tile is added with a small probability (p, = ¢) — the most probable action taken
at a marginal site is to add nothing. The precise sense in which perfect growth is
achieved is as follows: Given any arbitrarily large distance, R, and any probability, P,
arbitrarily close to unity, p,, can be chosen small enough that the rules will produce
with probability greater than P a portion of a perfect Penrose tiling that covers a
disk of radius R. In some sense, the limit p,, — 0 produces a perfect, infinite Penrose
tiling, although the rate of growth of the tiling goes to zero with p,. In any case,
the relevant question for the physics of quasicrystals is whether or not there is an
intrinsic limit on the size of defect-free quasicrystals generated with high probability
by local rules and this question is clearly resolved by the growth algorithm below.

Now for the purposes of analysis, it is useful to take the p, = 0 limit obtained by
specifying that marginal sites are selected only when no forced sites exist anywhere on
the cluster. Strictly speaking, this is a nonlocal rule since it requires a search of the
perimeter of the cluster for forced sites. It is appropriate to analyze this limit, though,
since in a system in which atoms (or tiles) bombard a cluster from all directions, low
probabilities for adding at marginal sites allow an effective perimeter search to occur
when the time scale for adding to a marginal site is much longer than the time scale
for probing all the surface sites. ‘
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Third, while one may, for reasons of mathematical interest, insist on an algorithm
that is capable of generating any of the uncountably infinite distinct Penrose tilings,
all that is really required for quasicrystal growth is an algorithm that generates 3
single Penrose tiling. The rules described below do permit the construction of any
Penrose tiling. By this we mean the following: The different Penrose tilings can be
specified by giving the values of two vectors, u and w. Tilings with the same w
and different values of u are simple translates of each other and tilings with different
values of w are related by a uniform phason shift. [19] Given any of the possible seed
clusters, the growth rules allow tilings with all possible values of w and u consistent
with the placement of the seed. It is conceivable that a simpler set -of rules would
suffice to grow one particular Penrose tiling with a special values of w and u around
a particular seed.

Finally, the extent to which a real system can be approximated by rules that
- rely on probabilities that are strictly zero is not clear. Ope knows from studies of
crystal growth that sticking probabilities at various sites can differ by exponential
factors, e2E/¥T where AFE is the difference in the binding energies or the energy
barriers associated with sticking at different sites. The growth of whisker crystals
around a screw dislocation occurs, for example, because there is a large difference
between the probability for sticking at a step on the surface and that for sticking on
a flat portion of the surface. There is, however, a fundamental difference between
the quasicrystal and a simple crystal regarding the effects of a nonzero probability
for sticking at unforced or marginal sites, no matter how small the. probability is. In
a crystal with a simple, perfectly rigid unit cell there is no choice that will disrupt
the translational order (although it is possible to generate vacancies or large holes).
In a quasicrystal, on the other hand, making unforced choices or adding prematurely
at marginal sites inevitably leads to the creation of some defects that could destroy
long-range translational order. For this reason, it is necessary to study the effects of
nonzero values of p, and/or p,, on the growth. This issue will be discussed briefly in
~ section 5, though few rigorous results are presently available. ‘ ~

3.1 The growth rules in detail

We now consider the growth of Penrose tilings as a purely mathematical problem.
The units to be used are the two Penrose rhombs with matching rule decorations
(the canonical arrow decorations, for example.) At the risk of being redundant, let
us state the problem as succinctly as possible. We desire a set of rules governing the
addition of Penrose rhombs to a growing cluster with the following properties. (1)
The rules must be local; the specification of what to add at a given surface site must
be made on the basis of local information about that site. Note that the specification
includes the tile position and the orientation of the matching rule decoration within
the tile. (2) Application of the rules must result in the growth of a portion of radius
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‘Figure 1: The OSDS classification of sites for Penrose tiling growth. (a) The eight allowed
vertex configurations, shown with the edge-arrow decoration of the tiles. (b) Examples of
forced edges. There is only one way to add to the edges indicated, owing to the structure
around the circled vertex. Note that in the case on the left, the edge is forced even though
the entire vertex may be either the third or fourth from the left in (a). (c) The edges
indicated are classified as marginal.

