Helena 3.0
User’s guide

Sami Evangelista - (Sami [dot] Evangelista [at] lipn.univ-paris13 [dot] fr)

November 29, 2017

Abstract

This manual describes Helena, a High LEvel Nets Analyzer. Helena verifies properties of high level
nets by exploring all these possible configurations and reports to the user either a success, i.e. the
property holds, either a faulty execution invalidating the specified property. This technique is called
model checking, or state space analysis. Helena can also perform more basic tasks like state space
exploration in order to report statistics like, e.g., the number of reachable statistics, the structure of
the reachability graph.

Helena is a command line oriented tool freely available under the terms of the GNU General Public
License. Basic knowledges on Petri nets, high-level Petri nets and model checking are welcome to
understand this manual.

The installation on a Linux platform is quite simple and should not raise any problem. The procedure
is detailed in file helena/README . me.

This manual is organized as follows. The specification language of Helena is presented in Chapter 1.
Chapter 2 is devoted to the use of Helena. Some examples of the distribution are described in Chap-
ter 3. The possibility of interfacing Helena with C code is described in Chapter 4 together with a
tutorial illustrating this feature. At last, Chapter 5 is intended to provide some help to the users and
some indications on how to use Helena efficiently.

Appendixes contain the syntax summary and the third version of the GNU general public license. An
index that references all the construction of the specification language of the tool can be found at the
end of the document.

Contents

1 Helena specification language

1.1 Lexical and Syntaxic CONVENLIONS . . .+ . v v v v v v v e
L.I.T Lexical tokens o o o i e e e e e
1.1.2 Preprocessor dirf€CtiVes v v v v v i i e
L.1.3 0 Conventions o o ot e e e e e e e e e e
1.2 Net specification language o e e e e e e e e e
L2100 Nets . . . oo e e
1.2.2 Netparameters v v v vt ittt e e e e e e e e e e e e e e e
1.2.3 Typesand subtypes oL e e e e
1.2.4 0 ConStants o o e e e e e e e e e e e e e e e
1.25 Places o o e e e e e
1.2.6 TranSitions o v it e e e e e e e e e
1.27 Functions o i i i e e e e e e e e e
1.2.8 Statements i e e e e e e e e e e e e e e e e
1.2.9 EXPIessions v v v v v v i e
1.2.10 Arclabels e e e
L1211 State propoSitions v v v v v e
1.3 Property specification language e e e e e e e e e e e e e e
13,1 State properties o v v o i e
1.3.2 Temporal properties o v v it e e e e e e e e e e e e e e e e
2 Using Helena
2.1 Invoking Helena o . o e e e e e e
2.2 Additional utilities e e e e e e e e e
2.2.1 The helena-reportutility e
2.2.2 The helena-graph utility e e e e e e e
2.2.3 The helena-generate-interface utility o o o oo
3 Examples
3.1 The distributed database system L. e e e e
3.2 Theload balancing Systeml e e e e e e e e
3.3 Thetowers of Hanoi 0 L e e e e e
4 Interfacing Helena with C code
4.1 Tutorial: Importing C Functions e e e e e e e
4.2 Theinterface file L e e e e e e
42,1 Generated tyPes i i e
4.2.2 Generated constants and functions oL oL Lo e e e
4.3 Requirements on imported modules L oL L e e e

0 00 000NN I

YO T NO T N6 S N6 YN N Y G S
O 00 00 00 1 1 Lt L W — — O

31
31
31
31
32
32

33
33
36
41

S Help

5.1 Evaluation of Transitions v i i

5.1.1 Evaluation in the absence of inhibitor arcs
5.1.2 Evaluation in the presence of inhibitor arcs

52 Tipsand Tricks o
5.3 Guiding Helenainthesearch
5.3.1 Typingplaces
5.3.2 Safetransitions L

A Syntax summary

A.l Netspecification language
A.2 Property specification language 0.

B Gnu general public license

CONTENTS

Chapter

Helena specification language

We introduce in this chapter the two specification languages of Helena used to describe high level nets and properties.

1.1 Lexical and syntaxic conventions

We give now some lexical conventions. First of all, it must be noticed that Helena specification language is case sensitive.

1.1.1 Lexical tokens
1.1.1.1 Reserved words
The following words are reserved and can not be used as identifiers:

accept and assert capacity card case constant deadlock default
description dom else empty enum epsilon exists false for forall
function guard if import in init inhibit let list 1tl max min mod
mult not of or out pick place pred priority product property
proposition range reject return safe set state struct subtype succ
sum transition true type until vector while with

Reserved words will systematically appear in a bold font in this document.

1.1.1.2 Identifiers

Places, data types and transitions are examples of Helena constructions that are identified by textual names, or identifiers.
Identifiers must start with an alphabetic character and must only contain alpha-numeric characters or the ’_’ character. They
also must, of course, not belong to the list of reserved words.

1.1.1.3 Numerical constants

A valid numeric constant has the form [0—9][0—9]*. Octal or hexadecimal notations are not allowed. The maximal constant
allowed is system dependant but is 23! on most systems.

1.1.1.4 Comments

Comments are indicated as in the C++ language. Two slashes // start a comment that will end with the current line. /* start a
comment which is explicitely ended by /. Comments can not be nested

1.1.2 Preprocessor directives

Helena features some preprocessor directives taken from the C language. However, it must be noticed that preprocessor
symbols are not macros. Thus, no expansion takes place. A directive starts with a # at the first column, followed by a list of
blanks (possibly empty), and followed by the directive name.

8 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

1.1.2.1 Defining and undefining symbols

Symbols can be defined and undefined by directives define and undefine. The directive must be followed by the symbol
name. A symbol name must be a valid identifier (possibly a reserved word).

1.1.2.2 Conditional compilation

Directives ifdef, ifndef, else, and endif can be used for conditional compilation. Directive ifdef checks if the symbol
placed just after it is defined. If it is defined and the ifdef has a corresponding else, all the lexical tokens between the
corresponding else and endif are ignored. Otherwise, all the lexical tokens are skipped until the corresponding else or
endif is found. Directive ifndef has a symmetric behavior.

1.1.3 Conventions

We first start with some conventions that are used in the remainder of this section.
e Terminal symbols of the grammar, i.e., tokens, are placed between quotes, e.g., "1£f’, 'transition’.
e Non terminal symbols appear in italic between the two characters (and), e.g., (expression), (statement).
e ¢ denotes the empty list of lexical tokens.
e The non terminal (name) stands for any identifier.
e The non terminal (string) stands for any string delimited by two characters .
e The non terminal (number) stands for any numeric constant.
e Symbols placed between brackets are optional, e.g., [(item)].

((item))” is a sequence (possibly empty) of non terminals (item).

e ((item))* is a non empty sequence of non terminals (izem).

1.2 Net specification language

1.2.1 Nets

A net is described by a list of definitions that are the components of the net. Elements that may be defined in a net are data
types, constants, functions, places, transitions and state propositions.

(net) = (net name)
[’ (C (net parameter list) *)’]
"’ ({definition))" * }

(net name) = (name)

(definition) = (type)

| {constant)

| (function)

| (place)

| (transition)

| (state proposition)

1.2.2 Net parameters

A net may have parameters such as, e.g., a number of processes. They are interpreted as constants (see Sect. 1.2.4) of the
predefined int type. The advantage of using parameters is that their values can be changed via the command line when helena
is invoked, i.e., without changing the model file. Chapter 2 details how this can be done.

Below is an example of net parameterized by constants Clients et Servers having default values of 5 and 2 respectively.

myNet (Clients := 5, Servers := 2) { ... }

1.2. NET SPECIFICATION LANGUAGE 9

(net parameter list) = (net parameter)

| (net parameter) ’,’ (net parameter list)
(net parameter) = (net parameter name) ’ : =" (number)
(net parameter name) = (name)

1.2.3 Types and subtypes

Helena allows the definition of different kinds of data types: integer types (range or modulo types), enumeration types,
structured types, vector types, and container types (list or set types). Enumeration and integer types form the family of
discrete types whereas other types are said to be composite. This type hierarchy is summarized below.

e Discrete types

— Integer types

* Range types
* Modulo types

— Enumeration types
e Composite types

— Structured types
— Vector types
— Container types
* Set types
* List types

Some data types are predefined. They will be described in the corresponding type description.

(type) = (type name) ’:’ (type definition) ’;’
| (subtype)

(type name) = (name)

(type definition) = (range type)

(
(
(
(
(modulo type)
(enumeration type)
(vector type)
(struct type)

(list type)

(set type)

1.2.3.1 Range type

A range type is an integer type which values belong to a specified range. A range type is defined by specifying the lower
bound and the upper bound of the range. Bounds must be numerical expressions, statically evaluable (see Section 1.2.9 for
more precisions on statically evaluable expressions). Additionally, the upper bound of the type must be greater or equal to the
lower bound. The integer type int is a predefined range type. Its definition is system dependant, but on most systems it is

defined as follows:
type int: range —2147483648 .. 2147483647,

(range)
’range’ (expression)

(range type)
(range)

i

.” (expression)

1.2.3.2 Modulo type

A modulo type is an integer type which values can range from O to m — 1 where m is a specified value called the modulo value.
This one must be a numerical expression, statically evaluable, and strictly positive.

(modular type) = ’'mod’ (expression)

10 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

1.2.3.3 Enumeration type

An enumeration type consists in a non empty collection of distinct enumeration constants. The boolean type bool is a prede-
fined type which is defined as:

type bool: enum (false, true);

It will be referred in the remainder as the boolean type.

s s

(enumeration type) ‘enum’ ’ (’ (enumeration constant) (*,” (enumeration constant))”)’
(enumeration constant) = (name)

1.2.3.4 Vector type

Elements of a vector type (or array type) consist in a set of contiguous elements of the same type, called the element type,
that may be accessed by specifying an index, or more precisely a list of indexes. These indexes must be of discrete types. The
number of elements in the type is equal to the product of the cardinals of the types which form the index.

(vector type) = ’vector’ [’ (index type list) *1’ *of’ (type name)
(index type list) == (type name) (’,” (type name))"

1.2.3.5 Structured type

Elements of a structured type consist in contiguous elements called components which may be of different types. Each com-
ponent is identified by a name. The number of elements in the type is equal to the number of components in the declaration.

(struct type) = ’struct’ '{’ ((component))* '}’
(component) n= (type name) (component name) ’;’
(component name) = (name)

1.2.3.6 List type

An element of a list type is a list which is defined as a finite sequence of elements of the same type. The same item may appear
several times in a list. The following line declares a list type called bool_list .

type bool_list: list[nat] of bool with capacity 10;

An element of a list of type bool_list has the boolean type. The index type of bool_list is the type between brackets, i.e.,
nat. Let us note that this type must be discrete. Indeed, we will see later that the elements in a list can be directly accessed via
indexes. For example, let us consider a list 1 of type bool_list . The expression 1[0] will denote the first element of the list,
1[1] the second one and so on.

The capacity of a list type is the maximal length of any list of this type. The expression provided must be statically
evaluable and strictly positive. Here the capacity is 10. This means that a list of type bool_list cannot contain more than 10
booleans.

(list type) == ’1list’ [’ (type name)’1’ *of’ (type name) 'with’ *capacity’ (expression)

1.2.3.7 Set type

Sets are similar to lists except that the same item may not appear several times in a set. Sets are not indexed. Therefore no
index type may be provided. As for list types a capacity must be specified.

(set type) = ’set’’of’ (type name)’with’ ’capacity’ (expression)

1.2.3.8 Subtype

Discrete types can be subtyped. Each subtype has a parent (which can also be a subtype) and is defined by a constraint which
limit the set of values which belong to the subtype.

A constraint simply consists of a range which must be statically evaluable and which bounds must belong to the parent of
the subtype.

Here are some examples of subtypes definitions:

1.2. NET SPECIFICATION LANGUAGE 11

type small : range 0..255;

subtype very_small : small range 0..15;
// subtype very_small is equivalent to small without the values from 16 to 255

type color : enum (chestnut, dark_blue, green, blue, pink, yellow);

subtype light_color : color range green .. yellow;
// subtype light_color contains values green, blue, pink and yellow

subtype very_light_color : light_color range pink .. yellow;
// subtype very_light_color contains values pink and yellow

The subtypes nat (natural numbers), short (short numbers), and ushort (unsigned short numbers) are predefined subtypes
defined as follows:

subtype nat : int range O .. int’last;
subtype short : int range — 32768 .. 32767,
subtype ushort : int range 0 .. 65535;

where int’ last is the last value of type int (see Section 1.2.9.15).

(subtype) (subtype name) * :” (parent name) [{constraint)]
(subtype name) = (type name)

(parent name) = (type name)

(constraint) (range)

1.2.4 Constants

As in programming languages, constants may be defined at the net level. A constant is defined by using the keyword constant.
It must necessarily be assigned a value which must have the type of the constant.

(constant) ’constant’ (type name) (constant name) * : =" (expression) ’;’
(constant name) = (name)

1.2.5 Places

The state of a system modeled by a Petri net is given by the distribution (or marking) of items called tokens upon the places
of the net. In high level nets, these tokens are typed. This type is given by the domain of the place. In the class of high level
nets of Helena, domains of places are products of basic data types. Tokens are denoted by lists of expressions placed between
the two symbols <(and)>. The same token may appear several times in a place. We call multiplicity of a token the number
of repetitions of this token in the place. The marking of a place will be noted as the linear combination of the tokens in the
place. For instance the marking

2x<(1,false)> + 4x<(2,true)>
of the place p defined as
place p { dom: int % bool; }

is the marking which contains 2 occurrences of token <(1, false)> and 4 occurrences of token <(2,true)>. In others words,
the multiplicity of token <(1, false)> is 2, the multiplicity of token <(2,true)> is 4, and the multiplicity of all the others tokens
is 0.

The domain is the only attribute that must be specified by the user. Several optional attributes of the place can also be
defined.

(place) = ’place’ (place name)’{’ (place domain) ({place attribute))" ’}’
(place attribute) = (initial marking)
| {capaciy)

| (place type)

12 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

1.2.5.1 Domain

Domains of places are products of basic data types. The keyword epsilon is used to denote the empty product. In this case, the
place is equivalent to an ordinary Petri net place. Each time a place is declared a type is implicitly declared which correspond
to the domain of the place. This type belongs to a special family of types called token types. A token type is some kind of
structured type which elements are given by the domain of the place. A token type is hidden from the user, and can thus not
be used. Token types are only used in iterators (see Section 1.2.9.16).

(domain) = ’dom’ ’:’ (domain definition) ’;’
(domain definition) = ’epsilon’

| (types product)
(types product) = (type name) (%’ (type name))"

1.2.5.2 Initial marking

The initial marking, i.e., before the firing of any transition, of a place can be defined in the place description. Any valid arc
label can be used to initialise the marking of a place.

