Modular Analysis of Petri Nets

Laure Petrucci

LIPN, CNRS UMR 7030
Université Paris 13
Villetaneuse

FRANCE

Modular Analysis of Petri Nets — p.1

Motivation

Systems nowadays very large = high-level Petri nets

B more compact representation

m data manipulation

Modular Analysis of Petri Nets — p.2

Motivation

Systems nowadays very large = high-level Petri nets
B more compact representation

® data manipulation

Main analysis technique: state spaces = state space
explosion problem

To cope with that, different state space reduction methods
have been introduced.

Modular Analysis of Petri Nets — p.2

Motivation

® modular design of systems

m hierarchical CP nets [Jensen 1992|, modular Petri nets
[Christensen Petrucci 2000 |

Modular Analysis of Petri Nets — p.3

Motivation

® modular design of systems

m hierarchical CP nets [Jensen 1992|, modular Petri nets
[Christensen Petrucci 2000 |
B advantages:
e model structuring
e functional decomposition of the system modelled
e reusability of system parts

Modular Analysis of Petri Nets — p.3

Motivation

B modular design of systems

m hierarchical CP nets [Jensen 1992], modular Petri nets
[Christensen Petrucci 2000 |

B advantages:

e model structuring

e functional decomposition of the system modelled

e reusability of system parts

B modular verification

¢ take advantage of system architecture

e provide efficient and flexible analysis techniques
e composition of subsystems invariants
[
o

modular state spaces
modular/compositional/incremental verification

odular Analysis of Petri Nets — p.3

Outline

m Modular state spaces

Construction algorithm
Experimental results

Modular verification of properties

o
o
o
e Timed extensions

m Compositional verification
e QObservation graph

m Incremental approach
e Model refinement
e State space construction

m Conclusion

m Ongoing and future work

Modular Analysis of Petri Nets — p.4

Modular State Spaces

Introduced in [Christensen Petrucci 1995, 2000], further
refined in [Lakos Petrucci 2004 to:

m take advantage of modular design

m avoid interleaving

®m reduce memory consumption

Modular Analysis of Petri Nets — p.5

Modular State Spaces

Introduced in [Christensen Petrucci 1995, 2000], further
refined in [Lakos Petrucci 2004 to:

m take advantage of modular design

m avoid interleaving

® reduce memory consumption

Achieved by:

m keeping a local state space per module (local states and
transitions)

B constructing a synchronisation graph to capture
synchronisation between modules.

Modular Analysis of Petri Nets — p.5

Example

Module A Module B Module C
A1 B1 C1
F1 F1 F2
tA
A2 B2 c2
F3 F2 iB
A3
B3
F3

Modular Analysis of Petri Nets — p.6

Example

Module A Module B Module C

A1 B1 C1
F1 F1 F2

tA
A2 B2 c2
F3 F2 iB

A3

B3

F3

Module A

Module B

F1

(B2)4] 18

F2

(83)
/A

F3

Module C Sync. Graph
&
F2

Modular Analysis of Petri Nets — p.6

Example

Module A Module B Module C

A1 B1 C1
F1 F1 F2

tA
A2 B2 c2
F3 F2 iB

A3

B3

F3

Module A

Module B

F1

(B2)4] 18

F2

(83)
/A

F3

Module C Sync. Graph
@
F2 A1B1C1,F1
(c2)

Modular Analysis of Petri Nets — p.6

Example

Module A Module B Module C
A1 B1 C1
F1 F1 F2
tA
A2 B2 c2
F3 F2 iB

A3

B3

F3

Module A

Module B

F1

(B2)4] 18

F2

(83)
/A

F3

Module C Sync. Graph
@
F2 A1B1C1,F1
(c2)

A2B2C1,F2

Modular Analysis of Petri Nets — p.6

Example

Module A Module B Module C
A1 B1 C1
F1 F1 F2
tA
A2 B2 c2
F3 F2 iB

A3

B3

F3

Module A

Module B

F1

(B2)4] 18

F2

(83)
/A

F3

Module C Sync. Graph
@
F2 A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Modular Analysis of Petri Nets — p.6

Example

Module A Module B Module C
A1 B1 C1
F1 F1 F2
tA
A2 B2 c2
F3 F2 iB
A3
B3

F3

Module A
(A2)

tA

Module B

o

Module C

©
©@

Sync. Graph

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Modular Analysis of Petri Nets — p.6

Construction algorithm

1. construct possible local state space

m could be done on-the-fly, but framework easy to
adapt to models other than Petri nets

B construct the state spaces of modules

m construct SCCs of state spaces without
synchronisation transitions

B unreachable states might be present that will be
deleted later
2. compute synchronisation graph SG

3. delete local unreachable parts
m delete synchronised transitions in local state spaces
m mark states locally reachable from nodes in SG
m delete unmarked nodes and connected arcs

Modular Analysis of Petri Nets — p.7

Computing SG

m construct the initial node

m for each unprocessed node
e mark local successors

e for each synchronised transition t¢f
* consider only modules participating in the
synchronisation
* identify marked nodes enabling tf
* add the successor nodes and corresponding arcs

Modular Analysis of Petri Nets — p.8

Experiments [Petrucci 2005]

Model param Occurrence Graph Modular State Space
5 AGVs 30, 965, 760 900
Database n n x 3n—1 6n - 3
2 3 11
Philosophers 3 4 16
n Nog(n— 1) —|—Ngg(n— 2) Ngg(n) + 4n
. 2 21 30
Poisoned
. 99 99
philosophers N .