R of a perfect Penrose t.:hng with probability P, where R can be made a.rbltra.nly
large and P arbitrarily close to unity.
The following rules, henceforth referred to as the “OSDS rules”, are sufficient.[18]

e Classification of sites: Begin with a large enough seed cluster that can be found

~ in a Penrose tiling. (“Large enough” means containing enough tiles so that at
least one site on the surface must be either forced or marginal, by the definitions
below. Eight tiles are sufficient.) Each step in the growth begins with the
random selection of a tile edge on the surface of the growing cluster. The arrow
decoration of the chosen edge permits only two choices for how a tile can be
attached to it while respecting the matching rules. One choice uses a fat tile,
the other a skinny. For each of these choices, the two vertices at the ends of
the chosen edge are examined. If the choice results in a configuration around
either vertex that is not consistent with any of the eight vertex configurations
found in the Penrose tiling, it is discarded. Edges where only one choice is
possible are called “forced”. The allowed vertices and some examples of forced
edges are shown in Figures 1a and 1b. If both choices produce consistent vertex
configurations, the edge is generally classified as “unforced”. There are special
unforced edges, however, which can be identified by the configuration of all tiles
joined to the edge at its endpoints, that are classified as “marginal”. Figure 1c
shows the only three types of marginal edges. For marginal edges, the choice
of adding a skinny tile is discarded, even though it-would appear consistent
with the local environment. Note that a marginal edge can become forced or
unforced when a new tile is added that shares one of its vertices.
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e Assignment of probabilities: If a forced edge is selected, the unique allowed tile

is added with probability 1. If an unforced edge is selected, nothing is added.
If a marginal site is chosen, the fat tile is added with probability p,, << 1.

To analyze the growth dictated by these rules it is useful to take the p,, — 0
limit by stipulating that growth at a marginal site occurs if and only if there are no
forced sites available. When a cluster has no forced sites on its surface the surface
is called “dead”. When a dead surface is reached, a fat tile is always added at a
marginal site. New forced sites are then created and the growth proceeds rapidly
until another dead surface is reached. Of course if Pm Were really identically zero, the
growth would stop at the first dead surface encountered, but the limiting rules just
defined are approximated with arbitrary accuracy for clusters up to any given size by
sufficiently small, nonzero p,,. In addition, as we will see below, the growth rate need
not vanish even for p,, = 0 when special seeds are used as nucleation sites.

To prove that the rules work as advertised we must show that: \

1. adding a fat tile to a marginal site that is part of a dead surface never introduces
a defect;

2. every dead surface contains at least one marginal site;

3. the rule that a fat tile is always added at a marginal site does not preclude the
construction of any of the Penrose tilings; i.e., it does not limit the possible
values of u and w.

Note that the addition of forced tiles can never introduce a defect into the tiling.

Proof of 1 and 2: By examining all configurations around an edge for which that
edge is unforced and the ways in which such configurations can be patched together
to form a dead surface, it is easy to see that all dead surfaces are made up of straight
faces and five types of corners. A dead surface and the five possible dead corners
are shown in Figure 2. It is well-known that Penrose tilings contain strings of tiles
called “worm segments” in which tiles can be rearranged such that no nia.tching rule
violations occur in the tiling except at the endpoints of the worm segments and that
worm segments of arbitrarily large length occur. [20] The straight faces of dead
surfaces are borders of such worm segments. (See Figure 2.) As soon as one tile in
the worm segment is placed, forced growth fills out the entire segment and proceeds
beyond it until a new long worm segment is feached.

Seeing the structure of the dead surfaces, one is tempted to allow all unforced sites
to be marginal, but caution is necessary here. For most dead surfaces, the addition of
either possible tile at any of the surface sites is perfectly consistent with the Penrose
tilings and will produce no violations of the matching rules as forced growth proceeds.
There are, however, certain “dangerous” faces of some dead surfaces for which one
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of the choices is inconsistent. To see the inconsistency, one must examine distant
regions of the cluster, as will be explained below.

There is no way to avoid the dangerous face problem with a rule that specifies what
to add at a generic unforced site, Some dangerous faces require one arrangement of
the adjoining worm while others require the other arrangement and there is no way to
distinguish them without looking at the corners where the dangerous face terminates,
which may be arbitrarily far from the chosen site. These corners, however, which are
always either the stars or chevrons of Figure 2, do contain the necessary information,
albeit in a highly nontrivial fashion, and so it is the edges at these corners that are
designated as marginal.