5 9

(initial marking) == ’init’’:’ (marking)’;’
(marking) (arc label)

1.2.5.3 Capacity

We call the capacity of a place, the maximal multiplicity of any item in this place. In the formal definition of Petri nets, this
capacity is infinite. However, the amount of available memory being finite, an implementation must fix this one. The capacity
specified must be a numerical expression, statically evaluable and strictly positive. Errors can be raised at the run time if the
supplied capacity is not sufficient.

LI

(capacity) = ’capacity’’:’ (expression)’;’

1.2.54 Type

A type can be associated to each place of the net. This type specifies the kind of information which is modeled by the place.
Several types are allowed:

Process places model the control flow of processes.
Local places model resources local to a process, e.g., a local variable.
Shared places model resources shared by several processes of the system, e.g., a global variable.

Protected places model shared resources which can not concurrently be accessed by the processes, e.g., a global variable
which is protected by a lock.

Buffer places model communication buffers between processes.

Ack places are special buffer places. An ack place models an acknowledgment of a synchronous exchange between two
processes.

Chapter 5, Section 5.3 gives more details on the use of this feature.

Remark. Since it is usual to name places or transitions process, local, ..., buffer we decided not to include these in the
list of reserved words.

(place type) = type’ ’:’ (place type name)’;’
(place type name) ::= ’process’

| ’local’

| ’shared’

| ’protected’
| ’buffer’

|

s

ack’

1.2. NET SPECIFICATION LANGUAGE 13

1.2.6 Transitions

Transitions of a Petri net are active nodes that may change the state of the system, that is, the distribution of tokens in the
places. Transitions need some tokens in their input places to be firable and produce tokens in their output places. To further
restrain the firability of a transition, inhbitor arcs may be used to specify that some tokens must not be present in a specific
place. In high level Petri nets, arcs between places and transitions are labeled by expressions in which variables appear. Thus,
a transition is firable for a given instantiation (or binding) of these variables. In Helena, these variables are not explicitely
given in the definition of the transition. A variable is implicitly declared if it appears in an arc between the transition and
one of its input places, at the top level (i.e., not in a sub expression) and in a non guarded tuple (see Section 1.2.10.2 for
more details on tuples). The user may also let Helena bind a variable by picking its value in a specific domain. We call these
variables the free variables of the transition and they appear in the pick section of the transition. Rather than repeating the
same expression it is also possible to assign this expression to a bound variable declared in the let section and then replace
the expression by the bound variable wherever it occurs.

The reader may find in Section 5.1 a brief description of the algorithm used by Helena to evaluate transitions and the
conditions under which a transition is evaluable.

Transitions in Helena are identified by a name. The description of a transition must specify the input and output places of
the transition followed by inhibitor arcs (if any), free variables (if any), bound variables (if any) and finally its attributes: a
guard, a priority, a description and a safe attribute.

(transition) = ’transition’ (transition name)
> { (transition inputs)
(transition outputs)
[(transition inhibitors)]
[{transition free variables)]
[{transition bound variables)]
((transition attribute))” '}’

transition name) (name)

transition inputs) ’

(
(
(transition outputs)
(
(

in’ { ((arc)) '}

out’ " {’ ({arc))" "}’
’inhibit’ " {’ ((arc))"}’
transition guard)

transition priority)

{
(

| (transition description)
(

transition inhibitors)
transition attribute)

1.2.6.1 Arcs

An arc is characterized by the place from which we remove, add or check tokens and by an expression specifying for a given
instantiation of the variable of the transition considered tokens.
The description of arc labels appear later in this section.

{arc) = (place name)’ :’ (arc label)’;’

1.2.6.2 Free variables

Free variables must appear in the pick section of the transition. The value of a free variable can be picked within
e a discrete type. A range can be specified to avoid considering all possible values of the type.
e Or, a container, i.e., a set, a list.

Note that variables of the transitions may appear in the definition of free variables.
When computing enabled bindings at some marking, Helena considers all possible values that can be picked for free
variables. For example, the following pick section:

pick {
i in int range 1..5;
b in bool;

14 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

will potentially multiply by 10 the number of enabled bindings of the corresponding transition since we will generate all the
possible values of (i,b) € {1,2,3,4,5} x { false, true}.

‘pick’ *{’ ((free variable)) *}’
(free variable name) >in’ (free variable domain)

(type name) [(range)]
| (expression)

(transition free variables)
(free variable)
(free variable domain)

1.2.6.3 Bound variables

The let section of a transition declaration is provided to declare bound variables that are used to avoid repeating the same
expression in the transition. Note that bound variables are always evaluated after input arcs and free variables. Hence, they
may not appear in these arcs or in the definition of free variables but can appear at all other places within the transition
declaration: in the output or inhibitor arcs, in the guard and in the priority.

For instance, the following declaration:

transition t {
in { q: <(x)>; } out { r: <(f(x))>; }
guard: f(x) > 0;

1

if equivalent to:

transition t {
in { q: <(x)> } out { r: <(y)> }
let { int y := f(x); }
guard: y > 0;

’let’ ’ {’ ({transition bound variable))" '}’
(type name) (variable name) ’ : =" {(expression) ’;’

(transition bound variables)
(transition bound variable)

1.2.6.4 Guard

Transitions can be guarded by a boolean expression. This guard is an additional condition that the variables of the transition
must fulfill for a binding to be firable.

s

(transition guard) = ’guard’ ’:’ (guard definition)’;
(guard definition) = (expression)

1.2.6.5 Safe attribute

Transitions can be declared as safe. A transition binding is safe if it can not be disabled by the firing of any other binding. If
a transition is safe all its bindings are considered by Helena as safe. Please report to Chapter 5, Section 5.3 for further details
on this feature.

(safe) = ’safe’’;’

1.2.6.6 Priority

Transitions can be prioritized. A valid priority is any expression of type int. A transition may not fire for a given binding
if another binding (of the same or any other transition) with a greater priority is also enabled. By default, the priority of any
binding is 0. It is allowed to refer in a priority expression to all variables of the transition. Moreover the priority system
of Helena is dynamic in the sense that the content of a place may also be used to define a priority using e.g., iterators (see
Section 1.2.9.16). Hence, the priority of a transition depends on the current system state.

Let us consider the following definitions.

transition t {
in { q: <(x)>; }
out { r: <(x)>; }
priority: (x = 0 and p’card > 0) ? 1 : O;

1.2. NET SPECIFICATION LANGUAGE 15

}
Then it follows, that transition t has priority 1 for binding x=0 and if place p is not empty. Otherwise it has priority O.

(transition priority) = ’priority’ ’:’ (expression)’;’

1.2.6.7 Description

The default string printed by Helena to describe a transition may be replaced by providing a description. This description
consists of a formatting string (following the C conventions) followed by the expressions that may appear in this string. All
these expressions must be of discrete types.

Here is an example of transition description:

transition t {
in { q: <(x)>; }
out { r: <(x, b)>; }
pick { b in bool; }
description: "move_%d from_g to_r", X;

(transition description) = ’description’’:’ (string)[’,’ (non empty expression list)]’;’

1.2.7 Functions

The user is allowed to define functions which may then appear in arc expressions or in the property to verify. Functions can
not have any side effect. They are functions in the mathematical sense: they take some parameters, compute a value and
return it. Two alternatives are possible to write the body, i.e., the effect, of a function. First, it can be written in the language
provided by Helena that is described bellow. Second, it is possible to import it from a C function, that is, to write it directly in
C and then to invoke Helena with option -L in order to link the appropriate object files. This second alternative is described
in Chapter 4. To allow the definition of mutually recursive functions, the prototype, i.e., name, parameters and return type of
the function, must be specified before its own body. The prototype and the body must naturally match. A function becomes
visible as soon as its prototype or body is declared.

(function) = (function declaration)
| (function body)
(function prototype) = ’function’ (function name)
> (* (parameters specification) *)’ *=>" (type name)
(function declaration) == {function prototype) ’ ;’
(function body) = ’import’ (function prototype) ’;’

(function prototype) (statement)

(parameters specification) [(parameter specification) (", (parameter specification))”]
(parameter specification) (type name) (parameter name)
(function name) = (name)

(parameter name) = (name)

1.2.8 Statements

Helena allows rich possibilities to write functions: conditional statements (if, case), loop statements (for, while), sequence of
statements (block), assertions return and assignments statement. Except for the for statement, each has the same semantic as
C’s corresponding statement.

(assignment)

(if statement)
(case statement)
(while statement)
(for statement)
(return statement)
(assert statement)
(block)

(statement) =

16 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

1.2.8.1 Assignment

The assignment statement evaluates an expression and assigns its value to a variable. The variable assigned can be a simple
variable a structure component a vector component or a list component. Assigned expression must naturally have the same
type as the variable.

(assignment) = (variable)’ :=" (expression) ’;’

1.2.8.2 If-then-else

An if statement evaluates a boolean expression, and according to its value executes either the (true statement) either the (false
statement) if it exists.

(if statement) = Cif’ 7 (expression) ’)’ (true statement) ['else’ (false statement)]
(true statement) = (statement)
(false statement) = (statement)

1.2.8.3 Case

A case statement evaluates an expression and according to the value of this expression chooses an appropriate alternative.
A default alternative can be defined. Expressions which appear in the alternatives must have the same type as the evaluated
expression and must be statically evaluable. In addition, two different alternatives can not have the same expression.

All possibilities may not be covered. If an alternative is not covered, and the evaluated expression falls into this alternative,
the case statement has no effect.

(case statement) = ’case’ (" {expression)’)’ > {’ ((case alternative)) [(default alternative)] ’}’
(case alternative) n= (expression) ' :’ (statement)
(default alternative) = ’default’’:’ (statement)

1.2.8.4 Return

A function returns a value by a return statement. An expression is evaluated which correspond to the value returned by the
function. The type of this expression must be the return type of the function in which the return statement appear. All state-
ments appearing after the return statement are ignored.

(return statement) = ’return’ (expression)’;’

1.2.8.5 Block

A block is a list of variables or constants declarations followed by a sequence of statements. A block start with the token {
and terminates with the token }. Each variable declared in the block is naturally visible as soon it is declared. Its visibility
terminates with the end of the block. A variable declared in the block hides previously declared variables with the same name.

(block) =’ {* ((declaration))” ((statement))* *}’

(declaration) = (constant declaration)

| (variable declaration)

(variable declaration) ::= (type name) (variable name) [’ : =" (expression)]’;’
(variable name) = (name)

1.2.8.6 While

Helena’s while statement has exactly the same semantic as C’s while statement: as long as the boolean expression is evaluated
to true, the enclosed statement is executed.

(while statement) = ’while’’ (’ (expression)’)’ (statement)

1.2. NET SPECIFICATION LANGUAGE 17

1.2.8.7 For loop

A for statement iterates on all the possible values of some variables called the iteration variables. Iteration variables are
implicitly declared with the for statement. Thus, if another variable with the same name has been previously declared, it is
hidden in the for statement. In addition, iteration variables are not visible outside the for statement and they are considered
as constant in the enclosed statement. The domain of an iteration variable is evaluated once, before entering the loop. Thus,
even if the bounds depend on some variable which value is changed in the for, it will have no consequence on the iteration.

We will call iteration scheme a list of iteration variables. These schemes appear in for loops, in iterators (see Sec-
tion 1.2.9.16) or in front of tuples that label the arcs (see Section 1.2.10.2) of the net. The domain of an iteration variable v
can be:

e a discrete type t. The iteration variable successively takes all the values of t from the first one to the last one. The
iteration may be limited to a specific range. The type of the iteration variable is t.

e aplace p. In this case, all the tokens present in the place at the current state will be considered. The type of the iteration
variable is the token type of p, the different components of the token may then be accessed using the syntax v—>1.

e a container c, that is, any expression which has a set or a list type. In this case, all the items in the container will be
considered. If the container is a list, it will be traversed from the first element to the last. If it is a set, no assumption
can be made on the order of traversal. The type of the iteration variable is the element type of the type of c.

In the case of for loops, place iteration variables are not allowed.
In the following example we define a function compute_sum which computes the sum of some integers contained in a set.

type int_set: set of int with capacity 10;
function compute_sum (int_set s) —> int {

int result := 0;

for (item in s) result := result + item;

return result;

}

(for statement) = foxr’ ’ (’ (iteration scheme))’ (statement)

(iteration scheme) = (iteration variable) [’ ,’ (iteration variable)]

(iteration variable) ::= (variable name) ’in’ (type name) [{range)]
| (variable name) *in’ (place name)
| (variable name) *in’ (expression)

1.2.8.8 Assertion

Assertions can also be placed in functions. The boolean expression associated to an assertion is checked, and if this expression
is evaluated to false the search is immediately stopped.

i

(assert statement) = ’assert’’:’ (expression)’;’

1.2.9 Expressions

Helena has been primarily designed to manage the verification of realistic software systems. Thus, we naturally decided to
include in Helena a wide range of possibilities concerning expressions.
Some remarks:

e Each expression has a single type that Helena tries to guess at the parsing stage. When Helena has to choose between
several types for a given expression, the widest possible type is chosen. For instance, 0 > 2 will be considered as a
comparison between two constants of type int. If Helena can not choose between different types, an ambiguity error
will be raised.

e Iterators and token components are special kinds of expressions that can only appear in a property specification. These
form the family of complex expressions. Attributes related to a place also belong to this family.

e An expression is said to be statically evaluable if no variable and no function call appear in all its sub expressions.

18

CHAPTER 1. HELENA SPECIFICATION LANGUAGE

e Expressions may raise errors at the run time such as division by 0, cast error, Out of range errors form a special
type of error since they are not detected at the evaluation of sub expressions but at the whole expression evaluation. Let
us consider for instance the following type declaration:

type my_type:
my_type i;

range 1

10;

The expression i — 1 > 1 will never raise an error even if i has value 1 since the whole expression is correct. However,

the statement i :=

i — 1 will raise an error if i = 1, since the final expression is out of the range of type my_type.

(expression) = 7 (" (expression) ’)’ | (numerical constant)
| (enumeration constant) | (variable)
| (predecessor-successor operation) | (integer operation)
| (comparison operation) | (boolean operation)
| (function call) | ({cast)
| (if-then-else) | (structure)
| (structure component) | (structure assignment)
| (vector) | (vector component)
| (vector assignment) | (empty list)
| (list) | (list component)
| (list assignment) | (list slice)
| (list concatenation) | (list membership)
| (empty ser | {sen
| (set membership) | (set operation)
| (token component) | (artribute)
| (iterator)
(expression list) n= €

| (non empty expression list)
(non empty expression list) = (expression) (", (expression))”

1.2.9.1 Numerical and enumeration constants

Constants are the most basic expressions. The resulting expression has the value of the constant. For a numerical constant,
the resulting expression is of any integer type (range or modular) which greatest bound (in absolute value) is greater than the
constant. For an enumeration constant, the resulting expression is of any enumeration type which includes the constant.

