
Modular Analysis of Petri Nets
Laure Petrucci

LIPN, CNRS UMR 7030
Université Paris 13

Villetaneuse
FRANCE

Modular Analysis of Petri Nets – p.1

Motivation

Systems nowadays very large ⇒ high-level Petri nets

more compact representation

data manipulation

Main analysis technique: state spaces ⇒ state space
explosion problem

To cope with that, different state space reduction methods
have been introduced.

Modular Analysis of Petri Nets – p.2

Motivation

Systems nowadays very large ⇒ high-level Petri nets

more compact representation

data manipulation

Main analysis technique: state spaces ⇒ state space
explosion problem

To cope with that, different state space reduction methods
have been introduced.

Modular Analysis of Petri Nets – p.2

Motivation

modular design of systems

hierarchical CP nets [Jensen 1992], modular Petri nets
[Christensen Petrucci 2000]

advantages:
model structuring
functional decomposition of the system modelled
reusability of system parts

modular verification
take advantage of system architecture
provide efficient and flexible analysis techniques
composition of subsystems invariants
modular state spaces
modular/compositional/incremental verification

Modular Analysis of Petri Nets – p.3

Motivation

modular design of systems

hierarchical CP nets [Jensen 1992], modular Petri nets
[Christensen Petrucci 2000]

advantages:
model structuring
functional decomposition of the system modelled
reusability of system parts

modular verification
take advantage of system architecture
provide efficient and flexible analysis techniques
composition of subsystems invariants
modular state spaces
modular/compositional/incremental verification

Modular Analysis of Petri Nets – p.3

Motivation

modular design of systems

hierarchical CP nets [Jensen 1992], modular Petri nets
[Christensen Petrucci 2000]

advantages:
model structuring
functional decomposition of the system modelled
reusability of system parts

modular verification
take advantage of system architecture
provide efficient and flexible analysis techniques
composition of subsystems invariants
modular state spaces
modular/compositional/incremental verification

Modular Analysis of Petri Nets – p.3

Outline

Modular state spaces
Construction algorithm
Experimental results
Modular verification of properties
Timed extensions

Compositional verification
Observation graph

Incremental approach
Model refinement
State space construction

Conclusion

Ongoing and future work
Modular Analysis of Petri Nets – p.4

Modular State Spaces

Introduced in [Christensen Petrucci 1995, 2000], further
refined in [Lakos Petrucci 2004] to:

take advantage of modular design

avoid interleaving

reduce memory consumption

Achieved by:

keeping a local state space per module (local states and
transitions)

constructing a synchronisation graph to capture
synchronisation between modules.

Modular Analysis of Petri Nets – p.5

Modular State Spaces

Introduced in [Christensen Petrucci 1995, 2000], further
refined in [Lakos Petrucci 2004] to:

take advantage of modular design

avoid interleaving

reduce memory consumption

Achieved by:

keeping a local state space per module (local states and
transitions)

constructing a synchronisation graph to capture
synchronisation between modules.

Modular Analysis of Petri Nets – p.5

Example

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Modular Analysis of Petri Nets – p.6

Example

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Module A Module B Module C

A1 B1

B2 tB

C1

C2

F1

F3

F1

B3

F2

F3

F2

A2

A3

tA

B2

B3

A1B1C1

A2B2C1

A2B3C2

A2B2C1,F2

A3B3C2,F3

Sync. Graph

A1B1C1,F1

Modular Analysis of Petri Nets – p.6

Example

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Module A Module B Module C

A1 B1

B2 tB

C1

C2

F1

F3

F1

B3

F2

F3

F2

A2

A3

tA

B2

B3

A1B1C1

A2B2C1

A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. Graph

Modular Analysis of Petri Nets – p.6

Example

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Module A Module B Module C

A1 B1

B2 tB

C1

C2

F1

F3

F1

B3

F2

F3

F2

A2

A3

tA

B2

B3

A1B1C1

A2B2C1

A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. Graph

Modular Analysis of Petri Nets – p.6

Example

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Module A Module B Module C

A1 B1

B2 tB

C1

C2

F1

F3

F1

B3

F2

F3

F2

A2

A3

tA

B2

B3

A1B1C1

A2B2C1

A2B3C2A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. Graph

Modular Analysis of Petri Nets – p.6

Example

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Module A Module B Module C

A1 B1

B2 tB

C1

C2

F1

F3

F1

B3

F2

F3

F2

A2

A3

tA

B2

B3

A1B1C1

A2B2C1

A2B3C2A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. Graph

Modular Analysis of Petri Nets – p.6

Construction algorithm

1. construct possible local state space
could be done on-the-fly, but framework easy to
adapt to models other than Petri nets
construct the state spaces of modules
construct SCCs of state spaces without
synchronisation transitions
unreachable states might be present that will be
deleted later

2. compute synchronisation graph SG

3. delete local unreachable parts
delete synchronised transitions in local state spaces
mark states locally reachable from nodes in SG

delete unmarked nodes and connected arcs
Modular Analysis of Petri Nets – p.7

Computing SG

construct the initial node

for each unprocessed node
mark local successors
for each synchronised transition tf
• consider only modules participating in the

synchronisation
• identify marked nodes enabling tf
• add the successor nodes and corresponding arcs

Modular Analysis of Petri Nets – p.8

Experiments [Petrucci 2005]