What makes a face dangerous is best explained in the context of the Ammann
line decoration. It is well-known that the Penrose tiles can be decorated with line
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Figure 3: A dead surface with a dangerous face. At left, the heavy line marks a dead surface
to which a single (marked) tile was added. Forced growth then proceeded until an edge was
found where no consistent addition can be made. At right, the same dead surface is shown
with the Ammann line decoration applied to the tiles. The sequence of intervals between
horizontal Ammann lines and the effect produced by making the two possible choices at the
bottom face are shown. 7

grids of parallel lines normal to the five directions of the tile edges and the spacings of
consecutive lines in each grid form a Fibonacci sequence of long and short Rtervals.
Choosing which tile to add at a dead surface site amounts to choosing the next
interval in the Ammann grid with lines parallel to the surface. A dangerous face is
one for which the next interval is forced owing to the extended structure of the grid
of Ammann lines parallel to the face. In Figure 3, for example, the next interval at
the bottom must be an S, but the only way to know this is to examine the sequence
of spacings

.LLSLLSL... | (1)

If the first interval on the left were not specified, or if it were an S, then either choice
for the next interval on the right would be consistent with the Fibonacci sequence.
Similarly, there exist situations in which distant elements dictate that an S be added.

In view of the apparently nonlocal nature of the information that must be used to
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add the appropriate interval in the 1D sequence, it is remarkable that the 2D structure
of the Penrose tiling conspires to make this information available at the corners of
the dangerous face. To see that the above rules always add correctly at a dangerous
face, one must catalogue all dead surfaces and dangerous faces and explicitly show
that no inconsistency is encountered. The complexity of this task Is greatly reduced
by exploiting the well-known inflation/deflation symmetry of the Penrose tilings. [16]

The inflation of a finite cluster is defined as the cluster of all inflated (larger)
tiles that are covered by the original cluster. Inflation of a cluster produces a new
cluster with fewer tiles. The deflation of a finite cluster is defined as the cluster of
deflated (smaller) tiles that are produced by all of the original tiles plus any small
tiles that are forced by that cluster. By these definitions inflation and deflation really
are inverse operations except in the case of a shape with a 36° corner, which can
never be produced by deflation. One can show that under inflation or deflation dead
surfaces remain dead, the macroscopic shape of a dead surface js unchanged, star
and chevron corners are interchanged, and the arrow direction at each 72° corner is
reversed. Furthermore, if two dead surfaces are related by some number of inflations,
then the new dead surfaces reached when appropriate tiles are added at corresponding
unforced sites will be related Precisely by the same number of inflations. Thus one
can effectively examine all dead surfaces and the evolution produced by a given choice
for adding to them by exhaustively examining a finite, in fact rather small, subset
of them: those that are too small to be inflated. (Note that some boring details
traceable to the behavior of 36° corners have been left out here.)

A complete inventory of dead surface shapes, with corner types indicated, is shown
in Figure 4. For each shape shown, the dead surfaces are obtained by tra;:ing out
any path that forms a convex polygon containing the region marked with a dot.
The ellipses are meant to indjcate that the number of heavy lines depends upon the
absolute size of the cluster, which may be smaller or larger than those shown. The
distances between heavy lines form a geometric sequence of powers of the golden
mean. Each heavy line is a dangerous face of any dead surface containing it.

One sees immediately that every dead surface contains at least one marginal site.
Note that the C' corner never appears. Inspection of the extended neighborhood
around a C' corner shows that it never remains dead unless both faces Joined to it
are shorter than a few tile edges. In the perfect Penrose tiling, there is only one small
dead surface containing such a corner, the surface of the cluster used to illustrate the
corner type in Figure 2. In a cluster containing defects, other dead surface with C’
corners can arise. '

A systematic investigation of the growth resulting from all possible additions to
each dead surface shows that the only dangerous faces are those marked by heavy
lines in Figure 4 and that the addition of a fat tile at the marginal corner site is
always the consistent choice.
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Figure 4: Catalogue of dead surfaces. Each figure represents a series of dead. surfaces,
all of which include the area marked with a dot. Any path enclbsing the dot is a dead
surface. The corner types are marked as in Figure 2. The faces marked with heavy lines are
dangerous faces, given the presence of the region marked with a dot. Note that in passing
from (a) to (b) or from (c) to (d) stars and chevrons are interchanged, the orientation of the
72° corners are reversed, and an additional dangerous face becomes possible. This process
can be repeated ad infinitum to produce infinite series of dead surfaces as indicated by the
ellipses. It can also be iterated in reverse to produce smaller clusters with dangerous faces.
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from a slightly different point of view. The key point is that the operations of filling
in all forced tiles and inflating commute (except for a few cases involving 36° corners.

Thus the evolution of a given cluster to its next dead surface can be determined by

tiles, then deflating. This is the property that allows a rule for adding at marginal
sites to work (or at least to be Proven to work).