(number)
(name)

(numerical constant)
(enumeration constant) — ::=

1.2.9.2 Variable

We call variable any expression which can be assigned a value. It is either a simple variable, either a component of a structure,
a vector, or a list. The type of the expression depends on the declaration of the variable. Structure, vector, and list components
will be described later in the section.

(variable) = (variable name)
| (structure component)
| (vector component)
| (list component)

1.2.9.3 Predecessor and successor operators

The succ and pred operators allows to pick the successor and predecessor of a discrete value. Let t be a discrete type and e
be an expression of this type.

o If t is a numerical type pred e is equivalent to e — 1 and succ e is equivalent to e + 1. An error may be raised if t isa
range type and the pred (resp. succ) operator is applied on the first (last) value of the type.

e If t is an enumeration type, the evaluation directly depends on the declaration of the t. For instance, if we consider the
following declaration

1.2. NET SPECIFICATION LANGUAGE 19

type color: enum(red, green, blue);

then we have succ red = green = pred blue, and succ blue = red.

(predecessor-successor operation) = ’pred’ (expression)
'succ’ (expression
D

1.2.9.4 Integer arithmetic

All the classical operators are allowed to perform integer arithmetic: the binary +, —, /, * and % (modulo) operators, and the
unary + and — operators. In the case of a binary operator both operands must be of the same type.
Let t be the type of the operand(s). The type of the resulting expression will also be t. Its value depends on t.

e If t is a range type the expression has the conventional meaning. A division by 0 will raise an error.

e If t is a modulo type, the operation is done as for a range type. The resulting value is then normalized as follows. Let
m be the modulo value of the type and r be the result of the operation. If r is positive or zero, the value of the resulting
expression is ¥ mod m. If it is negative, the resultis r+m- (1 + ((—=r)/m)) modm. A division by 0 also raises a run

time error.

(integer operation) = (expression) '+’ (expression)
| (expression) =" (expression)
| (expression) '+’ (expression)
| (expression) '/’ (expression)
| (expression) %’ (expression)
| "+’ (expression)
\ = (expression)

1.2.9.5 Comparison operators

The comparison operators = and != are defined for any type.
e For discrete types, the equality test is straightforward.

e Two structured expressions are equal if all their corresponding components are equal.

Two vectors are equal if they contain the same elements at the same indexes.
o Two lists are equal if (1) they have the same length and (2) they contain the same elements at the same indexes.
e Two sets are equal if they contain the same elements.

The operators >, >=, < and <= are only defined for discrete and set types.
e For integer types, the comparison is straightforward.

e Enumeration types are ordered according to the way the type has been declared. For instance, let us consider the
following declaration: type color: enum(red, green, blue); It follows from the declaration that red < green < blue.

e For set types, it holds that s1 > s2 if and only if the set s2 is a (strict) subset of the set s1.

A comparison operation has the boolean type.

(comparison operation) = (expression) '=" (expression)
| (expression) ’'=" (expression)
| (expression) >’ (expression)
| (expression) ’>=" (expression)
| (expression) <’ (expression)
| (expression) ’<=" (expression)

20 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

1.2.9.6 Boolean logic

Boolean connectors are essential to express complex boolean expressions used, for example, in transition guards. The lan-
guage includes the classical or, and and not operators. The operand(s) of these operators must have the boolean type, which
is also the type of the resulting expression. We thus forbid expression such as 1 or 0 which are allowed by the C language.

(boolean operation) = (expression) ’ox’ (expression)
| (expression) ’'and’ (expression)
| ‘not’ (expression)

1.2.9.7 Function call

Functions previously declared can be called. The syntax of a function call is the same as in the C language. If the function
does not take any parameter, () must follow the function name. The type of the expression is the return type of the function.
The parameters passed to the function must fit with the function declaration: the number of parameters must be the same in
the declaration and in the call, and the type of each parameter must be the same type as in the declaration. The value of the
expression is the value returned by the function for the parameters specified.

(function call) = {function name) ’ (’ {expression list) ")’

1.2.9.8 Cast

Type casting allows to convert a value of any discrete type to another type. The “source” and “target” types must have at least
one value in common. Errors will be raised at the run time if the cast fails, i.e., the value of the casted expression does not
belong to the type in which the expression is converted.

(cast) == (type name)’ (’ (expression)’)’

1.2.9.9 If-then-else

The if-then-else expression taken from the C language is allowed in Helena. An if-then-else consists in a boolean condition,
and two expressions which must have the same type. The condition is evaluated. If it is evaluated to true, the resulting ex-
pression is the first expression. Else, it is the second one. The resulting expression has the type of the true and false expressions.

(if-then-else) (condition) *?’ (true expression) :’ (false expression)
(condition) = (expression)
(
(

(true expression) expression)
(false expression) = (expression)

1.2.9.10 Structures

Structures can be handled in Helena in three different manners.

Firstly, a structure can be constructed by placing all its elements between characters { and }. In this case, the expression
is of any structured type which have the same number of components as the structure. In addition, each expression of the
structure has to be of the same type as the component declared at the same position in the structured type. For instance if we
consider the following type declaration

type t:
struct {
int 1i;
bool b;

}s
the expression {—35, false } has (at least) type t. Its first component i has value —35, and its second component b has value
false .

A second possibility to manipulate structures is to access a component of the structure. If we let s be an expression of type
t, s. 1 denotes the value of the component i of s. This expression is only valid if t is a structured type which has a component

1.2. NET SPECIFICATION LANGUAGE 21

named i. If these conditions are met, the type of s.1i is the type of component i in the declaration of t, and its value is the
value of the component i of s. Please note that we do not allow constructions such as {10, false }.i. The structure accessed
must be a variable.

At last, structures can be manipulated by using the :: operator. This construction is a shortcut to “assign” an expression to
a component of a structure. Let us consider for instance the expression s :: (b := not s.b) where the type of s is the type t
previously defined. This expression has the same type of s, i.e., t, and has the same value of s except that its component b is
replaced by the expression at the right of symbol :=. To be correct such an expression must respect three rules:

1. Expression s must have a structured type t.
2. The replaced component, i.e., before symbol := must be a component of type t.

3. The expression after symbol := must have the same type as the the replaced component in the structured type declaration.

(structure) = {’ (non empty expression list) ’ }’
(structure component) = (variable) ’ .’ (component name)
(structure assignment) = (expression)’::’ ’ (’ (component name) ’ :=" (expression)’)’

1.2.9.11 Vectors
The handling of vectors is very similar to the handling of structures. Three basic constructions allow to do this.

Firstly, vectors can be constructed by placing the list of elements in the vector between characters [and]. All the elements
in the vector must have the same type. The vector can be of any type which fulfills the two following conditions:

1. The element type of the vector type must be the same as the type of the expressions in the vector expression.
2. The number of elements of the vector type must be greater or equal to the length of the list.

The order of values in a vector is determined from left to right. If the size of the vector, i.e., the length of the expression list in
the vector, is less than the number of elements of the vector type, the last expression in the vector is used for the non specified
elements.

Let us consider for instance the following vector type declaration:

type bool_matrix: vector [bool, bool] of bool;
and the following variable declaration

constant bool_matrix ml := [false, false, true];
constant bool_matrix m2 := [false];

The vector m1 and m2 will be defined by:

ml[false , false] = ml[false ,true] = false
ml[true , false] = ml[true,true] = true
m2[false ,false] = m2[false ,true] = m2[true, false] = m2[true,true] = false

Let us recall that the predefined type bool is defined as: type bool : enum (false, true);

Secondly, a specific element of a vector can be accessed. Let us consider the type bool_matrix previously defined and m
a variable of this type. The expression m[false, false] is a boolean expression, i.e., the type of the elements of vector type
bool_matrix, and its value is the value of the element of m which index is [false , false].

At last, an element of a vector can be assigned an expression. The syntax is close to the syntax of a structure assign-
ment. Instead of specifying the name of a component, an index of the vector is supplied. For instance, the expression
m :: ([true, false] := m[false,true]) has the same type as m. Its value is the vector m in which the element at index
[true, false] has been replaced by the element at index [false , true].

(vector) = [’ (non empty expression list) ’ 1’
(vector component) = (variable) ’ [’ (non empty expression list) ’1’
(vector assignment) = {expression)’::’ " (’ [’ (non empty expression list) °1’ > : =" (expression) ")’

22 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

1.2.9.12 Lists

Lists can be handled in the same way as vectors and structures. We will illustrate the different possibilities with the help of
the type int_list defined below.

type int_list: list [nat] of int with capacity 10;

First, we can construct the empty list, i.e., that does not contain any element, with the help of the keyword empty as in the
example below.

constant int_list empty_list := empty;
A list can also be constructed by placing all its elements between two ’ |’ characters. For example:
constant int_list 1 := |1, 2, 3, 4, 51;

The list 1 is a list of five integers. Its element at the first index is the constant 1. At the second index there is the constant 2,
and so on.

The elements of a list can be accessed via their indexes, as for vectors. For example, if we consider the list 1 previously
defined, 1[0] will be the first element of the list, i.e., 1, 1[1] the second element of the list, and so on. An error will be raised
if we attempt to access an element at an index that does not exist, e.g., [[5].

Let us note that the classification starts at O since the index type of int_list is nat. If this index type was, for example,
the type short the first element would naturally have index -32768.

It is possible to “assign” a value to an element of a list at a specified index. The syntax is the same as for vectors except
that only one index can be specified. If we consider the list 1 previously defined then the expression 1 :: ([2] := 10) has
type int_list . Its value is the list 1 in which the element at index 2 has been replaced by the constant 10. In other words,

1 (2] :==10) = I1, 2, 10, 4, SI.

An error is raised if an attempt is made to assign a value to an element at an index which does not exist, e.g, 1 = ([5] := 10)

is an error.

Another possibility is to extract a slice, i.e., a sub-list, from a list. To do so it is necessary to provide the indexes of the
first and the last elements desired. The resulting slice consists of the sub-list which contains all the elements of the original
one from the first index to the last index. As an example let us considered the list 1 previously defined. Then 1[1 .. 3] is
equivalent to the list 11 [1], 1[2], 1[3]l. Itis important to notice that in the resulting list the index of the first element will
still be 0, i.e., the first value of the index type nat and not 1.

To be correct a slice must be such that both the first and the last index must be less than (or equal to) the index of the last
element of the list. If the index of the last element is less than the index of the first one the resulting list is the empty list.

Two lists may be concatenated using the binary & operator. One of its operands must have a list type 1 which is also the
type of the resulting expression. The other operand must have the type 1 or the element type of 1. Here are some examples of
concatenations with the value of the resulting expression.

1, 2, 3, 41 &5 =11, 2, 3, 4, 5l
1& 11, 2, 3l &5 =11, 1, 2, 3, 5l
1, 2, 31 & 14, 5, 61l =11, 2, 3, 4, 5, 6l

The concatenation of two lists may raise an error if the number of elements of the resulting list exceeds the capacity of the
corresponding list type.

It is possible to check if an item belongs to a list by using the in operator. For instance:

5in 11, 2, 51 = true
2 in 11, 5, 2, 51 = true
3 in 11, 51 = false

The resulting expression has the bool type. The expression e in 1 is evaluated to true, if there is an index i such that I[i] =e
or false otherwise.

Lastly, list have some attribute that may be useful. We can for example extract the prefix or the suffix of a list or select the
first element of a list. List attributes are described later in Section 1.2.9.15.

1.2. NET SPECIFICATION LANGUAGE 23

(empty list) i= ’empty’

(list) = |’ (non empty expression list) |’

(list component) = (variable)’ [’ (expressi0n> T

(list assignment) = (expression) ’::" > (* " [’ (expression) ']’ ’:=" (expression))’
(list slice) n= (expression) ' [’ (expresswn} . .” {expression) ’]’

(list concatenation) = (expression)’&’ (expressmn>

(list membership) = (expression)’in’ (expression)

1.2.9.13 Sets

Some constructions are common for sets and lists. For example it is possible to construct an empty set with the help of the
empty keyword. A set can also be defined by placing all its elements between two ’ |’ characters.

Set membership is realized through the in operator as for lists.

The or, and and — operators may be used to compute the union, intersection, and differences of two sets. One of the
operands of these operators must be a set while the other can be a a set of the same type or an expression of the element type
of the set. A run time error will naturally be raised if the cardinal of the resulting set exceeds the capacity of its type.

At last lists and sets have many attributes in common. You will find a complete list of these attributes at Section 1.2.9.15.

Let us examine some examples that illustrate the use of sets.

type int_set: set of int with capacity 10;

constant int_set sl := |1, 2, 31;
constant int_set s2 := |1, 2, 31 or 12, 3, 4l1; // s2 =11, 2, 3, 4l
constant int_set s3 := |1, 2, 3| and 12, 3, 41; // s3 = 12, 3l
constant int_set s4 := 0 or |1, 2| or 5; // s4 =10, 1, 2, 5l
constant int_set s5 := I1, 2, 31 — |1, 2I; /7 s5 = |3
constant int_set s6 := |1, 2, 31 — 1; // s6 = 12, 3|
constant bool b := 3 in sl; // b = true
constant bool ¢ := 4 in sl; // ¢ = false
(empty set) = ’empty’
(set) = |’ (non empty expression list) |’
(set membership) = (expression) 'in’ (expression)
(set operation) = (expression) ’or’ (expression)
| (expression) ’and’ (expression)
| (expression) =’ (expression)

1.2.9.14 Token component

Iterator expressions can be used to iterate on the tokens present in a place at the current marking. To check complex conditions
on these tokens, components of tokens can be accessed by specifying the name of the token variable followed by symbol —
and the number of the accessed component of the token type.

For instance, let us consider the following place definition:

place p { dom: int * bool * int; }

If the type of variable t is the token type of place p, then t—>1, t—>2 and t—>3 are three valid expressions. t—>1, and t—>3
have both type int, while t—>2 has type bool. t—>4 is not a valid expression since the domain of place p is a product of three
items.

(token component)
(token)
(component number)

(token) >=>’ (component number)
(variable name)
(number)

1.2.9.15 Attributes

Some elements have attributes that can be used in expressions. The syntax of an attribute is inherited from the Ada syntax: it
consists of the element (e.g., a type name, a place name) followed by the character ° and the name of the attribute. Table 1.1
summarizes the possible attributes and their meaning.

There are several categories of attributes.

24 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

Type attributes Let t be a discrete type of the net.

t’ first and t’ last correspond to the first and the last value of t. Their value depends on the definition of t:

e If t is a range type, defined as range low .. up, then t’ first =low and t’ last =up.
e If t is a mod type, defined as mod N, then t’ first =0, and t’ last =N—1

e If t is an enumeration type, t’ first it is the first element in the list which defines t, and t’ last it is the last
element of the list.

t’card is the cardinal of type t. This expression can have any numerical type. Its value depends on the definition of t.

e If t is a range type defined as range low .. up, then t’ card=1+up—low.
o If t is a mod type defined as mod N, it is N.

e If t is an enumeration type, it is the length of the list which defines t.
Some examples:
e bool’ first =false
e bool’ last =true

e bool’ card=2

Place attributes Let p be a place of the net.
p’card is the number of tokens in place p at the current state. This expression can have any numerical type.

p’mult is the cumulated multiplicities of the tokens in place p at the current state. This expression can have any numerical
type.
For instance, if place p contains the following tokens at the current state:
2x<(2,true)> + <(3,false)> + 4x<(5,false)>

Then we have p’card = 3 and p’mult = 7. Indeed, there are three different tokens in place p at the current state and the sum
of the multiplicities of these three tokens is 7 (2 + 1 + 4).