Model param Occurrence Graph Modular State Space

5 AGVs 30, 965, 760 900

Database n n × 3n−1 6n + 3

Philosophers

2 3 11

3 4 16

n NOG(n − 1) + NOG(n − 2) NOG(n) + 4n

Poisoned

philosophers

2 21 30

3 99 99

n
4NOG(n − 1) +

3NOG(n − 2) + 6

4NMSS(n − 1) +

NMSS(n − 2) +

8n + 4

Railway n 4(n2 + n + 1) n(n+1)
2 + 5n + 10

Modular Analysis of Petri Nets – p.9

Properties

analyse the system without unfolding the modular state
space

algorithms for standard properties [Lakos Petrucci 2004]:
reachability
deadlocks
liveness

generalised to cater for subsets of modules or transitions

Achieved by:

decomposition of properties in local/global parts

marking of nodes

state spaces traversal

Modular Analysis of Petri Nets – p.10

Properties

analyse the system without unfolding the modular state
space

algorithms for standard properties [Lakos Petrucci 2004]:
reachability
deadlocks
liveness

generalised to cater for subsets of modules or transitions

Achieved by:

decomposition of properties in local/global parts

marking of nodes

state spaces traversal
Modular Analysis of Petri Nets – p.10

Timed Extensions

Extensions to :

Timed nets [Lakos Petrucci 2005, 2006]: state spaces,
global time

Time nets [Mazouz Petrucci 2006]: T-states graphs,
relative time

Difficulty: preemption of global vs. local transitions
unpredictable

⇒ the modular state space does contain unreachable states

Modular Analysis of Petri Nets – p.11

Timed Extensions

Extensions to :

Timed nets [Lakos Petrucci 2005, 2006]: state spaces,
global time

Time nets [Mazouz Petrucci 2006]: T-states graphs,
relative time

Difficulty: preemption of global vs. local transitions
unpredictable

⇒ the modular state space does contain unreachable states

Modular Analysis of Petri Nets – p.11

Timed Extensions - Experiments

Implementations:

timed nets: prototype implementation in MARIA

time nets: standalone implementation

Satisfactory results that depend on:

structuring into modules

coupling between modules

timing constraints

scheduling of actions

Modular Analysis of Petri Nets – p.12

Timed Extensions - Experiments

Implementations:

timed nets: prototype implementation in MARIA

time nets: standalone implementation

Satisfactory results that depend on:

structuring into modules

coupling between modules

timing constraints

scheduling of actions

Modular Analysis of Petri Nets – p.12

Compositional verification

Verification of a LTL\X formula

identify visible transitions required by the formula

construct an observation graph

verify the property

Pros: traversal of a single state space

Cons: the state space depends on the property to check

Proposals in [Klai 2003] and [Latvala Mäkelä 2004], very
similar in essence

Modular Analysis of Petri Nets – p.13

Example

F3 live

F2 not live

tB

tA F2

tA

A3B2C1A2B3C2

F3

tB

F2

F1

A3B3C2

A2B2C1A2B2C1

A1B1C1

tB

tA

A3B2C1

tB

F2

F1

A2B2C1A2B2C1

A1B1C1

A3B3C2

F3

A2B3C2 F2
tA

Modular Analysis of Petri Nets – p.14

Example

F3 live F2 not live

tB

tA F2

tA

A3B2C1A2B3C2

F3

tB

F2

F1

A3B3C2

A2B2C1A2B2C1

A1B1C1

tB

tA

A3B2C1

tB

F2

F1

A2B2C1A2B2C1

A1B1C1

A3B3C2

F3

A2B3C2 F2
tA

Modular Analysis of Petri Nets – p.14

Incremental approach

[Lakos Lewis 2001]

Abstract level Concrete level

Model

State space

refinement

reuse

Modular Analysis of Petri Nets – p.15

Model refinement

Different types of refinement:

Type refinement: simple refinements where each value of
the refined type can be projected onto a value of the
abstract type.

Subnet refinement: augmenting a subnet with additional
places, transitions and arcs. Each behaviour of the
refined system must have a corresponding behaviour in
the abstract system.

Node refinement: replace a place or a transition by a
subnet, such that each behaviour of the refined system
has a corresponding behaviour in the abstract system.

Modular Analysis of Petri Nets – p.16

Refined model state space

Use the abstract model state space to guide the refined model
state space computation:

some markings already computed

some markings have to be extended

less transitions enablings to check

Modular Analysis of Petri Nets – p.17

Conclusion

Several trends to take advantage of modularity

Efficiency depends on the coupling of modules

Techniques suitable for high-level and time(d) nets

Refinement fits a model engineering design approach

Other approaches (e.g. abstraction places, invariants)

Modular Analysis of Petri Nets – p.18

Ongoing and future work

Check properties using Modular state spaces with time
(with C. Lakos and S. Mazouz)

Data abstraction, refinement, parametric analysis (with J.
Billington, C. Choppy, C. Lakos and M. Mayero)

Distributed state space analysis (with C. Boukala and L.
Kristensen)

Case studies (Fieldbus protocol, with C. Lakos)

Modular Analysis of Petri Nets – p.19

	Motivation
	Motivation
	Outline
	Modular State Spaces
	Example
	Construction algorithm
	Computing $mathit {SG}$
	Experiments {
ormalsize $[$Petrucci 2005$]$}
	Properties
	Timed Extensions
	Timed Extensions - Experiments
	Compositional verification
	Example
	Incremental approach
	Model refinement
	Refined model state space
	Conclusion
	Ongoing and future work