Proof of 3: To see that no Penrose tilings are excluded by the OSDS rules (ie.,
any values of w and u consistent with the original seed can be produced), one can

marginal sites in the appropriate order. Consider, for example, the evolution depicted
in Figure 5a, where a skinny tile (marked with a dot) has been added at a marginal
site. Figure 5b shows how the same final shape can be obtained through a sequence
of additions of fat tiles (marked) to marginal sites of intermediate dead surfaces. The
one exception, of course, is that the effect of adding a skinny at a dangerous site
cannot be mimicked. Thus we see that any evolution that is allowed by the Penrose
matching rules can be obtained via growth according to the OSDS rules,

For completeness we note that the choice of which sites are marginal is not unique.
In deriving the OSDS rules, the selection of marginal sites above was motivated by
the requirement that no error be made when adding to any dead surface. With a
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suitable choice of marginal site rules, however, one can ensure that the dead surfaces
containing dangerous faces never appear. The simplest example is to designate 72°
corners as marginal and always add a fat tile to them. Starting from almost any small
seed the only dead surfaces generated are thombi and trapezoids with no dangerous
faces.

3.2 Phenomenology of perfect growth

The growth of a large perfect cluster according to the OSDS rules is rather irregular.
Small values of p,, imply that once a dead surface is reached it will just sit there for a
long time. Eventually, a tile will stick at a marginal site and initiate a burst of forced
growth out to the next dead surface. During the forced growth, there are times when
the majority of perimeter sites are forced and also times when only a few forced sites
remain which then generate a new burst of growth.

Figure 6 shows a typical stage in the growth of a cluster according to the OSDS
rules. The heavy lines depict the series of dead surfaces that have occurred and
the filled tiles are the ones added at marginal sites. If forced growth is allowed to
continue, the next dead surface will be a trapezoid with its short base at the top of
the figure. Note that three star corners with marginal sites are present on the outer
surface. These will be filled by forced growth before the next dead surface is reached.

The catalogue of dead surfaces generated after the addition to a single marginal
site of each of the possible dead surfaces indicates that the area of the tiling roughly
doubles on average between marginal additions. Assuming that the forced growth
occurs at an average rate proportional to the perimeter of the growing cluster, the
total time for growing a cluster of N tiles is given by N'/2/y + tlog, N, where v
measures the rate of forced growth and ¢ is the average waiting time for adding at a
marginal site. In order to avoid mistakes, we must have t large enough that all forced
additions during the last stage of growth occur within one waiting time, implying
t ~ N'/? [y, We therefore estimate that the total time necessary for growing a perfect
cluster of NV tiles with high probability is on the order of N'/?log N.

For reasons having to do with the details of the sequences of dead surfaces gen-
erated, it is possible to reduce the time required for growth by using an alternative
definition of marginal sites. One can reduce ¢ significantly, for example, by taking
72° corners to be the only marginal sites. A better way to speed up the growth,
however, is to use a special defective seed that forces growth ad infinitum without
ever encountering a dead surface. Such seeds are discussed in the next subsection.

3.3 Seeds for the growth of the Penrose tiling

As previously mentioned, the OSDS rules require that an initial seed of eight tiles be
present. The reason for this is just that dead surfaces containing seven or fewer tiles
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Figure 6: Growth according to the QSDS rules. Heavy lines denote dead surfaces that
occurred during growth. Tiles added at marginal sites are colored black. Adding all forced
tiles will eventually produce a large trapezoidal dead surface with its short base at the top.
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Figure 7: (a) The center of the cartwheel tiling. (b) A decapod. The central decagon
cannot be filled in without violating the matching rules. Forced growth around this seed
will continue ad infinitum.

may not have any forced or marginal sites. For the sake of completeness, one can
simply add to the rules a list of possible starting seeds, which is clearly a local rule
since the requisite seeds all contain fewer than eight tiles. '

A surprising and perhaps physically significant result is obtained when one con-
siders imperfect seeds of a special type. In some of the earliest work on Penrose tiles,
it was noted that there exist infinite Penrose tilings that obey the matching rules
everywhere except within a single decagon. The decagon lies along an infinite worm,
dividing it into two semi-infinite pieces. A defect called a “decapod” occurs within
the decagon when one of the pieces is “flipped” with respect to the other [20]; i.e.,
the two halves of the worm are in opposite orientations and hence cannot be joined
without violating the matching rules along some edge within the decagon.

There is a special Penrose tiling, called the “cartwheel” [20], that has ten semi-
infinite worms emanating from a central decagon. If the orientations of the worms
are consistent as shown in Figure 7a, then the central decagon can be filled in with
no matching rule violations. If, however, one flips some of the semi-infinite worms, a
decapod can be created in the central decagon.

