From Computability to Quasicrystals

Thomas Fernique

Outline

Puzzles

Computability

Quasicrystals

Two questions

Outline

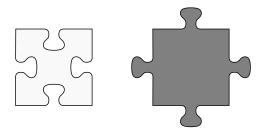
Puzzles

Computability

Quasicrystals

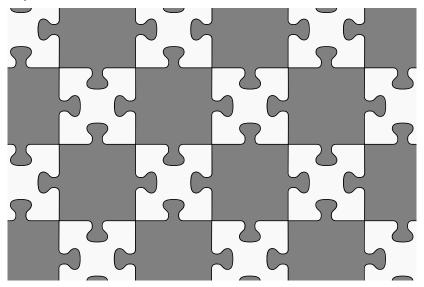
Two questions

First puzzle



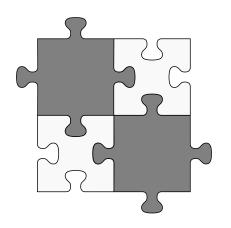
Two different pieces. Each can be used as many times as wanted.

First puzzle



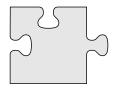
The whole plane can be tiled.

First puzzle



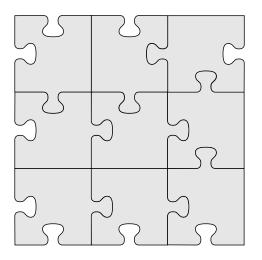
How? Just repeat this pattern periodically.

Second puzzle



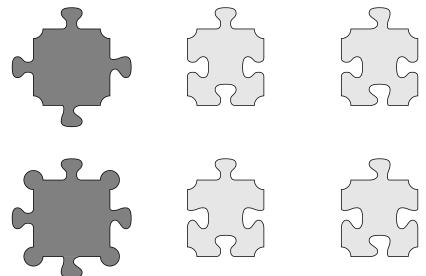
Only one piece, that can be used as many times as wanted.

Second puzzle



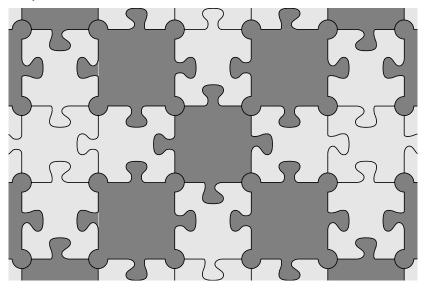
Claim: it cannot tile the plane, actually not even a 5×5 square.

Third puzzle



Six different pieces. Each can be used as many times as wanted.

Third puzzle



Theorem (Robinson, 1970): tile the plane...but $\underline{\mathsf{not}}$ periodically!

Outline

Puzzles

Computability

Quasicrystals

Two questions

A Decision problem

Question: does a given finite set of pieces tile the whole plane?

A Decision problem

Question: does a given finite set of pieces tile the whole plane?

Naive algorithm:

- try to cover larger and larger squares
- if we find a pattern that can be repeated periodically: YES
- ▶ if we find a square that cannot be covered: NO

A Decision problem

Question: does a given finite set of pieces tile the whole plane?

Naive algorithm:

- try to cover larger and larger squares
- if we find a pattern that can be repeated periodically: YES
- if we find a square that cannot be covered: NO

What happens for the third puzzle?

Theorem (Berger, 1964)

No algorithm can decide, for any given finite set of pieces (Input), whether it tiles the whole plane.

Theorem (Berger, 1964)

No algorithm can decide, for any given finite set of pieces (Input), whether it tiles the whole plane.

Two main ingredients of the proof:

Simulate the execution of a Turing Machine by a puzzle.
 The TM eventually halts ⇔ the puzzle does not tile the plane.

Theorem (Berger, 1964)

No algorithm can decide, for any given finite set of pieces (Input), whether it tiles the whole plane.

Two main ingredients of the proof:

- Simulate the execution of a Turing Machine by a puzzle.
 The TM eventually halts ⇔ the puzzle does not tile the plane.
- 2. Use an aperiodic puzzle to allow arbitrarily long executions.

Theorem (Berger, 1964)

No algorithm can decide, for any given finite set of pieces (Input), whether it tiles the whole plane.

Two main ingredients of the proof:

- Simulate the execution of a Turing Machine by a puzzle.
 The TM eventually halts ⇔ the puzzle does not tile the plane.
- 2. Use an aperiodic puzzle to allow arbitrarily long executions.