Container attributes Let c be a container, i.e., an expression of which the type is a list type or a set type.
¢’ size is the size of c, i.e., the number of elements in this container. This expression can have any numerical type.

¢’ capacity is the value of the capacity of the type of c. This expression can have any numerical type.

¢’ space is the remaining space in container c, i.e., the capacity of the type of ¢ minus the number of elements in c. This
expression can have any numerical type.

¢’ full is a boolean expression which value is true if the container is full (i.e., the number of elements in it is equal to the
capacity of the type of c), or false otherwise.

¢’empty is a boolean expression which value is true if the container is empty (i.e., it does not contain any element), or false
otherwise.

The following declarations illustrate the use of these attributes.

type int_set: set of int with capacity 10;

constant int_set sl := empty;

constant int_set s2 := |1, 5, 12, —5I;

constant int_set s3 := |1, 2, 4, 8, 16, 32, 64, 128, 256, 512I;
constant int il := s2’size; // il = 4

constant int i2 := sl ’capacity; // i2 = 10

constant int i3 := s2’space; // i3 =10 — 4 =6

constant bool bl := s3’ full; // bl = true

constant bool b2 sl ’empty; // b2 = true

1.2. NET SPECIFICATION LANGUAGE

Table 1.1: Summary of the possible attributes

Expression Valid if Interpretation
e’ capacity e is a container the capacity of e
e’ card e is a discrete type | the cardinal of e
e is a place the number of distinct tokens in e
e’ empty e is a container e is empty
e’ first e is a discrete type | the first value of e

e is a list

the first element of e

e’ first_index | eisalist the index of the first element of e
e’ prefix e is a list the first elements of e

e’ full e is a container the capacity of e is reached
e’last e is a discrete type | the last value of e

e is a list

the last element e

e’last_index e is alist the index of the last element of e

e’suffix eisalist the last elements of e

e’ length eisalist the length of e

e’mult e is a place the cumulated multiplicities of the tokens in e
e’ space e is a container the remaining space in e

List attributes

type t:

1’ first is the first element of 1. The type of this expression is element_type. A run-time error is raised if 1 is empty.

1’ last is the last element of 1. The type of this expression is element_type. A run-time error is raised if 1 is empty.

Let 1 be a list, i.e., an expression of which the type is a list type t defined as

list [index_type] of element_type with capacity N;

25

1’ prefix is the list which consists of the first elements of 1, i.e., the list 1 from which we remove the last element. The type
of this expression is t. A run-time error is raised if 1 is empty.

1’ suffix is the list which consists of the last elements of 1, i.e., the list 1 from which we remove the first element. The type
of this expression is t. A run-time error is raised if 1 is empty.

1’ first_index is the index of the first element of the list. It always hold that 1’ first_index = index_type’ first . The type
of this expression is index_type.

1’ last_index is the index of the last element of the list. The type of this expression is index_type. A run-time error is raised
if 1 is empty.

Let us have a look at some examples.

type int_list:
constant int_list 1 := 13,

constant int
constant int

constant int_list 11

list [nat] of int

5, 12, -5,
il := 1’ first; //
i2 := 1’ last; //

constant int_list 12 :=
constant nat nl := 1’ first_index; //
constant nat n2 := 1’last_index; //

= 1’ prefix; //
1> suffix; //

with capacity 10;

101;

il =3

i2 =10

1 =13, 5, 12, -5l
2 =15, 12, -5, 10l
nl =0

n2 =4

26 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

(attribute) = (type name) '’ (type attribute)
| (place name) '’ (place attribute)
| (expression) ’'’ (container attribute)
| (expression) '’ (list attribute)
(type attribute) w= ’first’ | ’last’ | ‘card’
(place attribute) u= ’card’ | ’mult’
(container attribute) = ’full’ | ‘empty’ | ’capacity’
| ’size’ | ’space’
(list attribute) n= ’first’ | ’first_index’ | ’prefix’
| ’last’ | ’last_index’ | ’suffix’

1.2.9.16 Iterator
Iterators are provided to express properties that must be verified by the net. The general syntax of an iterator is the following:
iterator (iteration —scheme | condition : expression)

For more precisions on the notion of iteration scheme, please refer to Section 1.2.8.7.

An iterator considers all the tokens present in a place at the current state (if the iteration domain is a place) or all the values
of a discrete type (if the iteration domain is a type) or all the items present in a container (if the iteration domain is a container)
and computes a value. A condition, i.e., a boolean expression, can be specified to limit the iteration to the values which satisfy
the condition. The evaluation of an iterator depends on its type. Different types iterators are provided.

e Iterator forall checks that the expression is evaluated to true for all the possible iterations. The expression provided
must have type bool and so is the type of the resulting expression.

e Iterator exists checks that the expression is evaluated to true for at least one iteration. No expression must be provided
in the iterator. The resulting expression has type bool.

e Iterators min and max compute respectively a minimal and a maximal value. The expression inside the iterator can
have any discrete type. This type is also the type of the resulting expression. If the set over which the variable iterates
is empty, the resulting expression has an undefined value.

e Iterators sum and product compute respectively a sum and a product. The expression inside the iterator can have any
numerical type which is also the type of the resulting expression.

e Iterator card computes the number of iterations that fulfill a condition. No expression must be provided in the iterator.
The resulting expression can have any numerical type.

e Iterator mult is only valid if a single iteration variable is provided and if its domain is a place. It computes the sum of
the multiplicities of the tokens in this place which fulfill a condition. No expression must be provided in the iterator.
The resulting expression can have any numerical type.

We illustrate the use of these iterators on several examples. Let t be the type and p be the place defined by:

type t: range 1..10;
place p { dom: t x bool; }

The marking of place p at the current state is given by the following tokens distribution:
<(1,true)> + 2x<(2,false)> + <(2,true)> + 3x<(4,true)> + 4x<(8,false)>
Let us detail the evaluation of some iterators.

e exists (t in p) = true. Indeed, there are five tokens in place p.

e forall (t in p | t—>2: t—>1 <5) = true. All the tokens in place p which have their second component equal to true
have their first component strictly less than 5.

e card(t in p | not t—>2) =2. There are 2 tokens in place p which have their second component equal to false.

e mult(t in p | t—>2) =5. The cumulated multiplicities of the tokens in p which have their second component equal to
true is 5. These tokens are <(1,true)>, <(2,true)> and <(4,true)>.

1.2. NET SPECIFICATION LANGUAGE 27

e min(t in p : t—>1)=1,max(tin p : t—>1)=8. The minimal and maximal values for the first component of all the
tokens in place p are 1 (for token <(1,true)>) and 8 (for token <(8, false)>).

e sum(tin p | t—>2: t—>1)="7. The sum of the first components of the tokens which have their second component
equal to trueis 7 (1 + 2 + 4).

e product(t in p | not t—>2: t—>1) = 16. The product of the first components of the tokens which have their second
component equal to false is 16 (8 - 2).

e exists (i in t | forall (b in bool : card(t in p | t—>1=i and t—>2=b) = 1)). This expression can be read as fol-
lows: there is an element i of type t which is such that the tokens <(i, false)> and <(i,true)> are present in place p.
This holds for i=2.

(iterator) = (iterator type) * (° (iteration scheme) [(iterator condition)] [(iterator expression)]’)’
(iterator type) = ’forall’ |’exists’ |’card’ |’mult’ |’min’ |’max’ |’sum’ |’product’
(iterator condition) = |’ (expression)
(iterator expression) = :’ (expression)

1.2.10 Arc labels

In high level Petri nets, arcs between places and transitions are labeled by expressions indicating, for a given instantiation of
the variables of the transition, the tokens consumed or produced by the firing. In the high level nets supported by Helena,
these expressions are linear combinations of simpler ones called tuples of expressions or, more simply, tuples. Tuples are lists
of expressions placed between two tokens <(and)>. For instance given two variables X,y, the expression

2x<(x,y)> + <(y,0)>

produces two tokens of type <(0,1)> and one token of type <(1,0)> for the instantiation x=0, y=1.

1.2.10.1 Arc expression

As stated previously, an expression labeling an arc of the net is a linear combination of tuples, or a sum of complex tuples.
Both are defined just afterwards.

(arc label) = (complex tuple) '+ (complex tuple))”

1.2.10.2 Tuples

Tuples are basic components of arc label. They may be guarded by a boolean expression. If this expression is evaluated to

true for the firing instantiation, the corresponding tokens are normally produced. Otherwise, if the condition does not hold,

tokens are not produced. A condition can be specified by placing a construction if (cond) before the tuple. For instance, let

us consider the tuple if (x > 0) <(x)>. If x <=0, the tuple does not produce any token, else it produces a single token <(x)>.
Helena also provides the following syntactical facility: instead of writing

<(x,false ,1)> + <(x,false ,2)> + <(x,true,l)> + <(x,true,2)>
one can prefix the tuple with some iteration scheme (see Section 1.2.8.7):
for(b in bool, i in int range 1..2) <(x,b,i)>

Note that we do not allow the iteration variable to loop over places or containers. Only discrete iteration variables are allowed.
In addition, if a range is specified for an iteration variable then it must necessarily be evaluable statically, i.e., the two bounds
must be evaluable statically.

The two possibilities can also be combined. For instance:

for (b in bool, i in int range 1..2) if(x != i or b) <(x,b,i)>

is a valid tuple.

If the domain of the corresponding place is the empty product epsilon, the only possible tuple is epsilon. The expressions
list in the tuple must correspond to the domain of the corresponding place.

A factor may appear before the tuple to denote the number of tokens produced by this tuple. This one must be a numeric
expression, statically evaluable and positive.

28 CHAPTER 1. HELENA SPECIFICATION LANGUAGE

(complex tuple) = [{tuple for)] [{tuple guard)] [{tuple factor)] (tuple)
(tuple for) = for’’ (’ (iteration scheme))’

(tuple guard) = Cif’’ ((expression)’)’

(tuple factor) == (expression) %’

(tuple) = "< (’ (non empty expression list) *) >’

| ’epsilon’

1.2.11 State propositions

Most properties are expressed by means of state propositions. A state proposition is a boolean expression that usually refers
to the current state using iterators (see Section 1.2.9.16). A proposition has a name meant to be used in properties and simply
consists of an expression.

(state proposition) = ’proposition’ (state proposition name) ’:’ (expression)’;’
(state proposition name) = (name)
1.3 Property specification language

The property specification simply consists of a list of properties. Helena currently supports two types of property: state prop-
erties and temporal properties expressed in the linear time temporal logic (LTL).

(property specification) = ({property))”
(property) = (state property)
| (temporal property)

1.3.1 State properties

State properties form the most basic type of property Helena can analyse. A state property must hold in all the reachable states
of the system.

A state property consists of the keyword reject followed by the description of the states that are rejected during the search.
When a state is rejected by Helena the search stops and Helena displays the trace, i.e., the sequence of transition bindings,
which leads from the initial state to the rejected, i.e., faulty, state. The keyword reject can be followed by:

1. the keyword deadlock. In this case, Helena rejects states in which no transition is enabled.
2. a state proposition name. Helena rejects any state in which the proposition holds.

Accept clauses can be used to limit the rejection of states which do satisfy the reject predicate: if a state verifies at least one
of the accept clauses, then it is considered that the state property holds at this state.
For example, to express that no deadlock can occur we can write:

state property not_dead:
reject deadlock;

Now to specify that the termination state is a valid “deadlock state”, we can write:

state property not_dead2:
reject deadlock;
accept valid_termination;

where state proposition valid_termination has been defined in the net specification as:

proposition valid_termination: termination ’card > O0;

(state property) = ’state’ 'property’ (property name)’:’ (state property definition)
(property name) = (name)

(state property definition) = (reject clause) ({accept clause))"

(reject clause) = ’reject’ (predicate)’;’

(accept clause) = ’accept’ (predicate)’;’

(predicate) = ’deadlock’

| (state proposition name)

1.3. PROPERTY SPECIFICATION LANGUAGE 29

1.3.2 Temporal properties

Helena can also analyse LTL properties. An LTL property is defined by a name and a temporal expression. To be verified, all
maximal executable sequences must match the expression specified. A temporal expression is built using state propositions.
Besides usual boolean operators, a temporal expression can also include the following temporal operators: [] (“globally”), <>
(“finally”) and until .

For instance the following temporal property expresses that once state proposition p holds it holds in all subsequent states
of the sequence.

I1tl property prop: [] (mot P or [] P);

(temporal property) = ’1t1’ ’property’ (property name)’:’ (temporal expression)’;’
(temporal expression) =’ (’ (temporal expression) ’)’

‘true’

"false’

|
|
| (state proposition name)

| ’not’ (temporal expression)

| (temporal expression) *ox’ (temporal expression)

| (temporal expression) ’and’ (temporal expression)

| °[1° {(temporal expression)

| ’<>’ (temporal expression)

| (temporal expression) *until’ (temporal expression)

30

CHAPTER 1. HELENA SPECIFICATION LANGUAGE

Chapter

Using Helena

2.1 Invoking Helena

Using Helena consists of writing the description of the high level net in a file, e.g., my—net . 1na, and the properties expressed
on this net in a second file, e.g., my-net.prop.lna, and to invoke Helena on this file. The command line of Helena has the
following form:

helena [options] my-net.lna
When invoked, Helena proceeds as follows:

1. If the net described in file my-net . 1na is my-net, the directory “/.helena/models/lna/my-net is created.
2. A set of C source files and a Makefile are put in directory “/.helena/models/1lna/my-net/src.

3. These files are compiled and an executable is created which corresponds to the actual model checker for the specific
net.

4. The compiled executable is launched.

5. Once the search is finished, a report is displayed on the standard output. If a property was checked, this report indicates
whether the desired property is verified or not. In the second case, a path leading from the initial marking to the faulty
marking is displayed.

You may find in the HELP .md file of the distribution a detailed help on all available options. Alternatively you may invoke
Helena as follows to get this help:

helena -h=FULL

2.2 Additional utilities

Together with Helena are installed several utilities that we briefly describe here.