Consider first the decapod shown in Figure 7b, where the beginnings of the semi-
infinite worms have been arranged so as to make a configuration with complete ten-
fold symmetry. As we have just noted, this configuration can lie at the center of
an otherwise perfect Penrose tiling. Thus one can imagine growing from this seed
according to the OSDS rules without ever encountering any inconsistency. In fact,
one finds that growth around the seed is greatly improved — forced growth proceeds
ad infinitum without ever producing a dead surface! [18] A simple argument shows
why. Suppose that a first dead surface were reached. It would have to have ten-fold -
symmetry, since the forced growth alone can never break the symmetry of the original
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seed. There is no way, however, to make a dead surface with ten-fold symmetry out
of straight faces and corners making angles of 72° or 108°,

A more powerful technique for determining which decapods yield infinite forced
growth makes use of the arrow matching rule decorations. A charge can be as-
signed that measures the circulation of the single arrows around the central decagon.

¢, with ¢ < 10 an even number since there are exactly 10 single-arrow edges around
the central decagon. The decapod of Figure 7b has charge 10. :

Examining the arrow decorations along the straight faces of a dead surface and
at the different possible corners, one finds that the 72° corner contributes +1 to the
charge of the dead surface, while all other corners and faces contribute 0. Since the
maximum number of 72° corners on a surface with only 72° and 108° corners is 2, the
charge of a dead surface can only be +2 or 0. Thus any decapod with charge greater
than 2 in magnitude acts as a seed for infinite forced growth.

as some decapods with charge £2 or 0 do not yield infinite forced growth while
others do.! The detailed reasoning required to check for infinite growth will not be

consecutive arrows on the central decagon point in the same direction. [22]

*In Gardner’s Scientific American article [20], it is claimed that all but one defective decapod
force infinite tilings. This is true, but only in a special sense that is not relevant here. The distinction
Gardner makes is between what might be called “versatile” and “nonversatile” decapods. Versatile

where outside the decapod. Gardner states that all defective decapods but one are nonversatile. We
are interested here, however, in identifying those decapods for which an infinite tiling is obtained by
adding only to locally forced sites (the forced sites of the OSDS rules, for example). The important
point is that there exist nonversatile decapods that do not yield infinite forced growth. For these
decapods, dead surfaces are encountered, but they always have dangerous faces. Thus while there
is only one way that they can grow to infinity, the growth cannot be determined by locally forced
additions alone.
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4 Generalization to other tilings and symmetries

The existence of local growth rules for the Penrose tilings raises the question of
whether other tilings support similar rules. It must be emphasized that this is not the
same question as whether they support matching rules. Matching rules ensure only
that infinite tilings are ordered, whereas here we are interested in rules for adding to
finite clusters, which therefore have to anticipate matching rule violations that might
be forced later by a given addition. It is not even obvious that matching rules are
mecessary for growth rules to exist, though they are a great help in the analysis since
they guarantee that any mistake will eventually show up as an easily recognizable
local defect.

The properties of the Penrose tilings that were required for the above analysis of
local growth rules were the matching rules and the inflation-deflation operations. The
‘matching rules could have been stipulated by specifying all possible configurations of
tiles sharing vertices with a given tile rather than using arrow decorations of the
tile edges. Their crucial feature is that the configurations that must be specified
are bounded in size. Tilings that can be specified by matching rules of this type are
called “restorable”. The inflation-deflation operation was used to reduce the catalogue
of dead surfaces to the point where all evolutions resulting from the addition at a
marginal site could be inspected. An essential point was that adding all forced tiles
and deflating (or inflating) are commuting operations. Since the determination of
whether a tile is forced is made on the basis of its local environment, it is essential
that local information be sufficient to determine the inflation of any region. An
inflation operation that requires only local information in order to be consistently
performed is called a “bounded-context” inflation.

The only quasicrystal tilings known to have both matching rules and bounded-
context inflation properties are -

o the Penrose tilings and certain other pentagonal tiﬁngs produced by the canon-
ical projection procedure [23];

e the octagonal tiling produced by canonical projection;[24, 25)
e the dodecagonal tiling produced by canonical projection;[25].

® two icosahedral tilings — the canonical projection using Ammann rhombohe-
dra (21, 26, 27, 28] and the zonohedral tiling of Ref. [29].

In all cases except the icosahedral ones, results on growth rules are available, though
the analysis has not been done in the same detail as in the Penrose case.