Open question: does the existence of an aperiodic puzzle (e.g. in some restricted framework) suffice to imply undecidability?

Outline

Puzzles

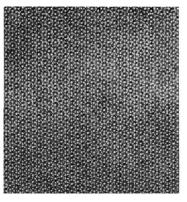
Computability

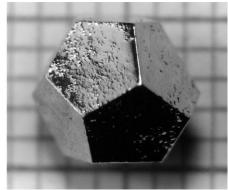
Quasicrystals

Two questions

Quasiwhat?

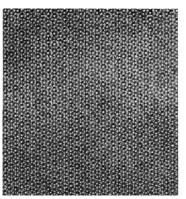
Periodic structure (crystal) \Rightarrow long range order (e.g. facets).





Quasiwhat?

Periodic structure (crystal) \Rightarrow long range order (e.g. facets).

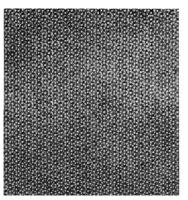


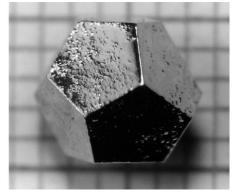


The converse appeared to be false with the experimental discovery of aperiodic materials with long range order (Shechtman, 1982).

Quasiwhat?

Periodic structure (crystal) \Rightarrow long range order (e.g. facets).





The converse appeared to be false with the experimental discovery of aperiodic materials with long range order (Shechtman, 1982).

Strong opposition (Linus Pauling: "no quasicrystal, only quasi-science") but eventually accepted (Schechtman Nobel Prize in 2011).

Quasicrystals exist. But how do they form? Why are they stable?

Quasicrystals exist. But how do they form? Why are they stable?

Physical principle

Stability of a material \Leftrightarrow energy minimization.

Energy: short range interaction (electronic bonds etc.)

Quasicrystals exist. But how do they form? Why are they stable?

Physical principle

Stability of a material \Leftrightarrow energy minimization.

Energy: short range interaction (electronic bonds etc.)

May short range interactions enforce long range properties?

Quasicrystals exist. But how do they form? Why are they stable?

Physical principle

Stability of a material \Leftrightarrow energy minimization.

Energy: short range interaction (electronic bonds etc.)

May short range interactions enforce long range properties?

Computer scientists/mathematicians: we know that since the 60's!

Outline

Puzzles

Computability

Quasicrystals

Two questions

Question: what types of aperiodic structures can be achieved?

Question: what types of aperiodic structures can be achieved?

Periodic structures: Bravais determined all the 14 possible types in 1850, some of which were experimentally discovered years after.

Question: what types of aperiodic structures can be achieved?

Periodic structures: Bravais determined all the 14 possible types in 1850, some of which were experimentally discovered years after.

Problem: what is a "type" of aperiodic structure?

Question: what types of aperiodic structures can be achieved?

Periodic structures: Bravais determined all the 14 possible types in 1850, some of which were experimentally discovered years after.

Problem: what is a "type" of aperiodic structure?

Cut & Project approach: consider discrete irrational planes in \mathbb{R}^n .

Question: what types of aperiodic structures can be achieved?

Periodic structures: Bravais determined all the 14 possible types in 1850, some of which were experimentally discovered years after.

Problem: what is a "type" of aperiodic structure?

Cut & Project approach: consider discrete irrational planes in \mathbb{R}^n .

Theorem (Bédaride-Fernique, 2015–2020)

Only (some) algebraic planes are characterized by "local patterns".

Question: how to assemble piece by piece an aperiodic puzzle? How does a quasicrystal grow atom by atom?

Question: how to assemble piece by piece an aperiodic puzzle? How does a quasicrystal grow atom by atom?

Naive approach: given a seed, add a piece where it is possible.

Question: how to assemble piece by piece an aperiodic puzzle? How does a quasicrystal grow atom by atom?

Naive approach: given a seed, add a piece where it is possible.

Unfortunately, there always exist deceptions, i.e., partial assemblies that cannot be further completed. How much is it prohibitive?

Question: how to assemble piece by piece an aperiodic puzzle? How does a quasicrystal grow atom by atom?

Naive approach: given a seed, add a piece where it is possible.

Unfortunately, there always exist deceptions, i.e., partial assemblies that cannot be further completed. How much is it prohibitive?

Theorem (Fernique-Galanov, 2022)

Example of a discrete irrational plane that can be grown up to an arbitrarily small missing fraction if the initial seed is large enough.

Outline

Puzzles

Computability

Quasicrystals

Two questions

