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1 Introduction and Motivation

The categorical formulation of differential settings was triggered by the study of denotational models of

Differential Linear Logic[ ] (DIiLL), resulting in a variety of interdependent categorical definitions
[ ]. Differentiation in these settings might be axiomatized as an external operator acting on functions
[ ], or as a hard-coded natural transformation refining models of linear logic [ ].

While studying models of Differential Linear Logic in functional analysis, polarities and their categor-
ical models are most relevant. Indeed, having an involutive linear negation on topological vector spaces is
often too much of a constraint, while having to duality leading to a contravariant equivalence of categories
reinterprets a lot of already existing topological settings [ ]. Chiralities [ ] are a categorical ax-
iomatization of polarized multiplicative linear logic, discovered by Melliés after a study of game models
of linear logic. In this abstract, we argue that while chiralities model the interaction between positive
and negative formulas in linear logic, a similar structure models also the interaction between linear
and non-linear proofs in DiLL.

We see two advatantages to such a reformulation of models of DiLLL: It is much closer to the models
and the intuition that one might have in terms of differentiation. This makes proving that a concrete mathe-
matical object is a model of DiLL much easier. It is categorically ’pleasant” and easier to generalize to the
case of Chiralities, which we will eventually want to do in order to express categorically polarized models
of DiLL.

Definition 1 ([ ]). A mixed chirality consists in two symmetric monoidal categories (%, ®, 1) and
(A, %, L), between which there are two adjunctions, one of which being strong monoidal:
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with a family of natural bijections accounting for the monoidal closedness:
Xpam = A (TP, 0B m) ~ A (Np@n™),m) @)

The natural bijections x account for the lost monoidal closedness. They must respect the various associa-
tivity morphisms that we do not detail here. The chirality is said to be a dialogue chirality when the two
adjunctions are equivalences. They are said to be negative chirality when the adjunctions are reflexive,
positive when the adjunctions are co-reflexive.



Chiralities are in particular a model of polarized multplicative linear logic. They provide in particular
the right setting for Nuclear Fréchet or DF spaces, providing the grounds to interpret distribution theory, and
they allow for a nice reformulation of Banach-Steinhauss theorem [ ]. The central intuition to our work
is that while the strong monoidal adjunctions of chiralities will model the usual linear non-linear adjunction
of models of DiLL, the second adjunction will modelize the Differentiation, which is involutive on linear
maps. Differentiation is not often modelized as a functor, and we will use the fact that Differentiation
is functorial on the co-slice of the co-Kleisli. This is apparently a known fact on Cartesian Differential
Categories.

2 Prerequisites

Definition 2. A differential category, called a ‘differential storage category’ in [? ], is a monoidal closed
category (£, ®, 1) which is equipped with a biproduct (o, 0), a comonad (!, d, i, d) such that ! is a strong
monoidal functor (£, ¢,0) — (.Z,®, 1), and a natural transformation d : Id —! such that

JA; dA = ’idA (3)
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This makes in particular ! a lax monoidal endofunctor from (¢, ®,1) to (¢, ®,1) [ ] with monoidal

law denoted m. The previous strong monoidal structure on ! induces a hopf algebra structure on each object
I A, with natural transformation w, ¢, @, ¢). The requirement on d translate the fact that the differential of
linear maps is the identity, and validate the chain rule, meaning that for morphisms of the co-Kleisli .4, for
any point a Dy(g o f) = Dy@ayg o Do f

Differential categories are denotational models of intuitionistic DiLLL, and of classical DiLL when they are
x-autonomous. We want to adapt this definition to the linear/non-linear adjunction, meaning that instead of
a comonad ! we will consider a strong monoidal adjunction
g/
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such that ! := &’ oY, and .Z is equipped with a biproduct.

Definition 3. Let I be an object of a category 4. We recall that the co-slice category (I | ) has as objects
arrows a : ]— A in % and as morphisms f : (a : I —=A)—(b : I — B) those morphisms f : A—B
of € such thata; f = 0. If f : A— B is an arrow of C, and a an object in (I | €) we denote by (a|f) the
morphism (I | €) from a to a; f induced by f.

The key idea to our work is that within a linear non-linear ajdunction, the functoriality D . (I
%) —Z expresses the chain rule (4). One would think that asking D to be the left inverse to the canonical
extention of I to (I | ) would be enough:

U:0—(0f) DolU=Idy.

However, as far as we can see, one needs to enforce the involutivity of D on every linear map U ({) at every
point a to land back on a differential category. This is expressed through the following

Definition 4. Given an object [ of a category %, and a functor U : ¥ — %, we recall the notion of
Category of Generalized Elements of U/ (over I): El;(U), which has as objects the arrows a : I —U(A)
in € and as morphisms from (a : I — A) to (b : I — B) those morphisms U(f) : UA —UB of
@ such that a;U f = b. This categorically corresponds to taking the pullback of I/ and the projection of
e :(I]F6)—%F
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3 Functorial Models of Dil.L

We now can define an equivalent structure to differential storage categories:
Definition 5. A functorial model of intuitionistic DiL.Li consists of the following :
* A monoidal closed category (¢, ®, 1), admitting a biproduct .

* A cartesian monoidal category (%, x, I). Since the forgetful functor (I | ¢) — € creates limits,
the coslice inherits finite products from %

¢ A linear-non-linear adjunction between . and ¢, which is a strong monoidal adjunction (Diagram
6).

* A functor D : (I | €)— & such that the following diagram commutes:

=
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(Z,®,1) (€, x,1I)
This implies in particular that for any object A of £ we have DU(A)) = A, D(ald(£)) = £ and
that D preserves product.
¢ We also ask that .Z is well pointed with respect to 1.