Distinct pentagonal projection tilings are produced by different choices for the
position of the. perp-space acceptance domain, or equivalently by different choices
for the phases of periodic grids used in the generalized dual method. [29, 30] Let 7,
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Figure 8: The tile decorations required for producing all of the canonical projection tilings.
Note that the left-hand tile of each shape is just a Penrose tile.

denote the phase the nth grid in units where a phase shift of 1 leaves the grid invariant
and let T = 2 Tn- Clearly, the integer part of T is irrelevant, The fractional part
of I' distinguishes tilings in different local isomorphism classes: tilings that contain
different sets of local environments. The Penrose tilings are the duals of pentagrids
with T' = 0.

It can be shown that the only values of I’ corresponding to restorable tilings are
I' = mr, where m is any integer and r is the golden mean, (1++/5)/2. [23] Curiously,
the exact same set of I''s is selected by the criterion that the tilings support a bounded-
context inflation. For these values of T, growth rules can be developed in the same
spirit as the OSDS rules for the Penrose tilings. [23] The only difference is that the
size of the environments that must be considered to determine whether a site is forced
(or marginal) or not increases linearly with m with a coefficient of order unity.

Infinite forced growth can be obtained, as in the Penrose case, around a point
defect seed. It can be shown that the four tiles shown in Figure 8 are sufficient for
composing any projection tiling with I' # 0. [31] The analysis of growth around
decapod defects is similar to the Penrose case, though the charge is less effective in
selecting decapods that force infinite growth.[22]

The octagonal and dodecagonal cases are quite similar to each other. Analyses
similar to the one carried out for the Penrose tilings show that perfect growth can
be guaranteed around point defect seeds (the analogues of decapods) without the aid
of special marginal sites. (32] In the dodecagonal case a rule has been found that
generates perfect growth around a particular nondefective seed containing just two
tiles with the use of marginal sites, though the rule produces only one particular
dodecagonal tiling. In both the octagonal and dodecagonal cases the determination
of whether a site is forced must include configurations containing tiles at opposite
vertices of a tile edge. It is not sufficient to consider only configurations around a
single vertex.

The icosahedral case remains a mystery, mostly for technical reasons. It is much
harder to examine three-dimensional configurations by hand or with the aid of a
computer-than it is to deal with the 2D tilings. The identification of planar dead faces
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is straightforward since the generalized dual construction can be used to generate the
planar analogues of worm segments, but the catalogue of complete dead surfaces is
much harder to construct. Although all the intuition built from the comparison of the
pentagonal and icosahedral cases with regard to matching rules, inflation, Ammann
grids, and projection suggests that growth rules should exist in the icosahedral case,
no definitive results are available.

5 Imperfect application of the rules

In physical applications, one might expect that the growth rules would not be per-
fectly followed. A number of different sorts of imperfections could arise, depending
on the manner in which the rules are violated. A full exploration of the possible be-
haviors, which would require a study of the effect of variations in unit cell shape and
conventional elastic distortions on the growth, is beyond the scope of this work. Note
that the restriction to rigid units makes it impossible for dislocations to form, which
eliminates both the possibility of disrupting the translational order via dislocations
and their attendant strain fields and the possibility of “healing” tears in the phason
field by allowing them to enclose dislocations. Nevertheless, some nontrivial questions
arise even when one considers the simplest deviations from the perfect growth rules
for quasicrystals, deviations resulting from slight variations in the sticking probabili-
ties. Most importantly, one would like to know whether tears in the phason field are
generically produced in the limit of perfectly rigid units.

Using the OSDS rules as a starting point, a variety of effects can be considered.
Perhaps the most obvious issue concerns the limit p,,, — 0 required for perfect growth.
This issue can be avoided completely, however, if one begins with a decapod seed,
where p,, can be set to zero without causing the growth rate to vanish. If one insists
that p,, not be identically zero, defects will be generated at some finite length scale.
The analysis of the resulting structure is difficult because one does not know how
often marginal sites arise during forced stages of the growth, sites which do not
remain marginal when the forced growth is continued, so it is hard to determine how
many chances there are for mistakenly adding to a marginal site. In any case, the
sorts of defects induced when p,, (the probability for sticking at a marginal site) is
nonzero are similar to those resulting from nonzero values of p, (the probability for
sticking at an unforced site), though they are more rare.

When p, is nonzero, there is practically no need to define marginal sites. First, the
growth does not stop at a dead surface, so marginal sites are not strictly necessary.
Second, for large clusters, the number of unforced sites grows more rapidly than
the number of marginal sites, so that any influence of the marginal sites becomes
negligible.

The essential issue is then the effect of nonzero values of Py on the growth. It can
be argued that some nonzero value is unavoidable in a physical system, since there
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is always some probability of adding to neighboring unforced sites simultaneously, at
which point each added unit finds itself occupying a forced site and will not detach
as expected at an unforced site. It is quite reasonable, however, to consider growth
for very small values of p,.