2.2.1 The helena-report utility

The purpose of helena-report is to print an XML report that has been created by Helena. This utility is useful in the case where
you have already invoked Helena on a net and you do not want to launch the search again. Here is an example of use of this
utility:

helena my-net.lna

helena-report my-net

where my-net is the name of the net of file my—net . 1na. The search report will then be printed to the standard output.
Alternatively, you can directly pass to helena-report an xml report previously generated. For example the following sequence
of commands is equivalent to the previous one:

helena —-report-file=my_report.xml my-net.lna
helena-report my_report.xml

31

32 CHAPTER 2. USING HELENA

2.2.2 The helena-graph utility

Helena can build the reachability graph of a net in order to display some statistics on, e.g., its strongly connected components.
This is the purpose of the ——action=BUILD-GRAPH option. This option is only meaningful if used in conjunction with the
helena-graph utility. Let us assume that the file my-net.1lna contains the description of net my-net. A typical use of this
combination is

helena --action=BUILD-GRAPH my-net.lna
helena-graph my-net my_rg_report.pdf

e The first command explores the reachability graph of the net and stores it on disk in the model directory (in “/.helena,
by default).

e The second command reads this file and produces a report containing various informations on the graph e.g., in-/out-
degrees of nodes, shape of the BFS level graph, SCCs of the graph, dead markings, live transitions, ...

The output format of this report can be pdf or xml. In the case of a pdf report, you will need pdfiatex as well as the Gnuplot

python library on your system.

2.2.3 The helena-generate-interface utility

This tool is used to generate a C header file containing the translation of types, constants, and functions that can then be used
in imported modules. Please consult Chapter 4 for further help on this tool.

A WN —

Chapter

Examples

In this section we illustrate the possibilities of our description language. The first system studied is a distributed database
system. Then we describe a load balancing system which makes use of more advanced features of our tool. The third example
is the well-known puzzle of the towers of Hanoi. This one illustrates a use of high-level data types provided by Helena.

3.1 The distributed database system

We consider in this system a set of N database managers which communicate to maintain consistent replica of a database. It
is a well-known and recurrent example of the colored Petri nets literature, initially presented by Genrich and later by Jensen.

When a manager updates its local copy of the database, he sends requests to other managers for updating their local copy
(transition Update). As soon as a manager receives such a request (transition Receive) he starts the update of its copy. Its
update finished, each manager acknowledges the initiating manager (transition Send ack). This process finishes when the
initiating manager collects all the acknowledgments (transition Receive acks). Managers can be either Inactive, either Waiting
for acknowledgments, either Performing an update. Places Msgs, Received, Acks and Unused model communication channels
between sites. Thus, N.(N — 1) tokens are distributed upon these places at each marking. At last the correctness of the protocol
is ensured by place Mutex which guarantees that two managers cannot concurrently update their local copy.

Zrep\(s}(s,7) ﬁ_" (s,r)

Update

Receive

type Dis {1...N}
(s,7)

(s,7)

seD,reD

mo(Mutex) = ()
mo(Inactive) = Esep(s)
mo(Unused) = X, epjssr (S, 7)

Send ack

Zrep\(s)(5,7) <_J (s,r)

Figure 3.1: The distributed database system

Listing 3.1: Helena file of the distributed database system (file examples/dbm. 1na)

/3 Sk sk ok ok ok KK koK R KK KK KK K KR KK R KR KK R KR K KR KK KK R KK R KR KK R KK KK R KK KKK KK K KK KK R K R K KR KR kKR K K
*

x Example file of the Helena distribution

*

33

File : dbm.Ina

Author: Sami Evangelista
Date : 27 oct. 2004
Source:

CHAPTER 3. EXAMPLES

Coloured Petri Nets: A high level language for system design and analysis

In Application and Theory of Petri Nets, p.342——416, Springer,

Kurt Jensen

If symbol UNUSED is defined, the model includes the place unused.

dbm (N := 10) { /+x N = number of sites */

type site_id : mod N;

/%
* process places modelling the control flow of processes
*/
place inactive {
dom : site_id;
init : for(s in site_id) <(s)>;
capacity : 1;
type: process;
}
place waiting {
dom : site_id;
capacity : 1;
type: process;
}
place performing {
dom : site_id;
capacity : 1;
type: process;

}

/*
* places modelling communication channels
*/

place sent {
dom : site_id x site_id;
capacity : 1;
type: buffer;

}

place received {
dom : site_id x site_id;
capacity : 1;
type: buffer;

}

place acks {
dom : site_id x site_id;
capacity : 1;
type: ack;

}

#ifdef UNUSED

place unused {
dom : site_id x* site_id;

init : for(s in site_id, r in site_id) if(s != r) <(s,
capacity : 1;
type: buffer;
}
#endif

T

)>;

1989

3k ok ok ok ok ok ok oK oK K K oK K K Kk R ok sk ok ok oK ok oK K oK ok K Kk kK ok ok ok oK oK oK ok o o o KKk Rk sk ok ok ok oK K K ok ok ok R KRRk Rk kkk sk ok k k %/

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

3.1. THE DISTRIBUTED DATABASE SYSTEM

place mutex {

dom : epsilon;

init : epsilon;
capacity
type: shared;
}
transition update_and_send {
in {
inactive <(s)>;
mutex epsilon;
#ifdef UNUSED
unused for(r in site_id) if(s != r) <(s, r)>;
#endif
}
out {
waiting <(s)>;
sent for(r in site_id) if(s != 1r) <(s, r)>;
1
}
transition receive_acks {
in {
waiting <(s)>;
acks for(r in site_id) if(s != r) <(s, r)>;
1
out {
inactive <(s)>;
mutex epsilon;
#ifdef UNUSED
unused for(r in site_id) if(s != r) <(s, r)>;
#endif
}
}
transition receive_message {
in {
inactive <(r)>;
sent <(s, r)>;
}
out {
performing <(r)>;
received <(s, r)>;
}
}
transition send_ack {
in {
performing <(r)>;
received <(s, r)>;
}
out {
inactive <(r)>;
acks <(s, r)>;
}
}
/*

* Sstate propositions

x/

proposition site_waiting: waiting *card > O0;

35

Listing 3.2: Helena file of the distributed database system properties (file examples/dbm.prop.1lna)

O O R

36 CHAPTER 3. EXAMPLES

/%
* a site waiting for answer will eventually leave this state
*/
Itl property bounded_wait:
([1 (site_waiting => <> (not site_waiting)));

3.2 The load balancing system

We propose to specify and verify a simple load balancing system with Helena. The full net is illustrated by Figure 3.2. Initial
markings and transition guards have been omitted to clarify the figure.

CLIENTS LOAD BALANCER SERVERS

<(c, least(l))>

balancer_idle . server_request _server_idle
. . <(decr(incr(l, least(l)), most(1)))> 77N
client_idle ()
i N
i
<(c)> <(s)> <(e.s)
<(c)> <=1 | N e F- <(s)>
: A Server_notificatign
. A
client_send —_— - 1 - — |. A [—
balancer_feceive_client balancer_recgive_nptificqtiornz| : rservef_notify
A - - Z 1 '
“«(c)> <(c)> client_request <(1,¢)>] Az <(decr(l)) N 2 [T <(s)> <(s,c)>
i Al Y Vo
T = i < e
<(c)> B v | server_nofification_ack Y server waiting
client_waiting balancer_routing &| balgncer_balancinf [B Rt w)
2’ A <(s)y __/
g <(1) <(1)> s i
<(c)> <(1,¢)>| | Z <(s,c)> <(s)>
v =
. . 53
client_receive baln‘nccr,rulc balancer_no_balance ~ balancer_baldnce v server| receive
<(c)> client_ack <(s,c)>
<(c)> X sery er_processing
()
/
<(s,c)>
server_send

Figure 3.2: The whole load balancing system

In this system, we have two kinds of process: a set of clients and a set of servers. An additional process called the load
balancer distribute requests of clients to servers. Its task is also to redistribute pending requests when servers accept requests
in order to maintain the loads of servers balanced.

The clients We note C the number of clients considered. Clients are numbered from 1 to C. The behavior of the clients is
quite simple. A client may want to send a request to a set of servers. Instead of asking a server directly, he sends the request
to the load balancer which will route the request to the adequate server, i.e., the least loaded server. Once the request sent, the
client waits for the answer. When this one arrives, the client comes back to the idle state.

The servers The number of servers is noted S. Servers are numbered from 1 to S. Servers receive requests from clients via
the load balancer process. When a server accepts a request, he first has to notify this to the load balancer process, in order that
this one rebalances the pending requests. Then he has to wait for an acknowledgment from the load balancer to start treating
the request. Once the request treated, he directly sends the answer to the concerned client and goes back to the idle state.

The load balancer The load balancer can perform two kinds of task. The first one is to redirect each client request to the
least loaded server. Secondly, when a server accepts a request from a client the load balancer has to rebalance the pending
requests. If these are already balanced, the load balancer has nothing to perform and can come back to its idle state (transition
balancer_no_balance). If the loads are not balanced, the load balancer takes a pending request of the most loaded server and
redirects it to the least loaded server (transition balancer_balance). The load balancer has to maintain for each server the
number of requests sent to this server.

0NN AW~

UL B SR BRSBR DR DR R PR D WLOLWWLOLWLWWIERDNDNDDDEDDNIENDDNDNDIE = === == = = =
SOOI ANANUNHE LD, OOV ITANNE LN, OOVXTIANANNE LW, OOVXIANANNDRE WD, OO R WD~ OO

3.2. THE LOAD BALANCING SYSTEM 37

Listing 3.3: Helena file of the load balancing system (file examples/load_balancer.lna)

/3 sk sk ok sk ok ok Kk ok ok ok sk ok ok kK sk ok Kk ok ok Kk sk ok ok sk ok sk ok ok sk k sk ok sk k sk Kk sk ok ok kK sk ok sk sk sk ok sk ok sk ok sk sk sk ok sk ok sk ok sk ok ok ok ok ok K ok ok

*
* Example file of the Helena distribution

*

x File : load_balancer. lna

* Author: Sami Evangelista

x Date : 27 oct. 2004

*

x* This file contains the description of a load balancing system.

*

stk ok koK R K KRR SRR K KK KR K KKK KKK R KRR K KK R KRR R K KRR SRR R KK SRR SRR KK K KRR KRR K KKK KRR kKo ok %/

load_balancer (C := 6, /+x number of clients x/
S = 2) { /« number of servers x/

/x clients x/
type client_id : range 1 .. C;
type clients_no : range O .. client_id ’last;

/x servers x/
type server_id : range 1 .. S;

/% load %/
type servers_load : vector [server_id] of clients_no;
constant servers_load empty_load := [0];

/% return the least loaded server x/
function least (servers_load load) —> server_id {
server_id result := server_id first;
for (i in server_id)
if (load[i] < load[result])
result := 1i;
return result;

}

/% return the most loaded server x/
function most (servers_load load) —> server_id {
server_id result := server_id first;
for (i in server_id)
if (load[i] > load[result])
result := 1i;
return result;

}

/x check if load is balanced x/
function is_balanced (servers_load load) —> bool {

clients_no max_no := 0;
clients_no min_no := clients_no ’last;
for(i in server_id)
{
if (load[i] > max_no) max_no := load[i];
if (load[i] < min_no) min_no := load[1i];
}
return (max_no — min_no) <= 1;

}

/x increment the load of server i x/
function incr (servers_load 1, server_id i) —> servers_load

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

38

return 1 :: ([i] := 1[i] + 1);

/x decrement the load of server i x/

function decr (servers_load 1, server_id i) —> servers_load

return 1 :: ([i] := 1[i] — 1);

/x return the difference between the two loads

x/

function diff (clients_no cl, clients_no c2) —> clients_no

return (cl > c2) ? (cl — c2) : (c2 — cl);

/%

x* clients

*/

place client_idle {
dom : client_id;
init : for(c in client_id) <(¢)>;
capacity : 1;

}

place client_waiting {
dom : client_id;
capacity : 1;

}

place client_request {
dom : client_id;
capacity : 1;

}

place client_ack {
dom : client_id;
capacity : 1;

}

transition client_send {
in { client_idle < ¢c)>;)
out { client_waiting : <(¢)>;

client_request : <(¢)>; }

description: "client_%d:_send _request", c;

}

transition client_receive {
in { client_waiting : <(¢)>;

client_ack c<(¢c)>;)}

out { client_idle <(c)>;
description: "client_%d:_receives_response",

}

/*

* servers
x/

place server_idle {
dom : server_id;
init : for(s in server_id) <(s)>;
capacity : 1;

}

place server_waiting {
dom : server_id x client_id;
capacity : 1;

}

place server_processing {
dom : server_id x client_id;
capacity : 1;

}

place server_notification {

c3

CHAPTER 3. EXAMPLES

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

3.2. THE LOAD BALANCING SYSTEM

dom : server_id;
capacity : 1;
}
place server_notification_ack {
dom : server_id;
capacity : 1;
1
place server_request {
dom : client_id % server_id;
capacity : 1;
}
transition server_notify {
in { server_idle Do<(s)>;
server_request s <(c, s)>; }
out { server_waiting o <(s, ¢)>;
server_notification : <(s)>; }
description: "server_%d:_lb_process_notification", s;
}
transition server_receive {
in ({server_waiting o <(s, ¢)>;
server_notification_ack : <(s)>; }
out {server_processing o <(s, ¢)>; }
description: "server_%d:_reception_of _request_from_client_%d",
}
transition server_send {
in {server_processing : <(s, ¢)>; }
out {server_idle <(s)>;
client_ack c<(¢)>s)
description: "server_%d: _send_response_to_client_%d", s, c;
}
/%
* load balancer process
*/

place balancer_idle {
dom : servers_load;
init : <(empty_load)>;
capacity : 1;

}

place balancer_routing {
dom : servers_load * client_id;
capacity : 1;

}

place balancer_balancing {
dom : servers_load;

capacity : 1;
}
transition balancer_receive_client {
in {balancer_idle o<1)>;
client_request c<(¢c)>;)
out {balancer_routing : <(1, ¢)>; }
description: "lb: receive_request_of _client_%d", c;
}
transition balancer_route {
in { balancer_routing : <(1, ¢)>; }
out { balancer_idle : <(incr(l, 11))>;
server_request c<(c, 11)>; }
let { server_id 11 := least(l); }
description: "lb: route_request_of client_ %d _to_server %d", c,
}

transition balancer_receive_notification {

S,

11;

C3

39

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

0NN AW~

—
N — O O

40 CHAPTER 3. EXAMPLES

in { balancer_idle c<(1)>;
server_notification <(s)>;)

out { server_notification_ack : <(s)>;
balancer_balancing ;o <(decr(l, s))>; }

description: "lb: receive_notification_of_server_%d", s;

}

transition balancer_balance {

in { balancer_balancing : <(1)>;
server_request : <(c, most(l))>; }

out { balancer_idle : <(decr(incr(l, 11), ml))>;
server_request <(c, 11)>; }

let { server_id 11 := least(l);
server_id ml := most(l); }

guard: not is_balanced(1);

description: "lb: redirect_request_of_,client_%d_from_server %d_\

to_server_%d", ¢, ml, 11;

}

transition balancer_no_balance {

in { balancer_balancing : <(1)>; }
out { balancer_idle <1)y>;)
guard: is_balanced(1);

description: "lb: no_rebalance";

/%
* Sstate propositions
*
* load_not_balanced: for each couple of servers (sl,s2) with sl != s2,
* the difference between the number of requests pending or accepted by
x s1 and the number of requests pending or accepted by s2 is at most 1.
*/
proposition load_not_balanced:
not forall (sl in server_id, s2 in server_id | sl != s2
diff (card (sr in server_request | sr—>2 = sl) +
card (sn in server_notification | sn—>1 = sl),
card (sr in server_request | sr—>2 = s2) +
card (sn in server_notification | sn—>1 = s2)) <= 1);
proposition balancing:
balancer_balancing ’card = 1;

Listing 3.4: Helena file of the load balancing system properties (file examples/load_balancer.prop.lna)

/*

* reject any deadlock state

*/

state property not_dead:
reject deadlock;

/%
* the loads are balanced or are being rebalanced
*/
state property balance_ok:
reject load_not_balanced;
accept balancing;

[IEN e Y I I

S BB W WL L LW WL L W WENDNDNDEDNDINDEDNDNDDNDIDNDRFE = == = = =
LW — O VOVHXIANANNE WD, OOVOITANNDE WD, OOOIANWN A WD~ OO

3.3. THE TOWERS OF HANOI 41

3.3 The towers of Hanoi

The towers of Hanoi is a well-known mathematical game' . It consists of three towers, and a number of disks of different sizes
which can slide onto any tower. The puzzle starts with the disks neatly stacked in order of size on one tower, smallest at the
top, thus making a conical shape.

