From Computability to Quasicrystals

Thomas Fernique
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First puzzle

Two different pieces. Each can be used as many times as wanted.
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First puzzle

The whole plane can be tiled.
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First puzzle

How? Just repeat this pattern periodically.
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Second puzzle

Only one piece, that can be used as many times as wanted.
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Claim: it cannot tile the plane, actually not even a 5 x 5 square.
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Third puzzle

Six different pieces. Each can be used as many times as wanted.
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Third puzzle

Theorem (Robinson, 1970): tile the plane. .. but not periodically!
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A Decision problem

Question: does a given finite set of pieces tile the whole plane?
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A Decision problem

Question: does a given finite set of pieces tile the whole plane?

Naive algorithm:
> try to cover larger and larger squares
> if we find a pattern that can be repeated periodically: YES

» if we find a square that cannot be covered: NO
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A Decision problem

Question: does a given finite set of pieces tile the whole plane?

Naive algorithm:
> try to cover larger and larger squares
> if we find a pattern that can be repeated periodically: YES

» if we find a square that cannot be covered: NO

What happens for the third puzzle?
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Undecidability

Theorem (Berger, 1964)

No algorithm can decide, for any given finite set of pieces (Input),
whether it tiles the whole plane.
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Undecidability

Theorem (Berger, 1964)

No algorithm can decide, for any given finite set of pieces (Input),
whether it tiles the whole plane.

Two main ingredients of the proof:

1. Simulate the execution of a Turing Machine by a puzzle.
The TM eventually halts < the puzzle does not tile the plane.

2. Use an aperiodic puzzle to allow arbitrarily long executions.

Open question: does the existence of an aperiodic puzzle (e.g. in
some restricted framework) suffice to imply undecidability?
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Quasiwhat?
Periodic structure (crystal) = long range order (e.g. facets).
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Quasiwhat?

Periodic structure (crystal) = long range order (e.g. facets).

The converse appeared to be false with the experimental discovery
of aperiodic materials with long range order (Shechtman, 1982).

Strong opposition (Linus Pauling: “no quasicrystal, only quasi-science”)
but eventually accepted (Schechtman Nobel Prize in 2011).
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Energetic stabilization

Quasicrystals exist. But how do they form? Why are they stable?
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Energetic stabilization

Quasicrystals exist. But how do they form? Why are they stable?

Physical principle
Stability of a material < energy minimization.

Energy: short range interaction (electronic bonds etc.)

May short range interactions enforce long range properties?

Computer scientists/mathematicians: we know that since the 60's!
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Classification

Question: what types of aperiodic structures can be achieved?
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Classification

Question: what types of aperiodic structures can be achieved?

Periodic structures: Bravais determined all the 14 possible types in
1850, some of which were experimentally discovered years after.

Problem: what is a “type” of aperiodic structure?

Cut & Project approach: consider discrete irrational planes in R".

Theorem (Bédaride-Fernique, 2015-2020)

Only (some) algebraic planes are characterized by “local patterns”.
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Growth

Question: how to assemble piece by piece an aperiodic puzzle?
How does a quasicrystal grow atom by atom?
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Unfortunately, there always exist deceptions, i.e., partial assemblies
that cannot be further completed. How much is it prohibitive?
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Growth

Question: how to assemble piece by piece an aperiodic puzzle?
How does a quasicrystal grow atom by atom?

Naive approach: given a seed, add a piece where it is possible.

Unfortunately, there always exist deceptions, i.e., partial assemblies
that cannot be further completed. How much is it prohibitive?

Theorem (Fernique-Galanov, 2022)

Example of a discrete irrational plane that can be grown up to an
arbitrarily small missing fraction if the initial seed is large enough.
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Cut and project tilings




Cut and project tilings
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Cut and project tilings
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Cut and project tilings
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Growth example
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