The rule for adding at an unforced site will be taken to be that one of the two
choices is made at random, perhaps with probabilities weighted according to the
frequency of occurrence of the different types of tiles. Given a nonzero Pu, there
will always be some remote Possibility of generating a cluster with arbitrary shape,
just as the growth of a crystal surface by any similar rules would eventually produce
arbitrarily complicated overhangs. The relevant question becomes one of scale: On
what length scale do tears in the phason field typically appear for a given value of
Pu?

We first note that the frequency with which tears are generated can depend on
additional rules that must be used to specify the growth in the vicinity of a defect.
To see what sort of rule is required, we must examine the structure of the defects
produced. Fortunately, known properties of the Ammann line decoration make it
easy to anticipate the types of defects that have to be handled and the existence
of matching rules guarantees that all defects will eventually generate local defective
sites. '

Two distinct kinds of mistakes can arise when a random choice is made for which
tile to add at an unforced site. Recall that the choice determines the next interval
in the Ammann grid parallel to the face where the choice is made. “Jags” occur
when a given interval has already been explicitly determined to be L or S and the
opposite choice is made at an unforced site along the same Ammann line. If forced
growth were allowed to run to completion before the unforced choice were made, then
the choice would have become forced in a time proportional to the distance between
the unforced site and the nearest site along the same Ammann line that has already
been determined. Once a single tile is placed that determines the position of a new
Ammann line, all surface sites along that line will be forced in sequence. Figure 9
shows an example of an unforced choice that results in a jag. Note that as forced
growth proceeds, the jag becomes recognizable as a local violation of the single-arrow
matching rule. “Sequence errors” occur when a choice is made that introduces an
Ammann line interval inconsistent with the Fibonacci sequence in one direction; e.g.,
the wrong choice is made at a dangerous face. The matching rules ensure, however,
that the sequence error will eventually produce jags in grids in other directions [19]
(and nothing more complicated), so the extra rules required to handle defects need
only address local configurations around single-arrow mismatches.

Figure 3 shows how a sequence error results in the formation of a jag via forced
growth. The sequence error introduces phason strain in the region between the two
conflicting Ammann lines. It can be shown that the presence of the phason strain
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Figure 9: An unforced choice that generates a jag. The shaded tile was added before forced
growth was completed. The tiles marked with dots were then forced in sequence. The
two edges marked with single arrows make it impossible to continue the forced growth in a
consistent way. A few selected Ammann lines are drawn to illustrate the nature of the jag
in the Ammann grid context.

must be accompanied by a nonzero density of jags. [19]

Several jags from Ammann lines in different directions can occur in the same
neighborhood, but the defects produced can always be enclosed by a decapod. Thus
a natural rule suggests itself: Any time a site is encountered where no addition
consistent with the matching rules can be made, consider the tiles required to complete
a decapod enclosing the matching rule violation as forced. If the rare occasions where
the growth sites are selected in an order that produces deep concavities are neglected,
then this rule will generate tilings in which the only defects are the single-arrow
matching rules violations found in decapods. Tears in the phason field will never
develop because they are always prevented at the moment they begin to form.

At present, investigations into the distribution of phason strains generated by such
a rule have not been pursued to completion. Note that when more than one decapod
is present, their existence can force other decapods to appear. Furthermore, if a
sequence error is made at some point, it will force an infinite number of decapods to
be inserted in the strip between the two conflicting Ammann lines, unless a decapod
of the appropriate type happens to arise in one of the conflicting lines so as to remove
the error. The long-range effects engendered by an initial distribution of decapods
are therefore difficult to predict.

An alternative to the approach of forcing the decapod surrounding a matching
rule violation is to assume that any site where neither tile can be added consistently
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is simply left empty. [33] It has been shown by computer simulation of the growth
that for tilings containing up to 10° tiles, values of p, smaller than 103 produce
phason fluctuations that diverge only logarithmically with sample size. It is not clear,
however, whether the fluctuations on larger length scales will remain logarithmic. For
pu = 1072 there is evidence for power-law divergent phason fluctuations.