The objective of the game is to move the entire stack to another tower, obeying the following rules:

e Only one disk may be moved at a time.

e Each move consists of taking the upper disk from one of the towers and sliding it onto another tower, on top of the other
disks that may already be present on that tower.

e No disk may be placed on top of a smaller disk.
This example illustrates the use of lists in Helena.

Listing 3.5: Helena file of the towers of Hanoi (file examples/hanoi.lna)

/3 K koK K ok KK Kk KK K KKK R KK K R KK R KK R KK R KR K R KKK R KR KR KKK R kK K kKK sk oK K K R sk oK kK K KoK KOk
*

x Example file of Helena distribution

*

x File : hanoi.lna

* Author: Sami Evangelista

x Date : 15 feb. 2007

*

* This file contains the description of the towers of Hanoi game.

*
*

3k ok ok sk ok ok ok oK oK K K oK KK Kk R ok sk ok oK oK oK oK K oK o K Kk Rk ok ok oK oK oK Sk ok o o o KK Rk Rk ok ok oK oK K K ok ok kR KRRk Rk ok k sk sk k k k %/

hanoi (N := 3, /x N = the number of disks =/
M:=3) { /«x M= number of towers x/

// identifier of a disk
type disk: range 1..N;

// identifier of a tower
type tower: range 1 .. M;

// a list of disks
type disk_list: list[nat] of disk with capacity N;

// construct the list of disks initially present on the first tower
function construct_towerl () —> disk_list {

disk_list result := empty;
for(i in disk)
result := i & result;

return result;

}

// this unique place models the state of the towers.
// in the initial marking the first tower contains the list IN, ..., 1l
// and all others are empty
place towers {

dom : tower * disk_list;

init: <(tower’ first, construct_towerl ())>

+ for(t in tower range tower’ first + 1 .. tower’ last)
<(t, empty)>;

}

// transition move_disk models the move of the disk on top

IThe description is taken from http://en.wikipedia.org/wiki/Tower_of_Hanoi.

http://en.wikipedia.org/wiki/Tower_of_Hanoi

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

AW~

42 CHAPTER 3. EXAMPLES

// of tower src to the tower dest. the src stack must not be
// (not src_disks "empty). if the dest tower is not empty, the
// disk on top of src (src_disks 'last) must be smaller than the disk
// on top of the dest tower (dest_disks last).
// the move consists of deleting the last element from the src stack
// (src_disks 'prefix is the the list src_disks from which we remove
// the last element) and pushing it onto the dest stack.
transition move_disk {
in {
towers: <(src, src_disks)>
+ <(dest, dest_disks)>;
}
out {
towers: // remove the last disk of tower t
<(src, src_disks prefix)>

// add the removed disk on top of tower u
+ <(dest, dest_disks & src_disks ’last)>;
}
guard: not src_disks ’empty
and (dest_disks ’empty or src_disks *last < dest_disks *last);
description: "move_disk_%d_from_tower %d _to_tower %d",
src_disks last , src, dest;

}

// in the end state the last tower is full, i.e., it contains the list
// IN, ..., 1l
proposition all_moved:

exists (t in towers | t—>1 = tower’last and t—>2"full);

Listing 3.6: Helena file of the towers of Hanoi properties (file examples/hanoi.prop.1lna)

// we reach a state in which all disks have been moved
// to the last tower
state property end_state:

reject all_moved;

03N N kAW =

[SOJN NS I NS I (O T NS T O I NS I N T S i O R
O 00 1 AN EAE WD~ OOVWXXINWNBWN~OO

Chapter

Interfacing Helena with C code

Although the language provided by Helena for arc expressions is quite rich, it may not be sufficient and the user may, for
instance, prefer to use its own C functions rather than writing these in the Helena specification. This is provided by the
language through the import construct. As the code generated by Helena is written in C all imported components have to be
written in this language. This chapter first starts with a tutorial illustrating the use of this feature.

4.1 Tutorial: Importing C Functions

Our goal is to simulate the quick-sort algorithm with Helena. The net we want to analyze consists of a single transition swap
that takes a list of integers from a place myList, swaps two of its elements and put its back in place myList. Each occurence
of this transition simulates a single step of the quick-sort algorithm. The list we want to sort, toSort, is a constant initialized
via function initList . Below is the definition of this net.

Listing 4.1: Helena file of the sort net (file example/sort.1lna)

/% 3K sk oKk KR kK R KO KK R KK KK KK R KK KK K KO KKK KK KK K KK R KR KK R KR KK R KK KK K KK KKK KK R K KK K R K R ko ok
Example file of Helena distribution
File : sort.lna
Author: Sami Evangelista

Date : 3 mar. 2010

This simple example illustrates the use of imported functions.

informations on this model.

*
*
*
*
*
*
*
*
*
x Please read the user’s guide in directory doc if you want more
*
*
x To analyse this net you must first compile the C imported functions and then
* invoke helena as follows:

x* > helena—generate—interface sort.lna sort_interface.h

x > gcc —c initList.c quickSort.c isSorted.c

* > helena —L=initList.o —L=quickSort.o —L=isSorted.o sort.lna

*

*

sk sk skosk sk sk sk 3k skoskoskoskoskoskoskoskosk sk sk sk sk sk sk 3k sk sk sk sk skosk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk >k sk sk sk sk skoskosk sk sk sk sk skosk sk sk ki ok ko */
sort {

type intList: list[nat] of int with capacity 1000;

function initList () —> intList;
function quickSort (intList I, int steps) —> intList;
function isSorted (intList 1) —> bool;

43

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

44 CHAPTER 4. INTERFACING HELENA WITH C CODE

constant intList toSort := initList ();
place myList { dom : intList % int; init: <(toSort, 1)>; }

transition swap {
in { myList: <(1, steps)>; }
out { myList: <(quickSort(toSort, steps), steps + 1)>; }
guard: not isSorted(1);

}

import function initList () —> intList;
import function quickSort (intList 1, int steps) —> intList;
import function isSorted (intList 1) —> bool;

}

The transition swap is only firable if the list taken in place myList is not already sorted. The variable steps of transition
swap is used to count the number of swaps we have to perform with quick-sort algorithm. Note that the function quickSort is
always called with list toSort. Hence place myList will successively contain the following token:

toSort

quickSort(toSort, 1)
quickSort(toSort, 2)
quickSort(toSort, 3)

until the function returns a sorted list.

Now let us suppose that we do not want the functions used in this net to be written in Helena but directly in C. The easiest
solution is to use the import feature of Helena. Note that after these imports, the bodies of these functions do not have to be
declared. This would actually be an error.

Lastly, in order to follow the sequence of swaps performed by quick-sort we write the following line in the property file.

state property not_dead:
reject deadlock;

In order to write these C functions we need to know how the types of their parameters have been mapped to C. This is the
purpose of the helena-generate-interface tool that is invoked with only two parameters as below:

helena-generate-interface sort.lna sort_interface.h

File sort_interface.h is the resulting C header file that contains all declarations that could be required by the user to write
his (her) imported functions.

We only provide here the declarations that are required for the understanding of this tutorial. Looking at the net specifica-
tion, we need to access the declarations of types int, intList and bool. These three types are mapped to the three following

types.
typedef int TYPE_int;

typedef char TYPE_bool;
#define TYPE__ENUM_CONST_bool_ _false 0
#define TYPE__ENUM_CONST bool_ _true 1

typedef struct ({
TYPE_int items[1000];
unsigned int length;
} TYPE_intList;

We first notice that each Helena type myType is mapped to a C type TYPE_myType. For the boolean type, TYPE_bool, we
notice that its constants false and true have been mapped to 0 and 1. The list type intList is mapped to a structured type
TYPE_intList with two components:

e items is the content of the list stored in an array. The size of this array is equal to the capacity of the list type intList .

4.2. THE INTERFACE FILE 45

e length is the length of the list, i.e., the number of integers in array items that are actually part of the list.

We are now able to write the three functions that are imported in our net specification. Each function has been put in
a separate file. The content of these three files is depicted on Figure 4.1. For each imported function myFunc in the net
declaration there must be a C function IMPORTED_FUNCTION_myFunc. The return type and the parameter types of the C
function and the function in the net declaration must match. Otherwise a compilation error will occur when invoking Helena.

Now that we have written our imported functions we can analyze this net with Helena. First, we compile the C code of
imported functions as follows:

gcc —-c initList.c
gcc -c quickSort.c
gcc -c isSorted.c

We can now invoke Helena with option -L in order to specify which object files must passed to the linker.
helena -L=initList.o -L=quickSort.o -L=isSorted.o --action=check-not_dead sort.lna

Helena automatically compiles C files generated for the net file sort . 1na and link them with files initList .o, quickSort.o
and isSorted.o. After the search is completed we can see a simulation of the quick-sort algorithm for the simple list returned
by function initList :

! myList = <(14, 1, 3, 0, 21, 1)>

iswap, [1 =14, 1, 3, 0, 21, steps = 1]) —>
{ myList = <(12, 1, 3, 0, 41, 2)>

iswap, [1 =12, 1, 3, 0, 41, steps = 2]) —>
{ myList = <(12, 1, 0, 3, 41, 3)>

iswap, [l =12, 1, 0, 3, 41, steps = 3]) —
{ myList = <(C 10, 1, 2, 3, 41, 4)>

}

4.2 The interface file

As shown in our tutorial, the helena-generate-interface tool must be invoked in order to generate an header file contain-
ing the C code that could be required to implement imported modules. The purpose of this section is to describe exactly the
content of this header file.

4.2.1 Generated types

The Table 4.1 contains for each kind of type or sub-type in the Helena net the corresponding C type that is generated. The
translation is pretty straightforward. We can however make the following comments:

e Each Helena type or sub-type t is mapped to a C type TYPE_t.
e A numeric type is mapped to type short or int depending on its range of values. The same applies for numeric types.

e Each value val of an enumerate type t is mapped to a macro TYPE__ENUM_CONST_t__val that is expanded to the
position (minus 1) of the value in the list that defines the enumerate type. Note that some names are actually quite long.
The reason is that we thus avoid name conflicts in the generated code.

e A vector type vt is mapped to a structured type containing a single array element called vector. The dimension(s)
of this array match(es) with the cardinal(s) of the type(s) used to the define the Helena vector type. In our ex-
ample, the integer at index [blue, false] of a C variable var of type TYPE_colors can be accessed as follows :
var. vector [TYPE__ENUM_CONST_color__blue][TYPE__ENUM_CONST_bool__false].

46 CHAPTER 4. INTERFACING HELENA WITH C CODE

/x File: initList.c %/
#include "sort_interface.h"

TYPE_intList IMPORTED_FUNCTION_ initList() {
TYPE_intList result;
result.length = 5;
result.items[0] =
result.items[1] =
result.items[2]
result.items[3]
result.items[4] =
return result;

Il
N O W= A

/% File: quickSort.c x/
#include "sort_interface.h"

void swap(int =xa, int xb) {
int t = xa; xa = *xb; *xb = t;
}
void quickSort(int arr[], int beg, int end, int % nb) {
if (end > beg + 1) {
int piv = arr[beg], 1 = beg + 1, r = end;
while (1 < r) {
if (arr[1] <= piv) 1++;

else {
if (xnb == 0) return;
swap(&arr[1], &arr[——r]);
(xnb) ——;
}
}
if (xnb == 0) return;
swap(&arr[——1], &arr[beg]);
(xnb) ——;

quickSort(arr, beg, 1, nb);
quickSort(arr, r, end, nb);
}

}
TYPE_intList IMPORTED_FUNCTION_quickSort(TYPE_intList 1, TYPE_int nb) {

TYPE_intList result = 1;
quickSort(result.items, O, result.length, &nb);
return result;

/x File: isSorted.c x/
#include "sort_interface.h"

TYPE_bool IMPORTED_FUNCTION_isSorted(TYPE_intList 1) {
int i = 0;
for (i=0; i<l.length —1; i++)
if (l.items[i] > 1.items[i+1])
return TYPE__ENUM_CONST_bool__false;
return TYPE__ENUM_CONST_bool__true;

Figure 4.1: Imported functions of the tutorial

4.2. THE INTERFACE FILE

Table 4.1: Mapping Helena types to C
| Helena type i C type
Numeric types
type small: range 0 255; typedef short TYPE_small;
type big range 0 65535; typedef int TYPE_big;
Enumerate types
type color: enum (typedef char TYPE_color;
red , #define TYPE__ENUM_CONST color__red 0
green , #define TYPE__ENUM_CONST_color__green 1
blue , #define TYPE__ENUM_CONST_color__blue 2
yellow , #define TYPE__ENUM_CONST_color__yellow 3
cyan); #define TYPE__ENUM_CONST_color__cyan 4
Vector types

type colors: vector[color, bool]

of int;

typedef struct {
TYPE_int vector[5][2];
} TYPE_colors;

Structured types

type rgbColor:
small r;
small g;
small b;

struct {

}s

typedef struct ({
TYPE_small r;
TYPE_small g;
TYPE_small b;
} TYPE_rgbColor;

Container types

type colorList: list[small]
of color with capacity 5;

typedef struct {
TYPE_color items|[5];
unsigned int length;
} TYPE_colorList;

typedef struct ({

type smallSet: set TYPE_small items|[5];
of small with capacity 5; unsigned int length;
} TYPE_smallSet;
Sub-types
subtype tiny: small typedef TYPE_small TYPE._tiny:
range 0 15; yp - —Hnys
typedef TYPE_color TYPE_rgColor;
#define TYPE__ENUM_CONST_rgColor__red 0
subtype rgColor: color #define TYPE__ENUM_CONST_rgColor__green 1
range red green; #define TYPE__ENUM_CONST_rgColor__blue 2
#define TYPE__ENUM_CONST_rgColor__yellow 3
#define TYPE__ENUM_CONST_rgColor__cyan 4

47

48 CHAPTER 4. INTERFACING HELENA WITH C CODE

Table 4.2: Mapping Helena constants and functions to C

L Helena construct l C construct J

Constants

constant rgbColor

BLUE := {0, 0, 255}; TYPE_rgbColor CONSTANT BLUE;

Functions

function isBlack
(rgbColor c¢) — bool { | TYPE_bool FUNCTION_isBlack
return c.r + c.g + c.b = 0; (TYPE_rgbColor V2);

e A structured type is mapped to a C struct type that has exactly the same structure.

e A container type ct is mapped to a C struct type TYPE_ct containing two elements: the items of the list (or set) stored
in an array items; and, stored in an integer component length, the number of items in this array that are actually part of
the container. For instance, the Helena expression |red, green, cyanl of type colorList is equivalent to a C expression
ex of type TYPE_ct defined by:

= TYPE__ENUM_CONST_ color__red
ex.items[1] = TYPE_ ENUM_CONST _color__green
ex.items[2] = TYPE__ENUM_CONST _color__cyan
ex.length =3

ex.items [0

]
]

— the value of ex.items [3] and ex.items [4] are irrelevant.

e A sub-type is simply translated to its parent type.