Intuitively, the functoriality of D encodes the chain rule, and the commutation of the diagram the fact
that the differential of a linear function is itself. Let us denote u 4 : 0 — A the inital morphism in .%’, and
XA,B: C(AU(B)) ~ Z(E'(A), B) the natural isomorphisms resulting from the adjunction 6. We define
the natural transformation interpreting the co-dereliction rule of DiLL as follows:

dy:=D U(ua)lx " (id1a)) : A — 1A.

This leads to the following equation expressing the differential at any point, and that leads, after a bit of
work, to the interpretation of equation (4).

Dlalx () = da @& (a); &
As u 4 is the unique morphism with the required domain and codomain, and by functoriality of D, we
have the following important fact:

Lemma 6. Leta : [ —U(A), f : U(A)— B, g : B— C be morphisms in €. Then we have:
D(ids |a) = ua and B(alf:9) = B(alf); B(a: fl9)

Because D preserves products, and interprets morphisms (alU(£)) by £, we have the following key
lemma, which interprets the action of D at different points of a function g.

Lemma 7. The functor D can internalize translations, meaning for any object a : I —U(A) and mor-
phisms (a|f) and (a; f|g) in (I | €), we have:

Dlalg) = DU(ua)|(idycay x a);UV); g).

The two next lemmas prove that our transformation is indeed the differentiation of differential cate-
gories, first by doing it in a context-free environment and then generalizing it to the commutation of d with
promotion within a context.

Lemma 8. The co-dereliction d 4 agrees with the diagram reflecting the chain rule in differential categories
according to [ ], which corresponds to the alternate chain rule [dC.4'] in [ 1:

dip=d®!(ua);di @ ;¢



Lemma 9. The co-dereliction d4 agrees with the generalized chain rule in differential categories (the
diagram [dC'4] in the survey [ 1):

idia@d;Gp=c®d;1Q¢pu®d;e

Theorem 10. A functorial model of Intuitionnistic DiLL is a differential storage category. A well-pointed
differential storage category is a functorial model of Intuitionnistic DiLL.

4 Generalization of Chiralities

For the definition of the previous section to be an appropriate generalization of chiralities, we would need
to consider a pair of a covariant and a contravariant adjunction. The contravariant strong monoidal adjunc-
tion is retreived from the usual linear/non-linear adjunction by considering #-autonomous categories. One
defines a functorial model of classical DiLL and consider a *-autonomous categorie . with the following
structure:

sy (EL), <, 1) o (11%),%.1)
€, x, I ZL°P.R®,1); » < 8
( )\j ®,1) I, J / ln (®)
u’ (Z,®,1) ——— (¢, x,I)

where U’ is the composition of ¢/ with the intepretation of (_)*, and & is thought of the contravariant
hom-set of non-linear scalar maps £(A) = C(4, K).

We now show how our functorial axiomatization of models of classical DiLL restrict to chiralities.
Indeed, we did not ask for two adjunctions, but for a strong monoidal adjunction and a commuting diagram
involving a category of elements. We will here look at the chirality setting, in the particular case where
it refines a =-automous additive category (as is the case is models of classical DiLL). Consider a pair of
categories both with an initial object, and a functor F preserving colimits (typically a left adjoint):

(2,05) —L— (N,0.)

Then one can generalize F to a functor between the category of elements El (F) and A" | 0.

Asking for the existence of a functor g commuting as below mimicks the situation of the previous section,
where .4/ was C and & was .Z:

(-)*e
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T Ely (F) —— (A L 0.x)
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This diagram also states (for free) a weak statement of adjunction: El()v L (F) (N1, N2) ~ A (N1,0) x
P (N1, Na). Let us show that this generalizes the right adjunction of chiralities (Diagrams 1). Indeed, in
that particular case we have that 0 is terminal in .4, and as such 4" | 04 = 4, Il 4 = Id. Diagram 9
then simplifies as follows:

Ely (1) —— N (O | A) El (1)
n@l / [ = \f‘ (10)
(2,0) (N, 0.4) (2,0) + (N, 0.4)
\_/
T

Be careful of the poor notational coincidence: the functor 1 has nothing to do with C | 0. The com-
mutation of the below part of the diagram below expresses the fact that {T = Id. In diagram 9, one could
express the adjunction between & and U’ as relative £’ — Tl ajdunction between I/ and D:

LU 0 E)(A), Db, B)) ~ CUA),Te(b,B) <« (ZL(1A,B)~%(A,B)) (1D



Requiring this relative adjunction in diagram 9 gives us the adjunction between 1 and |, as ()*~¥1r ~

Id 4 and II  ~ Id. Therefore, adding equation 11 to diagram 8, we have defined a new structure,
which generalizes chiralities and axiomatizes functorially models of classical DiL.L.

5 Future work

This is work in progress and there is still much to explore. As a fun fact, let’s notice that we . is a calculus
category [ ], that is a category with both differentiation and integration, then we have an relative ! ® I d-
adjunction between (I | €) and ., where the fundamental theorem of analysis is expressed exactly as a
relative | ® Id adjunction between D and an extension of U:

(I 1)

5/
T g (I 19) (0, A),B)~ LUA®AB)  U(A) = Ulus)
r\_/
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Once this work is stabilized, we would like to express more precisely what polarized models of DiLL
should be, and refine diagram 8 when .Z is not star-automous but decomposed in a polarized chirality as in

diagram 1.
While our setting expresses the chain rule, it’s also fun to see what happens in the symmetric setting
and how it express the ’co-chain” rule of exponential maps [ ]. In that case, ! is a monad and the object

of the slice on the Kleisli category are morphisms a’ : A —o K, that is elements of the dual of A. The
co-chain rule is expressed in a generalized exponential map: F : &' | [ —> % Finally, this setting gives a
dependent flavor to differentiation, and we would like to investigate a possible link with dependent types.
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