3Ngg(n — 2) + 6

NMss(n — 2) -+
Sn+4

Railway

4(n*+n+1)

2t 4 5p 410

Modular Analysis of Petri Nets — p.9

Properties

®m analyse the system without unfolding the modular state
space

m algorithms for standard properties |Lakos Petrucci 2004|:
¢ reachability
e deadlocks
® |iveness

B generalised to cater for subsets of modules or transitions

Modular Analysis of Petri Nets — p.10

Properties

®m analyse the system without unfolding the modular state
space

m algorithms for standard properties |Lakos Petrucci 2004|:
¢ reachability
e deadlocks
® liveness

B generalised to cater for subsets of modules or transitions

Achieved by:
m decomposition of properties in local/global parts

B marking of nodes

m state spaces traversal

Modular Analysis of Petri Nets — p.10

Timed Extensions

Extensions to :

®m [imed nets [Lakos Petrucci 2005, 2006]: state spaces,
global time

m [ime nets [Mazouz Petrucci 2006]: T-states graphs,
relative time

Modular Analysis of Petri Nets — p.11

Timed Extensions

Extensions to :

®m [imed nets [Lakos Petrucci 2005, 2006]: state spaces,
global time

m [ime nets [Mazouz Petrucci 2006]: T-states graphs,
relative time

Difficulty: preemption of global vs. local transitions
unpredictable

= the modular state space does contain unreachable states

Modular Analysis of Petri Nets — p.11

Timed Extensions - Experiments

Implementations:

B timed nets: prototype implementation in MARIA

B time nets: standalone implementation

Modular Analysis of Petri Nets — p.12

Timed Extensions - Experiments

Implementations:

® timed nets: prototype implementation in MARIA

B time nets: standalone implementation

Satisfactory results that depend on:

® structuring into modules

m coupling between modules

®m timing constraints

m scheduling of actions

Modular Analysis of Petri Nets — p.12

Compositional verification

Verification of a LTL\ X formula

m identify visible transitions required by the formula
m construct an observation graph

m verify the property

Pros: traversal of a single state space
Cons: the state space depends on the property to check

Proposals in [Klai 2003] and [Latvala Makela 2004], very
similar in essence

Modular Analysis of Petri Nets — p.13

Example

F3 live

F1
(A2B2c1)| B
A28308201 :] tB
(A3B3C2)

Modular Analysis of Petri Nets — p.14

Example

F3 live

A282C1

s

A383C2

F2 not live

AZB2C1

Modular Analysis of Petri Nets — p.14

Incremental approach

\Lakos Lewis 2001]

Abstract level Concrete level

efinement)'I}O
Model z>[»O > O;}Q‘DO}I:QW

reuse Pl O e
State space O—»0O - \AO/V

Modular Analysis of Petri Nets — p.15

Model refinement

Different types of refinement:

m Type refinement: simple refinements where each value of
the refined type can be projected onto a value of the
abstract type.

B Subnet refinement: augmenting a subnet with additional
places, transitions and arcs. Each behaviour of the
refined system must have a corresponding behaviour in
the abstract system.

® Node refinement: replace a place or a transition by a
subnet, such that each behaviour of the refined system
has a corresponding behaviour in the abstract system.

Modular Analysis of Petri Nets — p.16

Refined model state space

Use the abstract model state space to guide the refined model
state space computation:

® some markings already computed

® some markings have to be extended

B |ess transitions enablings to check

Modular Analysis of Petri Nets — p.17

Conclusion

m Several trends to take advantage of modularity

m Efficiency depends on the coupling of modules

®m Techniques suitable for high-level and time(d) nets

m Refinement fits a model engineering design approach

m Other approaches (e.g. abstraction places, invariants)

Modular Analysis of Petri Nets — p.18

Ongoing and future work

m Check properties using Modular state spaces with time
(with C. Lakos and S. Mazouz)

m Data abstraction, refinement, parametric analysis (with J.
Billington, C. Choppy, C. Lakos and M. Mayero)

m Distributed state space analysis (with C. Boukala and L.
Kristensen)

m Case studies (Fieldbus protocol, with C. Lakos)

Modular Analysis of Petri Nets — p.19

	Motivation
	Motivation
	Outline
	Modular State Spaces
	Example
	Construction algorithm
	Computing $mathit {SG}$
	Experiments {
ormalsize $[$Petrucci 2005$]$}
	Properties
	Timed Extensions
	Timed Extensions - Experiments
	Compositional verification
	Example
	Incremental approach
	Model refinement
	Refined model state space
	Conclusion
	Ongoing and future work