4.2.2 Generated constants and functions

It may be useful for the user to access in imported modules the values of some constant(s) or the function(s) declared in the net
specification. Hence, each constant or function is also accessible in the header file generated by the helena-generate-interface
tool.

An example of translation is provided by Table 4.2. The mapping is straightforward. We simply notice that an Helena
constant const is mapped to a C variable CONSTANT _const and that an Helena function func is mapped to a C function
FUNCTION_func. In addition, the parameter and return types of the Helena function and the C function must match.

4.3 Requirements on imported modules

Imported functions must fulfill some requirements so that it does not impact negatively on the behavior of Helena. These are
listed below.

e An imported function may not have any side effect. In particular, it is absolutely necessary that the function frees all
memory it allocates. Otherwise, since the function will be called multiple times during the search, memory could be
quickly saturated.

e An imported function must terminate. This guarantees that the search also does.

e An imported function must be deterministic. If the function is not, Helena is not guaranted to report the same result
across different executions. The only exception is for functions that are used only once for the initialization of some net
constant(s). The value of a constant may for instance be read from a file or from user inputs. Note that all files accessed
in imported functions must necessarily be accessed via an absolute path.

In addition it must also hold that, for each imported function func in the net description, there is in imported module(s) a
function IMPORTED_FUNCTION_ func such that its parameter and return types match with the declaration of function func
in the net description.

Chapter

Help

5.1 Evaluation of Transitions

Helena puts some restrictions on the variables of transitions in order to be able to efficiently compute enabled transition
bindings at a given marking. Besides the fact that all variables of a transition have to be declared by appearing in a tuple
labelling its input or inhibitor arcs or otherwise in the pick section, additional constraints are put on these variables. We
summarize below the evaluation process in two situations: when the transition does not have inhibitor arcs and when it does.

5.1.1 Evaluation in the absence of inhibitor arcs

During the computation of the enabled bindings of a transition that does not have any inhibitor arc, Helena has to evaluate the
labels of the input arcs of the transition, its guard, and finally has to pick all the possible acceptable values for its free variables
defined in the pick section. Hence, three types of items have to be evaluated to bind all the variables of the transition and find
enabled bindings: tuples of input arcs, the guard, and free variables.

Each of these items define some variables, i.e., bind them by giving them a value, and use some variables that have to be
defined so that the item can be evaluated. The table below summarizes which variables are used/defined by each kind of item.

[Ttem | Variables used [Variables defined]
Tuple all variables appearing in the tuple all variables appearing in the tuple
(and not defined in it) at the top level (not in a sub-expression)
Guard all variables appearing in the guard none
Free variable | all variables appearing in the definition of the variable the variable

In the absence of inhibitor arcs a transition must fulfill the following requirement to be firable: there must be an evaluation
order itemy,...,item, such that, for any i € {1..n} and any variable v used by item;, there is j € {1..i — 1} such that item;
defines variable v. Otherwise, the transition will not be evaluable. This is for example the case with transitions t and u defined
below:

transition t {
in { p: <(x, f(y)> + <(y, x x 2)>; }
out { q: <(x)>; }
}
transition u {
in { p: <(x, f(y))>; }
out { q: <(x)>; }
pick { y in g(x); } // g returns a set of integers

For transition t the tuple <(x, f(y))> defines variable x but to evaluate it we require that y must be defined. The tuple
<(y, x * 2)> defines this variable but needs itself variable x to be defined. Hence, there is here a cyclic dependency. We face
the same problem for transition u.

The invokation of Helena on this example will raise the following errors:

49

50 CHAPTER 5. HELP

test.lna:4: Transition t cannot be evaluated
test.lna:8: Transition u cannot be evaluated

5.1.2 Evaluation in the presence of inhibitor arcs

If the transition has inhibitor arcs then the process described in the previous section first takes place. If we have found some
binding for the variables defined in the input tuples or in the pick section of the transition then a second evaluation process
starts for the inhibitor arcs of the transition. To be firable, there must not be any binding for the variables defined by inhibitor
arcs such that the corresponding tokens are present in the place linked by the inhibitor arc.

Let us for instance consider the following transitions.

transition t {
in { p: <(x)>; }
out { q: <x)>; }
inhibit { r: <(x)>; }

}

transition u {
in { p: <(x)>; }
out { q: <(x)>; }
inhibit { s: <(x, y)>; }

Transition t is firable for some binding x if and only if the token <(x)> is present in p but not in r. Transition u is firable
for some binding x if and only if the token <(x)> is present in p and there exists no y such that the token <(x, y)> is present
ins.

Note that variables defined in inhibitor arcs are not variables of the transition. For example, variable y of transition u
serves only during the evaluation of the transition.

5.2 Tips and Tricks

This section gives some hints to use Helena in an efficient way.

Saving memory Helena provides some predefined data types. However, we encourage users to define application specific
data types in order to limit the possible values of variables, and to save memory when markings are stored in the reachability
set. Let us consider for instance a place with domain int. Each token of this place will be encoded in a marking with 32
bits. However, if we know that the tokens of this place can only belong to the range [0..50], it is preferable to define a new
range type ranging from O to 50. Thus tokens will fit in 6 bits instead of 32. If you are not sure of this range, use option
--run-time-checks to detect expressions going out of range. For the same reason, try to limit capacities of places. Option
--run-time-checks will also detect violated capacities.

Storage methods When analysing a property, we advise to first use a partial search with hash compaction method (option
--hash-compaction). This method can explore a large portion of the state space and report errors much faster. Then, if no
error is found during this first stage, a second search can be launched.

Run time checks Enabling run time checks usually slows the analysis since additional code is put in the generated code to
check that no error occurs. When the net contains many arithmetic operations the run time can grow significantly. Thus, we
advise to disable run time checks if no error is suspected in the model.

Expressing properties Analysis techniques and reductions, i.e., partial order reduction, performed by Helena depends on
the property to be checked. The reduction observed decreases with the complexity of the property. Thus, try to verify
properties separately when possible. For instance, instead of verifying p and q, verify first p and then q.

Depth- vs. Breadth-first search Depth (option —-algo=DFS) and breadth-first search (option —-algo=BFS) both perform
a full state space search. Depth-first search usually leads to better reduction than breadth-first search, especially when partial
order methods are used (option --partial-order). Breadth-first search, however, reports counter examples of minimal
length. Thus, keep in mind these two factors when choosing the type of search to apply.

5.3. GUIDING HELENA IN THE SEARCH 51

5.3 Guiding Helena in the search

Some informations provided by the user are not mandatory but given to Helena in order to make its search more efficient.
However, Helena does not have any mean to check the validity of the informations provided. Thus if some of these revealed
to be erroneous Helena could produce wrong results, e.g., report that a property is verified whereas it is not. We therefore
encourage users to be very careful when supplying these informations and to ignore them if there is any doubt regarding their
validity.

5.3.1 Typing places
A type can be associated to each place of the net. This type specifies the nature of the information modeled by the place. The

types provided allow to model concurrent systems and protocols synchronizations through shared variables and communica-
tion buffers. Six kinds of places are allowed: process places, local places, shared places, protected places, buffer places and

ack places.
Idle |)

(p)
(py |P)
Working < I
{p)
A set of cyclic processes Incrementation of the local variable /

Clients ~ Servers

O D e Y

(p) _%ﬁ_ (s)
) @ Requests | (5:¢

Qp Lock O <C;;> O

(i) () 1 _<C> | Acks (s,c)
’ @ QJ (s

()

An incrementation of the shared variable 1. A synchronous exchange between clients and servers
A lock guarantees exclusive access to 1.

QProcess place Protected place OBuffer place
Local place @Shaxed place @Ack place

Graphical representation of the different place types

Figure 5.1: Four example nets illustrating the possibility of place typing.

52 CHAPTER 5. HELP

Process places (Figure 5.1, top left) Process places model the control flow of processes, i.e., its position in the code it
executes. A process is therefore in exactly one of the process places of the net. The simple net depicted models cyclic process.
Each process p can go from state Idle to state Working. Thus, for each process p there is a token (p) in place Idle or in place
Working.

Local places (Figure 5.1, top right) Local places model resources local to a process. Intuitively, this means that two
different processes cannot withdraw the same token from a local place. The net depicted models the incrementation by 1 of a
local variable /. This variable is modeled by the place /. The first component of the domain of this place is the identifier of the
process which owns the local variable and the second one gives the value of this variable. Since a process p can only access
its own variable and withdraw a token of type (p, i) from place I we can type this place as local. Indeed, two different process
cannot currently consume the same token in place /.

Shared and protected places (Figure 5.1, bottom left) Shared places model resources shared by processes. Shared vari-
ables or locks are examples of informations which can be modeled by a shared place. Protected places are special shared
places. They are used to model resources which can be accessed by several processes but which cannot be accessed concur-
rently thanks to a mechanism, e.g., a mutex, which guarantees that two processes cannot simultaneously access the resource.
The net depicted models the incrementation of a shared variable /. To update the value of /, a process must first grab a lock
modeled by place Lock. This lock ensures that two processes cannot concurrently update /. We can thus declare I as protected.
The place Lock is naturally a shared place since processes compete for the acquisition of this lock.

Buffer and ack places (Figure 5.1, bottom right) Processes can also synchronize themselves by sending messages on
communication channels. These channels are modeled by buffer places. These places can be thought of as shared places but
there is a major difference between the two: a token residing in a buffer place can only be removed by a single process. Thus,
channels represented by buffer places are multiple senders - single receiver channels.

Ack places are special kinds of buffer places used to represent acknowledgments of synchronous exchanges. For instance
if process p; sends a message to process p, then waits for the acknowledgment of p, before continuing its execution, the
place which corresponds to the acknowledgment can be typed as ack.

The depicted net models the behavior of a set of clients which interact through messages exchanges. A client ¢ sends
a request to a server s by putting a token (c,s) in place Requests. Since the only server which can receive this request and
withdraw the token (c,s) from place Requests is s we can type this place as a buffer place. Once received by the server the
request is treated and an acknowledgment is sent to the client which can continue its execution. Since this exchange is a
synchronous one, the place Acks can be typed as an ack place.

5.3.2 Safe transitions

ﬁ (p)
Take

(p,0)
Objects <> Working < Taken 2

")/ (poo)
0 Release
’

Figure 5.2: Transition Release is safe. Take is not.

»

Transitions of the net can be declared as safe. A transition binding is safe if it cannot be disabled by the firing of another
binding. In other words, the tokens consumed by the binding cannot be stolen by another binding. If a transition of the net is
declared as safe, then Helena considers that all the possible bindings of the transition are safe.

Figure 5.2 depicts an example of safe transition. Each process can be in place Idle in place Working. To go to work, a
process must first acquire an object o. The objects are initially in the place Ob jects. When a process returns to place Idle, it
puts back the object in place Objects. A token (p,o) in place Taken means that process p has taken object o.

5.3. GUIDING HELENA IN THE SEARCH 53

The transition Take is clearly not safe. Indeed, each enabled binding (Take, (p,0)) needs a token o in place Ob jects,
and this token can be removed by any other process ¢ which wishes to acquire the same object. Thus (Take, (g,0)) disables
(Take,(p,0)). Let us now have a look at transition Release. Once the binding (Take,(p,0)) is fired, there is a token (p) in
place Working and a token (p,0) in place Taken. Since p is the only process which can remove token {p, o) from place Taken,
the transition binding (Release,{p,0)) is safe. This obviously holds for any process p and object 0. Consequently we can
declare transition Release as safe.