In large clusters grown using this approach, long lines of correlated mismatches
are easily identified. [33] Whether these are properly described as tears is worth
considering, for it brings to light some potentially important subtleties associated
with the definition of a continuous phason field for a discrete tiling. Consider a
portion of a sample in which the phason variable, w is fixed on the left and right
boundaries at different values. A linear variation in w across the sample would
produce defects uniformly distributed in the sample with a density determined by
the imposed difference in w. Now if w is made to jump discontinuously across the
midline of the sample, all these defects would pile up on that line. Note, however,
that if the jump in w is small, only a small subset of the Ammann lines will contain
a defect, so that there may be large sections of the discontinuity line that do not
appear to contain a defect. Thus the determination that a tear exists might be
made on the basis of the observed correlations between defects, rather than on the
extent of an unbroken line of obvious defects. In addition, one would not expect
to observe a perfect alignment of the defects. In general, a tear will appear only
as a relatively sharp variation across a region of finite width. It therefore becomes
somewhat difficult to distinguish a tear, or the beginnings of one, from a more benign
variation. Ultimately, when growth proceeds long enough that the differences in w
across typical tears becomes very large, tears will become recognizable as the familiar
“cracks” observed in random growth models, but this takes much longer than one
might expect. :

It is interesting to consider the growth around a defect under rules that leave
defective sites empty. It is observed in simulations that when a defect is produced,
two bumps on the surface tend to grow on either side of the defect. Because the bumps
grow independently, different random choices made during their growth can result in
their evolving rather different values of the phason variable, thereby generating a
tear. It is clear that a rule like the one described above for immediately enclosing the
defect will not generate separate bumps. One might therefore expect the divergences
in the phason variable to be pushed out to much larger length scales. Further work
is clearly required on this point.

6 Icosahedral growth: Open questions

The understanding of the growth of Penrose tilings gives us significant insights that
can be carried over to the icosahedral case. As mentioned above, there are icosahedral
structures that share all the properties of the Penrose tilings that we have used
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in the analysis. Two different icosahedral tilings provide natural contexts for the
investigation of growth rules; the canonical projection tilings composed of Ammann
rhombohedra and the “zonohedral tiling” or “Penrose LI class” tiling. [29]. The
zonohedral tiling is most useful for aspects of the analysis involving Ammann planes
or inflation/deflation. The geometrical simplicity of the Ammann rhombohedra and
their matching rules, on the other hand, make them more natural candidates for
investigation via computer simulation. The relation between the two structures is
that the vertices of the zonohedral tiling are a subset of the vertices of the pro jection
tiling. The situation is a bit complicated, though, as evidenced by the fact that the
mapping is two to one: each projection tiling can be formed by decorating either of
two distinct zonohedral tilings. [34]

There do not appear to be any fundamental barriers to the development of an
algorithm for perfect icosahedral growth along the lines of the OSDS rules. Neverthe-
less, there may be significant differences that arise in the analysis of defects, including
seeds for perfect growth. For icosahedral structures, the analogues of Ammann lines
are Ammann planes and a jag becomes a line of mismatches ( a step in an Ammann
plane) rather than an isolated point mismatch. The analogues of decapods consist of
infinite lines of mismatches emanating from a central region which might be called
an “icosapod”.

A useful relation exists between the matching rules for the Ammann rthombohedra
projection tiling and the matching rules for 2D pentagonal projections with arbitrary
I'.[28] One considers a slab of Ammann rhombohedra joined along parallel edges; i.e.,
all the thombohedra dual to a single plane in the generalized dual construction. The
top surface of this slab can be projected onto a plane perpendicular to the defining
edge direction to form a 2D canonical projection tiling. The matching rules for the
Ammann rhombohedra are then seen to map precisely onto the rules of Figure 7
and the defect lines emanating from an icosapod correspond to ordinary decapods in
certain slabs pierced by the lines. Unfortunately, there is no unique way of recon-
structing the 3D slab locally given the 2D projection, so one cannot use the results
on decapods to immediately generate infinite 3D growth.

The nucleation and development of tears in the phason field is rather difficult to
characterize in the 3D case. The possible topology of steps (2D jags) is not even
well-understood at present. Defect lines can form closed loops or infinite curves and
it is not clear what sorts of structures will be typically generated during growth. It
is conceivable that tears are effectively suppressed even for rather large values of p.
because the constraints imposed by the forced growth in the vicinity of a defect are
more severe in three dimensions than in two. The issue, however, is far from being
resolved. B |

The investigation of local growth rules for icosahedral quasicrystals is still in its
early stages. Though all indications are that no intrinsic prbblems prevent their
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existence, we have yet to arrive at an explicit algorithm for perfect growth in the
spirit of the OSDS rules. Such rules would have the status of an existence proof,
demonstrating that growth kinetics favoring long-range quasiperiodic translational
order are possible in principle. A thorough understanding of them might suggest
novel strategies for preparing real quasicrystals with more perfect order, or at least
appropriate ways of constructing more realistic models of quasicrystal growth.
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