54

CHAPTER 5. HELP

Appendix

Syntax summary

A.1 Net specification language

Nets
(net)

net name)
9

(’ (net parameter list))]

(
[
(net name) = (name)
(definition) =
| {(constant)
| (function)
| (place)
| (transition)
| (state proposition)

Net parameters

(net parameter list) = (net parameter)

| (net parameter) ’,’ (net parameter list)
(net parameter) = (net parameter name) ’ : =" (number)
(net parameter name) = (name)

Types and subtypes
(type) = (type name) ’:’ (type definition) ’;’
| (subiype)
(type name) = (name)
(type definition) = (range type)
| (modulo type)
| (enumeration type)
| (vector type)
| (struct type)
| (list type)
| (set type)
Range type
(range type) = (range)
(range) = ’range’ (expression) ..’ (expression)
Modulo type
(modular type) = ’'mod’ (expression)

55

56 APPENDIX A. SYNTAX SUMMARY

Enumeration type
(enumeration type)

s

‘enum’ ’ (° (enumeration constant) (*,’ {enumeration constant))*)’

(enumeration constant) = (name)
Vector type
(vector type) = ’vector’ [’ (index type list) ’]’ "of’ (type name)
(index type list) = (type name) (,” (type name))"
Structured type
(struct type) = ’struct’ '{’ ((component))*’}’
(component) i= (type name) (component name) ’;’
(component name) = (name)
List type
(list type) == ’1list’ [’ (type name)’1’ *of’ (type name) 'with’ ’capacity’ (expression)
Set type
(set type) = ’set’ ’of’ (type name) 'with’ capacity’ (expression)
Subtype
(subtype) n= (subtype name) ’ 1’ (parent name) [(constraint)]
(subtype name) = (type name)
(parent name) = (type name)
(constraint) = (range)
Constants
(constant) = ’constant’ (type name) (constant name)’ :=" (expression)’;’
(constant name) = (name)
Functions
(function) n= (function declaration)
| (function body)
(function prototype) = ’function’ (function name)

k)

" (* (parameters specification) ’)’ >=>" (type name)
(function declaration) z= {function prototype) ’ ;’

(function body) import’ (function prototype) ’;’

(function prototype) (statement)

[{parameter specification) (*,” (parameter specification))"]

(type name) (parameter name)

(parameters specification)
(parameter specification)

(function name) = (name)

(parameter name) = (name)
Statements

(statement) = (assignment)

(
(if statement)
(case statement)
(while statement)
(for statement)
(return statement)
(assert statement)
(block)

Assignment
(assignment) = (variable) ’ :=" {(expression) ’;’

A.l. NET SPECIFICATION LANGUAGE

If-then-else
(if statement)

(true statement)

(false statement) =

Case
(case statement)

(case alternative)
(default alternative)

While

(while statement)

For loop

(for statement)
(iteration scheme)
(iteration variable)

Return
(return statement)

Assertion
(assert statement)

Block
(block)

(declaration)

(variable declaration)
(variable name)

Places

(place)

(place attribute)

Domain
(domain)

(domain definition)

(types product)

Initial marking
(initial marking) =
(marking) =

Capacity

"if’ 7 (C (expression) ’)’ (true statement) ['else’ (false statement)]
(statement)

(statement)
‘case’ ’ (" (expression) *)’ *{’ ((case alternative))” [{default alternative)] ’}’
(expression) ’ :° (statement)
= ’'default’ ’:’ (statement)

'while’ ’ (* (expression) ’)’ (statement)

*fox’ * ((iteration scheme) *)’ (statement)
iteration variable) [, (iteration variable)]
variable name) *in’ (type name) [(range)]
variable name) ’in’ (place name)
variable name) *in’ (expression)

o~ o~~~

‘return’ (expression)’;’
assert’ ’:’ (expression)’;’

n= {’ ((declaration))” ((statement))* }’
(constant declaration)

| (variable declaration)
< ’
(

type name) (variable name) [’ : =" {expression)] ’;
name)

‘place’ (place name) ’ {’ (place domain) ({place attribute))" ’}’
(initial marking)

(capacity)

(place type)

>

"dom’ * :’ (domain definition) ’;’
’epsilon’

(types product)

(type name) (%> (type name))"

bl

’init’ ’:

{arc label)

(marking) *;°

(capacity) = ’capacity’ ’:’ (expression)’;’

57

58 APPENDIX A. SYNTAX SUMMARY

Type
(place type) = type’ ’:’ (place type name)’;’
(place type name) := ’process’
| ’local’
| ’shared’
| ’protected’
| ’buffer’
| ’ack’
Transitions
(transition) = ’transition’ (transition name)

*{’ (transition inputs)
(transition outputs)
[(transition inhibitors)]
[(transition free variables)]
[{transition bound variables)]
((transition attribute))” >}’

(transition name) = (name)

(transition inputs) in’ {7 ((are))Y

(transition outputs) ‘out’ " {’ ((arc))" "}V

(

(

transition inhibitors) ’inhibit’ ’{’ ((arc) Yoy
transition attribute) transition guard)
transition priority)

Arcs
(arcy = (place name) ’:’ {arc label)’;’

Free variables

(transition free variables) = ’'pick’’{’ ((free variable))" '}’
(free variable) = (free variable name) ’in’ (free variable domain)
(free variable domain) n= (type name) [{range)]

| (expression)

Bound variables
(transition bound variables)

(transition bound variable)

"let’ *{’ ({transition bound variable))” *}’
(type name) (variable name) ’ : =" (expression) ’;’

Guard
(transition guard) = ’guard’ ’:’ (guard definition)’;
(guard definition) ::= (expression)

i

Priority
(transition priority) = ’priority’ ’:

s

(expression) ’;’

Safe attribute
(safe) == ’safe’’;’

Description
(transition description) = ’'description’’:’ (string) [, (non empty expression list)]’;’

A.l. NET SPECIFICATION LANGUAGE

Expressions
(expression)

(expression list)

(non empty expression list)

LR

= 7 (’ (expression))
| (enumeration constant)
| (predecessor-successor operation)
| (comparison operation)
| {function call)
| (if-then-else)
| (structure component)
| (vector)
| (vector assignment)
| (list)

| (list assignment)

| (list concatenation)

| (empy ser

| (set membership)

| (token component)

| (iterator)

=€

| (non empty expression list)

(expression) (> (expression))”

Numerical and enumeration constants

(numerical constant)
(enumeration constant)

n= (number)
= (name)

Predecessor and successor operators

(predecessor-successor operation) =

Integer arithmetic
(integer operation) — ::=

Comparison operators
(comparison operation)

Boolean logic
(boolean operation) — ::=

Variables
(variable)

‘pred’ (expression)
| ’suecc’ (expression)
(expression) '+’ (expression)
| (expression) =’ (expression)
| (expression) %’ (expression)
| (expression) /[’ (expression)
| (expression) %’ (expression)
| "+ (expression)
| =’ (expression)
= (expression) =" (expression
| (expression) ’''=" (expression
| (expression) >’ (expression
| (expression) ’>=" (expression
| (expression) ’<’ (expression
| (expression) ’'<=' (expression
(expression) ‘ox’ (expression)
| (expression) ’'and’ (expression)
| ‘not’ (expression)

variable name)
structure component)
vector component)
list component)

(
(
(
(

59

(numerical constant)
(variable)

(integer operation)
(boolean operation)
(cast)

(structure)
(structure assignment)
(vector component)
(empty list)

(list component)
(list slice)

(list membership)
(set)

(set operation)
(attribute)

60

Structures
(structure)

(structure component)
(structure assignment)

Vectors
(vector)

(vector component)
(vector assignment)

Lists

(empry list)

(list)

(list component)
(list assignment)
(list slice)

(list concatenation)
(list membership)

Sets

(empry set)

(set)

(set membership)
(set operation)

Function call
(function call)

Cast
(cast)

If-then-else
(if-then-else)
(condition)

(true expression)
(false expression)

Token component
(token component)
(token)

(component number)

Attributes
(attribute)

(type attribute)
(place attribute)
(container attribute)

(list attribute)

(function name)

"{’ (non empty expression list)

o~ o~

expression)’

APPENDIX A. SYNTAX SUMMARY

,}3

variable) ’ .’ {component name)
277 (C (component name)

7=’

(expression))’

" [’ (non empty expression list) ’1’

variable) ’ [
expression)

(
(

‘empty’

[’ (non empty expression list) 1’
1277 (07 [(non empty expression list) °]1’ " 1=’ (expression))’

"1’ (non empty expression list) |’

(variable) ’ [’ <expressi0n> 1

(expression) > : 2> > (* * [” (expression) 1’ * : =" {expression) ’)’
(expression) " [’ (expressi0n> >. .7 {expression) ']’

(expression) *& (expression)

(expression) >in’ (expression)

‘empty’
> |” (non empty expression list) * |’

(expression)y ’in’ (expression
(expression)y ’ox’ (expression
(expressiony ’and’ (expression
(expression) =’ (expression

(type name) * (° (expression) ’)’

(condition) *?’ (true expression)’
(expression)
(expression)
(expression)

(variable name)
(number)

(type name) * '’ (type attribute)

.

> (* {expression list) ’)’

> (false expression)

(token) *=>’ (component number)

(place name) * '’ {place attribute)

(expression) * '’ (container attribute)

(expression) > '’ (list attribute)

first’ | ’last’ | ’ecard’
’card’ | ‘mult’

>full’ | ’empty’ | ’capacity’
size’ | ’space’

"first’ | ’first_index’ ‘prefix’
last’ | ’last_index’ | ’‘suffix’

A.2. PROPERTY SPECIFICATION LANGUAGE 61

Iterator
(iterator) = (iterator type) * (* (iteration scheme) [(iterator condition)] [(iterator expression)]’)’
(iterator type) = ’forall’ |’exists’ |’card’ |’mult’ |’min’ |’max’ |’sum’ | ’product’
(iterator condition) = |’ (expression)
(iterator expression) = ’:’ (expression)
Arc labels
(arc label) == (complex tuple) "+ (complex tuple))”
Tuples
(complex tuple) = [{tuple for)] [{tuple guard)] [(tuple factor)] (tuple)
(tuple for) = ’for’ ’ ((iteration scheme) ’)’
(tuple guard) = Cif’ 7 ((expression)’)’
(tuple factor) = (expression) %’
(tuple) = < (" (non empty expression list) *) >’
| ’epsilon’
State propositions
(state proposition) = ’proposition’ (state proposition name)’:’ (expression)’;’
(state proposition name) = (name)

A.2 Property specification language

Properties
(property specification) = ({property))’
(property) == (state property)
| (temporal property)
State properties
(state property) = ’state’ 'property’ (property name)’:’ (state property definition)
(property name) = (name)
(state property definition) = (reject clause) ({accept clause))"
(reject clause) = ’reject’ (predicate)’;’

(accept clause) ’accept’ (predicate) ’;’
(predicate) = ’deadlock’
| (state proposition name)

Temporal properties

(temporal property) = ’1tl’ ’property’ (property name)’:’ (temporal expression) ’;’
(temporal expression) = (’ (temporal expression) ’)’

‘true’

*false’

(state proposition name)

"not’ (temporal expression)

(temporal expression) *ox’ (temporal expression)
(temporal expression) *and’ (temporal expression)

" [1° (temporal expression)

><>’ (temporal expression)

(temporal expression) *until’ (temporal expression)

62

APPENDIX A. SYNTAX SUMMARY

Appendix

Gnu general public license

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright () 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the
works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions
of a program—to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General
Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you
know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to
respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the
same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer
you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software. For
both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems will not
be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although
the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change the
software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where
it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If
such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development
and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied

63

64

APPENDIX B. GNU GENERAL PUBLIC LICENSE

to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work
“based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction
with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices™ to the extent that it includes a convenient and promi-
nently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty
for the work (except to the extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body,
or, in the case of interfaces specified for a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in
the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to
enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those activities.
However, it does not include the work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the
Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided
the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program.

65

The output from running a covered work is covered by this License only if the output, given its content, constitutes a
covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modi-
fications exclusively for you, or provide you with facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not control copyright. Those thus making or running the
covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not
allowed; section 10 makes it unnecessary.

. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obli-
gations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the
extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you
disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection
for a fee.

. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

(b) The work must carry prominent notices stating that it is released under this License and any conditions added
under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work,
and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any
other way, but it does not invalidate such permission if you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program
has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of
the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other parts of the aggregate.

. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey

the machine-readable Corresponding Source under the terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), ac-
companied by the Corresponding Source fixed on a durable physical medium customarily used for software inter-
change.

66

APPENDIX B. GNU GENERAL PUBLIC LICENSE

(b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accom-
panied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer
support for that product model, to give anyone who possesses the object code either (1) a copy of the Corre-
sponding Source for all the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncommercially, and only if you received the object code with
such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need not
require recipients to copy the Corresponding Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying
where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code
and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.
In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, “normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered work in that User Product from a modified version of its
Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the
conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to
the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support
service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in
which it has been modified or installed. Access to a network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format
that is publicly documented (and with an implementation available to the public in source code form), and must require
no special password or key for unpacking, reading or copying.

. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more
of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were
included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to
part of the Program, that part may be used separately under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy,
or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you

10.

67

modify the work.) You may place additional permissions on material, added by you to a covered work, for which you
have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by
the copyright holders of that material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appro-
priate Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be
marked in reasonable ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
(e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modi-
fied versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the
Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with
a term that is a further restriction, you may remove that term. If a license document contains a further restriction but
permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement
of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt
otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including
any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a
covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not
require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third
parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or sub-
dividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s

68

11.

12.

13.

APPENDIX B. GNU GENERAL PUBLIC LICENSE

predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License,
and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the
Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated,
not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement).
To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under the terms of this License, through a publicly available network
server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or
(2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a
country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring con-
veyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of,
or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a
discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from
those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

14.

15.

16.

17.

69

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a
work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey
the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of
the GNU General Public License “or any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the
Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to
their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability
in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where
the full notice is found.

APPENDIX B. GNU GENERAL PUBLIC LICENSE

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public License. Of
course, your program’s commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for
the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see
https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first,
please read https://www.gnu.org/licenses/why-not-1gpl.html.

Index

arc label, 27
arc expression, 27
tuple, 27

constant, 11

expression, 17
attribute, 23
container attribute, 24
list attribute, 22, 25
list membership, 22
place attribute, 24
type attribute, 24
boolean operation, 20
cast, 20
comparison operation, 19
constant, 18
function call, 20
if-then-else, 20
integer operation, 19
iterator, 26
list operation, 22
empty list, 22
list assignment, 22
list component, 22
list concatenation, 22
list constructor, 22
list slice, 22
predecessor/successor operation, 18
set operation, 23
empty set, 23
set constructor, 23
set membership, 23
set union, intersection, difference, 23
structure operation, 20
structure assignment, 21
structure component, 20
structure constructor, 20
token component, 23
variable, 18
vector operation, 21
vector assignment, 21
vector component, 21
vector constructor, 21

71

function, 15
iteration scheme, 17, 26, 27

net, 8
net parameters, 8

place, 11
capacity, 12
domain, 12

initial marking, 12
type, 12

state properties, 28
state propositions, 28
statement, 15
assertion, 17
assignment, 16
block, 16
case, 16
for loop, 17
if-then-else, 16
return, 16
while, 16
subtype, 10

temporal properties, 29
transition, 13
arc, 13
bound variables, 14
description, 15
free variable, 13
guard, 14
priority, 14
safe attribute, 14
type, 9
enumeration type, 10
list type, 10
modulo type, 9
range type, 9
set type, 10
structured type, 10
vector type, 10

	Helena specification language
	Lexical and syntaxic conventions
	Lexical tokens
	Preprocessor directives
	Conventions

	Net specification language
	Nets
	Net parameters
	Types and subtypes
	Constants
	Places
	Transitions
	Functions
	Statements
	Expressions
	Arc labels
	State propositions

	Property specification language
	State properties
	Temporal properties

	Using Helena
	Invoking Helena
	Additional utilities
	The helena-report utility
	The helena-graph utility
	The helena-generate-interface utility

	Examples
	The distributed database system
	The load balancing system
	The towers of Hanoi

	Interfacing Helena with C code
	Tutorial: Importing C Functions
	The interface file
	Generated types
	Generated constants and functions

	Requirements on imported modules

	Help
	Evaluation of Transitions
	Evaluation in the absence of inhibitor arcs
	Evaluation in the presence of inhibitor arcs

	Tips and Tricks
	Guiding Helena in the search
	Typing places
	Safe transitions

	Syntax summary
	Net specification language
	Property specification language
	Gnu general public license

